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SUBHARMONIC AND MULTIPLE PERIODIC SOLUTIONS
FOR HAMILTONIAN SYSTEMS WITH
LOCAL PARTIAL SUBLINEAR NONLINEARITY

Abstract. The existence of subharmonic and multiple periodic solutions as well
as the minimality of periods are obtained for the nonautonomous Hamiltonian systems
z = JH'(t,z) with locally and partially sublinear Hamiltonian H; that is, there ex-
ist a decomposition R*N = A @ B of R*, an o € ]0,1[ and two periodic functions

a€ Lﬁ([O,T],R‘*) and b € L*([0,T],RY) such that |H'(t,u + v)| < a(t)|v|® + b(t) for
all (¢,u,v) € [0,T] x A x B and ﬂlﬁ# — 400 or — o0 as |v| — oo in B, uniformly in
u € A for a.e. t in some non empty open subset C of [0,T]. For the resolution we use an
analogy of Egorov’s theorem and a generalized saddle point theorem.

1. Introduction

Let H: R x R¥ — R, (t,z) — H(t,z) be a continuous function
T-periodic (T > 0) in the first variable, differentiable in the second variable,
and H'(t,z) = %—g(t, x) is continuous. Consider the Hamiltonian system of
ordinary differential equations:

(H) z=JH'(t,x)
where z € C1(R,R2?Y), J is the standard symplectic matrix:

0 -1
J= M,
Iy 0
I being the identity matrix of order N.
It has been proved that the system () has subharmonic solutions by
using many different techniques, for example Morse theory, minimax theory.

Many solvability conditions are given, such as the coercivity condition (see
[3, 6, 7, 10]), the convexity condition (see [2, 9, 11]), the boundedness con-
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dition (see [8]), the sublinear condition (see [1, 8]). Specially, under the
conditions

(1) There exist a € ]0,1[ and two constants a,b > 0 such that
|H'(t,z)| < al|z|*+b, Vz € R?V, ae. teR.

) lim 262

55~ — 100 or — oo, uniformly in ¢ € R,
]

Silva [8] proved the existence of subharmonics for problem (H) (see theo-
rem 1.2 in [8]). Recently, Daouas and Timoumi [1] generalized the result
mentioned above. In this paper, we suppose that the nonlinearity H'(¢, z)
is partially sublinear; that is, there exists a decomposition R*Y = A® B
of R?Y such that H is periodic in A and there exist 0 < @ < 1 and two
periodic functions a € Lﬁ([o, T],R*) and b € L%([0,T], R*) satisfying the
following condition

(1) |H'(tu+v)| <alt) [v]* +b(t), Vue A, Vv € B, ae tER,

and there exists a non empty open subset C of [0, T] such that H satisfies
the local partial sublinearity:

H(t,u +v)

(2)  lim T

— +00 or — 0o, uniformly in u € A, a.e. teC.

[v]—oo ||
Under these conditions, we obtain some existence of subharmonics and mul-
tiple periodic solutions for the system (). Furthermore, we study the mini-
mality of periods. For the resolution, we use an analogy of Egorov’s theorem,

the Least action principle and a Generalized saddle point theorem [4].

2. Preliminaries

We will recall a minimax theorem: “Generalized saddle point theorem [4]”,
which will be useful in the proof of our results.

Given a Banach space £ and a complete connected Finsler manifold V
of class C2, we consider the space X = E x V. Let E = W & Z (topological
direct sum) and E, @ Z, be a sequence of closed subspaces with Z, C Z,
W, Cc W, 1 <dim W, < co. Define

X, =FE,xV.
For f € C}(X,R), we denote by f, = fix,- Then we have f, € CY{Xn,R),
for all n > 1.

DEFINITION 2.1. Let f € C1(X,R). The function f satisfies the Palais-
Smale condition with respect to (X,) at a level ¢ € R if every sequence (z,,)
satisfying

Ty € X, fn(xn) -G frlz(mn) -0
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has a subsequence which converges in X to a critical point of f. The above
property will be referred as the (PS)* condition with respect to (Xp).

DEFINITION 2.2. Let Y be a closed subset of a space X. The cuplength
of X relative to Y is the largest integer n such that there exist
ap € H*(X,Y), * >0and oq,...,a, € H*(X), * > 1 with

agUa; U--Uan #0.

We write then cuplenth(X,Y)=n. We set cuplength(X,Y) = —o0 if no such
integer exists. Here H* denotes the singular cohomology over the real field R.

THEOREM 2.1 (Generalized saddle point theorem). Assume that there
exist r > 0 and a < § <~ such that

a) f satisfies the (PS)}: condition with respect to (X,,) for every c € [3,7],
b) f(w,v) < a for every (w,v) € W x V such that ||w]| = r,
c) f(z,v) > B for every (z,v) € Z XV,
d) f(w,v) <~ for every (w,v) € W x V such that ||w|| < r.
Then f=1([B,7]) contains at least cuplength (V) + 1 critical points of f.

Now, for giving a variational formulation of (H), some preliminary ma-
terials on functional spaces and norms are needed.
Consider the Hilbert space £ = W%’2(S 1 R2N), where S = R/TZ, and
the quadratic form @ defined in F by
T

Qa) = 5 §(72, )t

0

where (.,.) inside the sign integral is the inner product in R?V. If z € E,
then x has a Fourier expansion

2
z(t) =~ Z exp (%mtJ) T,

where &, € R%Y and 3°, .7 (1 + [m|)|2n|? < 0o. By an easy calculation, we
obtain

(2.1) Q(z) = -1 Y _ m|tm[®
meZ

Therefore () is a continuous quadratic form on E.
Consider the subspaces of E:

EO — ]R2N

B = {a: €E/a(t)=Y exp(%ﬁmw> im a.e.},

m>1
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2
Et = {x €FE /z(t)= Z exp(—ﬂmtJ>aAcm a.e.}.
T
m<—1

Then E = E°@® E* @ E~. It is not difficult to verify that E9, E—, Et
are respectively the subspaces of E on which @ is null, negative definite
and positive definite, and these subspaces are orthogonal with respect to the
bilinear form:

T
1
B(z,y) —§S<J:'U,y>dt, z,yc FE

associated with Q. If z € E* and y € E~, then B(z,y) = 0 and Q(z+y) =
Q(z) + Q(y). It is also easy to check that E®, E~ and E*1 are mutually
orthogonal in L2(S',R?V). It follows that if z = 2+ + 2~ + 2° € E, then
the expression

lz||* = Q(z*) — Q™) + |=°
is an equivalent norm in F.

PROPOSITION 2.2. E is compactly embedded in L?(S',R?N). In particular
there is a constant a > 0 such that

]2 < o|z]]
forallz € E.

3. Main results
Consider a decomposition R2Y = A @ B of R?V with

A = space{ei;,...,e;,}, B =space{e;, ,,.. . €y}

where 0 < p < 2N — 1 and (e;)1<i<2n is the standard basis of R2N . Here,
P4 (resp. Pg) denotes the projection of R*" into A (resp.B).

Let H : R x R? — R, (t,x) — H(t,z) be a continuous function
T-periodic (T" > 0) in the first variable, differentiable with respect to the
second variable, and H'(t,z) = %—Iz{(t,x) is continuous. Consider the follow-
ing assumptions:

(Ho) H is periodic in the variables z;,, ..., z;,.

(H,) There exist a € ]0, 1[ and two T-periodic functions a € LTa ([0,T],R™)
and b € L2([0, T],R*) such that

|H'(t,2)|| < a(t) |Ps(z)|* + b(t),Vz € R*N, ae. t €[0,T).
(H2) There exists a non empty open subset C of [0,T] and a T-periodic
function f integrable in [0, 7] such that either

(0 H(t,x)

im ————— = 400, uniformly in P4(z) € A, a.e. t € C,
|P5(z)|—+co | Pg(z)[* (=)
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and
H(t,z) > f(t), Vz € R*N, ae. t €[0,T],
or
H
(ii) lim L&:)M = —o00, uniformly in P4(x) € A, a.e. t € C,
|Pg(z)|—+0o | Pp(x)]|
and

H(t,z) < f(t), Vz € R?N, ae. t €[0,T].

Our first main result conserns the multiplicity of periodic solutions and is:
THEOREM 3.1. Assume (Hy) — (H2) hold. Then the Hamiltonian system
(H) t=JH'(t,x)
possesses at least (p + 1) T-periodic solutions geometrically distinct.

If 0 <p<2N — 2, we consider the assumption:
(A) there exists ig € {1,..., N} such that e;, ;4N € B.

Our second main result conserns the subharmonics and is:

THEOREM 3.2. Suppose that H verifies (A) and (Hy)—-(Hz3), then for all

integer k > 1, the system (H) possesses at least (p+ 1) kT'-periodic solutions

z,lc, e ,:1:§+l geometrically distinct such that for alli=1,...,p+1,

tim [l = o
REMARK 3.1. The Theorem 3.2 generalizes the Theorem 1.2 in [§].

Now, consider the assumptions:

26
(H}) There exist o € ]0,1[, 3>2a, a € LF-2= (0, T;R*) and b € L*(0, T; RY)
such that

|H' (¢, 2)|| < a(t) |Pp(x)|* + b(t), Yz € R2V, ae. t € [0,T).

(H5) There exist a non empty open subset C of [0, T], two positive constants
¢, d and a T-periodic function f integrable in [0, 7] such that either

(i) (H'(t,z), Pg(x)) > c|Pp(z)|’ —d, Vz € R?M, ae. t € C,
and '
(H'(t,z), Pg(z)) > f(t), Vz € R?N, ae. t € [0,T],
or
()  (H'(t,z), Pe(x)) < —c|Pp(z)|P +d, vz e R?N, ae. t e C,

and
(H'(t,z), Pg(z)) < f(t), for all z € R?Y | ae. t € [0,T].

Our third main result conserns the minimality of periods and is:
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THEOREM 3.3. Assume (A), (Hp), (Hy) and (H5) hold. Then for all
integer k > 1, the system (H) possesses at least (p + 1) kT-periodic solu-

tions a:,lc, ces ,:t:i+1 geometrically distinct such that for alli =1,...,p+ 1,
limg_, 00 Hx}C”oo = 400. Moreover, for alli =1,...,p+ 1 and for any suffi-

ciently large prime number k, kT is the minimal period of x},.

EXAMPLE 3.1. Let A : R x R2Y — R, (t,7) — A(t,r) be a continuous
periodic function in (¢, ), differentiable in r and %—f(t, r) is continuous. Let
0<a<1,0<e<1—aand consider the Hamiltonian:

H(t, T, p) = a(t)[l + lp _ A(t, T’)|2]a+%

where a : R — R is a continuous periodic function not identically null and
having a constant sign. Then the Hamiltonian H satisfies all the above
assumptions.

Proof of Theorem 3.1. To begin let us observe the following

REMARK 3.2. We remark that if = is a periodic solution of z = JH'(t, z)
then y(t) = z(—t) is a periodic solution of y = —JH'(—t,y). Moreover,
—H(—t,z) satisfies (H2)(i) whenever H(t,z) satisfies (H2)(é¢). Hence it
suffices to assume that H satisfies (H2)(¢).

The following two lemmas, which are analogeous to Egorov’s lemma, will
be needed in the proof of our results. The first lemma treats the sequence
case and the second does the continuous function case. They deal with
tending to +oo.

LEMMA 3.1. Suppose that C is a non empty open subset of R with meas(C)
< 00, F is a given set and f,(t,u) is a sequence of functions defined in C X F,
continuous in t such that f,(t,u) — +o0o as n — +oo, uniformly in u € F,
for a.e. t € C. Then, for any p > 0, there exists a subset C, of C' with
meas(C — C,) < p such that fr(t,u) — +00 as n — +oo, uniformly for all
(t,Lu) € C, X F.

Proof. Without loss of generality, we may assume that f,(f,u) — 400 as
n — —+oo, uniformly in u € F, for all ¢t € C'. For every r > 0 and every
positive integer n, define

o0
C(n,r)= [ {t€C/filt,u) >rVue F},
k=n+1
Then C(n,r) is measurable and

C(m,r) C C(n,r) if m < n.
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Hence we have
oo
c=Jcmr

n=1
because that fn(t,u) — +00 as n — 400, uniformly in v € F, for all t € C.
By the properties of Lebesgue’s measure one has

meas(C) = lim meas(C(n,r))
n—oo

which implies that
lim meas(C — C(n,r)) =0.

n—oo

Hence for any p > 0 and for every integer ¢ there exists n; € N such that

meas(C — C(n;, 1)) < —292—
Set
ﬂ nza
=1
Then one has
meas(C — C,) = meas(C — ﬂ C(n;, 1)) = meas(U(C — C(n;,1))
i=1 i=1
< =
Zmeas (C —C(n;1)) < Z i =

=1

Futhermore, fp(t,u) — +00 as n — 400, umformly for all (t,u) € C, x F.
Indeed, for every r > 0, choose ig > r. Then we have C, C C(n;,,1%0), which
implies that

fn(tau) 2 Z‘0 Z T

for all n > n;, and all (¢,u) € C, x F.

LEMMA 3.2. Suppose that H satisfies assumption (Hz2)(i). Then for every
p > 0 there exists a subset C, of C with meas(C — C,) < p such that

H(t,x
(3.1) Altz)
|Ps(x)|—+o0 | P(z)]
Proof. Suppose that H satisfies (H2)(i) and set for t € [0,T], (u,v) € Ax B

F(tuyv) = U T0)
|v]

= +o0, uniformly for all (t, Pa(x)) € C, x A.

and

fa(t,u) = inf f(t, u,v)

lv[2n
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for all integer n > 1, t € [0,T] and u € A. By the continuity of f(¢,u,v) in
v for almost every ¢t € C and all u € A one has

fu(t,u) = inf{f(t, u,v)/ [v| > n,
v="E§pr1€i,., + -+ &Ny /Epr1,. .., Ean € Q}
for all n > 1, almost every t € C and all v € A, which implies that f,(., u)
is mesurable for all positive integer n and u € A.
Now the fact
fa(t,u) — 400 as n — oo

uniformly in u € A, for almost every ¢t € C follows from the same property
of f(t,u,v). By Lemma 3.1 there exists, for every p > 0, a subset C, with
meas(C — C,) < p such that f,(¢t,u) — +0o0 as n — 400 uniformly for all
(t,u) € C, x A, which implies the desired property of f(t,u,v).

Assume that 0 < p < 2N — 1. We are interested in the existence and
multiplicity of periodic solutions to the system (H). By making the change
of variables t — £, the system () transforms to

(M) o = kJH'(kt, u).

Hence, to find kT-periodic solutions of (H), it suffises to find T-periodic
solutions of (Hy).

Associate to the systems (Hy) the family of functionals (@) defined on
the space F = H2(S1 R2V) by:
1 T T
br(u) = —§ (Ju,w))dt + k | H(kt,u)dt.
0

It is well known that every functlonal ¢ is continuously differentiable in £
and critical points of ¢ on E correspond to the T-periodic solutions of the
system (Hy), moreover one has

T T

o (wh = {(Ju, h)dt + k g (H'(kt,u), h)dt

0
for all u,h € E. Consider the space X = (W & Z) x V with W = E~,
Z = ET ® B and V the quotient space

V:A/{ZBNIE—i-e,;, i:il,...,ip}

which is nothing but the torus TP. Here, B (C Z) consists of constant
B-valued functions. We regard the functional ¢y as defined on the space
X=(Wa Z)xV as follows

T T
(3.1) dr(u+v) = % S(Ju, u)dt + k S H(kt,u + v)dt.
0 0
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To find critical points of ¢, we will apply Theorem 2.1 to this functional
with respect to the sequence of subspaces X, = F, X V, where

2
E, = {m e E/xz(t) = I% exp (%mtJ)ﬁm a.e.}, n > 0.
Let us check the Palais-Smale condition.

LEMMA 3.3. For all level ¢ € R, the functional ¢r satisfies the (PS)}
condition with respect to the sequence (Xp)nen-

Proof. Let (un, vn)nen be a sequence such that for all n € N, (up,vy,) € Xy
and

(3.2) Gk (tn +vn) — ¢ and @, (un +vn) — 0 a8 7 — o0,

where ¢k n is the functional ¢y, restricted to X,,. Set u, = u} +u, +u2 + U,
with uf € BT, u; € E~, u2 € B and v, € V. We have the relation
T

(33)  hnlun +va)aud = [Jut ||+ E {(H (kt, un + vn), uib)dt.
0
Since ¢;c,n(un + v,) — 0 as n — o0, there exists a constant ¢; > 0 such that
(3.4) Vn €N, |¢kn Up + VUn). +| <a [|u+H
By assumption (H;) and Hélder’s inequality, with p = E’ q= lla’ we have
T
(3.5)  |V(H (kt,un +vn), ) )dt
0
T
< {la(kt) |Pa(ua(t)|* + b(kt)] |u;t | dt
0
T 1 T 1
< Nlut || 2 [(§[a®(kt) [Po(un(£)[** dt)z + (§ 6% (kt)dt)2)
0 0

< [t |2 Mall, 2 1Pe(un)lFa + 1] 2.

Then by (3.3), (3.4), (3.5) and Proposition 2.2, there exist two constants
¢z, c3 > 0 such that

(3.6) Jut|| < e2 | Pe(un)||* + c3.
Observing that a similar result holds for (u,, ):
(3.7) lun || < c2lIPB(un)l|* + c3.

We conclude from (3.6) and (3.7) that the sequence (up) is bounded if
and only if the sequence (Pg(uy)) is bounded. Assume that (Pgp(uy)) is
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not bounded, we can assume, by going to a subsequence if necessary, that
| Pg(up)|| — 00 as n — oo. Since 0 < a < 1, we conclude by (3.6) and (3.7)
that

ut o uy

1P(un)ll " | Pa(ua)l
Therefore, we have

(3.9 ¥n = TBatun)]

(3.8)

— 0 asn— oo.

—y€B, ly=1asn— oco.
It follows that

(3.10)

— 1l asn — oo.

Consequently, by (3.6), (3.7) and (3.10), we can find a positive constant c4
such that

(3.11) b || < ealuld|®, i=+,—.

Now, we apply the fact that (¢x(un)) is bounded to get

2 _n2 T
lutll” = [, | H(kt, up) Cs
nl __m7 kS 2N g <

B 0 d

(3.12)

where c; is a positive constant. Using (3.11) and (3.12), we can find a
constant cg satisfying
T

[ug)[*

H(kt, up) — H(kt, un)
>

) T
(3.13) —— Tt + | dt
0

0
© H(kt,ul) — H(kt,un)

|u%|2a dt.

On the other hand, by mean value theorem, assumption (H;) and Hélder’s
inequality, we have

(3.14) f[H(kt,ug) — H(kt,uy))dt
0

T
= —S < H'(kt,ul + 0(ul +uy +vn)), ut + u,, + v, > dt
0

< (llall 2, [[P5(un + 0(uz + )2 + 1Bl 2] [[od +uz + vn| 2 -
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By considering (3.14) and Sobolev’s embedding E — L2(0,T;R?N), we can
find a constant ¢; > 0 such that
T
(3.15)  {[H(kt,up) — H(kt,up)]dt
0
< erllun|” + et [ + oz (1 + 10|t | + [z ]| + 2.
After combining (3.11), (3.13) and (3.15), we get

T 0
H(kt,u
(3.16) | (—’mn)dt < cs
o lupl
for some positive constant cg. However, the condition (3.16) contradicts
(Ha)(i) because |ul| — oo as n — co. Consequently, (u,) is bounded in X.
Going if necessary to a subsequence, we can assume that u, — u, ud — u°

and v, — v. Notice that

(3.17) Quy — ™) = (P nun +v1) = G (v +0)).(uy —u)
T
—k {(H'(kt,un + vn) — H'(kt,u+v),u} —ut)dt
0

which implies that w7 — u* in E. Similarly, v, — u~ in E. It follows
that (un,vn) — (u,v) in X and ¢} (u+ v) = 0. So ¢y satisfies the (PS)}
condition for all ¢ € R. The Lemma 3.3 is proved.

Now, let us prove that for all £ > 1, the functional ¢ satisfies the
conditions a), b) and ¢) of Theorem 2.1.

a) Let (u,v) € W x V, with u = u~ € E~, we have by using mean value
Theorem, assumption (H;) and Proposition 2.2

T

(3.18)  dr(utv) = —|[u|® + & H(kt,u™ +v)dt
0

T T

= —|lu”||* + & § H(kt,v)dt + k § H (kt,v + 6u™ yu"dt
0 0
T T

< —|lu”||* + & § H(kt,v)dt + k {[alkt) |[Pa(u™)|* + b(kt)] |u| dt
0 0

112 T _ T 2 —12ay1

<—|lw "+ % S H(kt,v)dt + k ||u HL2 [(S a?(kt) [u™ )2 + ||bl 2]
0 0

= P oo o + o)+ e
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where cg, c19, €11 are three positive constants. So
(3.19) dr(u+v) > —oo as u € W, ||u|| — oo, uniformly in v € V.

b) Let (u,v) € Z x V, with u = u* + 4%, we have by using mean value
theorem

T
(3.20) r(u+v) = ||u+H2 +k S H(kt,u + u® + v)dt
0

T T
= ||t ||* + & § H(kt,u® + v)dt + k [(H (kt,u® +v + u™), u*)dt.
0 0

By assumption (H;) and Proposition 2.2, we can find a constant c13 > 0
such that

T
(3.21) ’k; J(H (kt, u® + v + 6ut), u+)dt‘
0

T
< k {[a(kt) | Pa(u® + 0ut)|® + b(kt)] |[u'| dt
0

T 1
<kl ([§ o]+ Peae]* + 1ol )

<epg fJut|| ([ + |lut||* + 1.
Therefore, by using (3.20) and (3.21) we obtain

T
(3.22) Pi(u) < Hu+||2 +k S H(lct,u0 +v)dt — c12 ||u+|| [|u0|a + Hu+Ha +1].
0

Now let d > 9;2, then by assumption (H2)(¢), there exists a constant e > 0
such that

T
(3.23) k§ H(kt,u® + v)dt > d[u%]** —e.

0
So by (3.22) and (3.23), we have
(3:20)  du(w) > [|ut|* +ad[u ~ e = ero [Jut | [u°] + Jut]|* + 1)

1 a
> Lt ? = enalfur |~ ]
1 2 c? 2

s g e |+ a2 -

2
2 B fut][* = 1 HU+HO‘+1 — 12 ||u+H] + [d _ %2] |u0|2a .
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Therefore
(3.25) dr(u+v) > 00 as u € Z, |lu]| — oo, uniformly in v € V.

Hence by Lemma 3.3 and properties (3.19), (3.25), we deduce that, for all
k > 1, the functional ¢, satisfies all the assumptions of Theorem 2.1. There-

fore, for all integer k > 1, the Hamiltonian system (Hj) possesses at least

(p + 1) T-periodic solutions uj,. .. ,uiH geometrically distincts. The proof

of Theorem 3.1 and part 1 of Theorem 3.2 are proved.

Proof of Theorem 3.2. In the following, we will suppose that 0 < p <
2N —2.

By Theorem 2.1 and Remark 2.1, the sequences (u}) obtained in the
proof of Theorem 3.1 satisfy foralli =1,...,p+1

(3.26) be(ui) =t > inf p(Vho+u)

where ¢(t) = exp(ZFtJ)e,, € W, with zi(t) = ul(£) a kT-periodic solution
of (H).

We will prove, that for all ¢ = 1,...,p + 1, the sequence (u}) has the
following property

(3.27) Jim 1¢>k(u§c) = +o0.

—00 k

This will be obtained by using the estimates (3.26) on the critical levels
of ¢k, and implies that for all ¢ = 1,...,p + 1, the sequence (||u§c||oo)keN
goes to infinity as k goes to infinity. For this, we will need the following two
lemmas.

LEMMA 3.4. Letip € {1,..., N} be such that e;,, e;,+n € B and given
2 + 0
u(t) = exp ?tJ e, tu (t)+u +v
with ut € X+, u° € B, v € V. Then we have

(3.28) Pp(u(t)) #0, for a.e. t€0,T].

Proof. Arguing by contradiction and assume that Pg(u(t)) = 0 for a.e.
t € [0,T]. We have

2 .
ut(t) ~ Z exp(TmtJ)um a.e. t€[0,T]

m<-—1

27 . . (27 .
R~ Z [cos (Tmt> U, + Sin (?mt) Jum] a.e. t € 0,7,

m<-1
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. aN . _ N N :
where 4m € R*". Denote 4y = > ;1 amje;j + 3 ;21 Bm,; €j+n, With
am,j, ﬂmy] S R, then

N
27 . 2m
ut(t) = Z Z [am,j cos(?mt> — Bm sm(Tmt)]ej
N 27 2m
+ Z Z |:/8m,j COS(?mt) + am,j Sin(Tmt)]ej+N a.e.

But Pp(u(t)) = 0 implies Pe, (u(t)) = 0 and P,

e1'0+N
us

o 2 . (2w
Ccos <?t) + Z [am’io cos (?mt> —Brm.io s1n(Tmt)} + P, () =0

m<-—1

(u(t)) = 0, which gives

and
. 2w 2w (27
sm(?t) + Z [ﬂm,io cos (?mt) + Qi ig sm<?mt)] + Peiyin () =0
m<—1
then we obtain 1+ a_1;, = 0, 1 —a_j;, = 0 which is impossible. The proof
of lemma 3.4 is complete.
LEMMA 3.5. Suppose that H € C1(R x R*V R) satisfies (H2)(3), then

k
(3.29) inf M — 400, as k — +o0,
u€ZXV k

where p(t)= ﬁ exp(ZtJ)eiy, withig€{1,..., N} is such that e;y, €, N € B.

Proof. Arguing by contradiction and assume that there exist sequences
k;j — 00, (u;) C Z x V, and a constant ¢; € R such that

(3.30) ¢kj(\/kj<p+uj) < kjc1,Vj €N
Taking u; = ,/kj(uj+ +u(; + v;) with u]+ c ET, ug € B, v; € V, we obtain,
by an easy calculation

T

(3.31) éx, (VEjo+u;) = kjlllul [P =1+ § H(kjt, /Ej(o+uf +ud+v;))dt].
0

By assumption (Hs)(i), the Hamiltonian H is bounded from below, so we
deduce from (3.31) that there exists a constant ¢y > 0 such that

(3.32) &, (Vi + 1) > kjll[ul11? - col.
Combining this with (3.30), we conclude that (uj) is bounded in X. Taking‘
a subsequence if necessary we can find ut € E* such that

(3.33) uf(t) = u(t) as j — oo for a.e. t € [0,T].
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We claim that (ug) is also bounded in X. Indeed, if we suppose otherwise,
(3.33) implies that

(3.34) \/k;|Pp(p(t) +uj+(t)+u?—l—vj)] — 400 as j — oo for a.e. t € [0,T).

Let p > 0 and C, be a mesurable subset of C' defined as in lemma 3.2, we
have

(3.35) S (kit, /R (p( )+ u + v;))dt — oo as j — +00.
Cp

In the other hand, we have

(3.36) | H(kjt, /j(e( y+ul+v)dt> | f(kT)
[0, 71-C, [0, T]—Cp
> - S |f(t)| dt.
0

Therefore, we have by (3.35) and (3.36)
(3.37) g (kjt, /Ej(eo( )+ ud + v;))dt — 00 as j — +oo,

and we deduce from equality (3.31) that
1

(3.38) F(Zskj(\/kj@ +u;) — 00 as j — 00
3

which contradicts (3.30) and proves our claim. Taking a subsequence if
necessary, we can assume that there exists 4 € B and v € V such that for
almost every ¢ € [0, T

(3.39). uj+(t)+u2+vj—>u(t) ut () +ul + v, as j — oo.

By Lemma 3.4, we know that Pg(¢(t)+u(t)) # 0 for almost every ¢ € [0, T).
Therefore

(3.40) \/kijB((P(t)+U;_(t)+uo+'l)j)| — 400 as j — oo, for a.e. t € [0,T].

As above, by using (3.40), (H2)(z) and Lemma 3.2, we obtain (3.37), which
contradicts (3.30). That concludes the proof of Lemma 3.5.

We claim that H:z:kH = HukH — 00 as k — 0o. Indeed, if we suppose
otherwise, (u}) possesses a bounded subsequence (u}, ). Since

Dk, (Uk

(3.41) -

l\.'Jlb—l

T
S (knt,uf, ), ug, Yt + | H(knt,uj, )dt
0 0

the sequence (%) is bounded, contrary to (3.26) with (3.28). Consequently,
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we have
.42 tim a4, = Jim ], = +oo,
that concludes the proof of Theorem 3.2.

Proof of Theorem 3.3. As in Remark 3.2, we can assume without loss of
generality that the Hamiltonian H satisfies (Hz)( ). The following estimate
will be needed later.

LEMMA 3.6. If assumptions (Hy), (H}) and (Hb) hold, then for allx € R?N
such that |Pg(z)| > 1 and almost every t € C, we have

(3.43) H(t,z) > H(t, PA(a:)+ (|Ps(z)|? - 1)

+ dLog |Pg(x)| — - i)l

—b(t).

Proof. For x € R?" such that |Pg(z)| > 1 and for almost every t € C, we
have

@
(3.44) H(t,xz) = H(t, Pa(z)) + | (H'(t,Pa(z)+ sPs(x)), Pa(z))ds
0

1
+ S (H'(t, Pa(z) + sPg(z)), Pa(z) > ds.
1

Pg(z)
By (Hj), we have
P
(345) | | (H'¢ Pa(e) +5Pa(2)), Pa(z))ds
0
Pac a()
< | [a(t)|sPs(2)* + b(t)] | Pp(x)| ds = PO

0
On the other hand by (H5)(%), we have

1
(3.46) S (H'(t, Pa(z) + sPg(z)), Pp(z))ds

1
Pg ()|

1
ds
> | lelaPo(@) + a5 = SPs(@) — 1)+ Lo Po(a)]).
PB(I
Then property (3.43) follows from properties (3.44)-(3.46), which completes
the proof of Lemma, 3.6.

<
g



Periodic solutions for Hamiltonian systems 367

Now, since (Hj) implies (H;) and (3.43) with (Hp) and (H5)(¢) imply
(H2)(3), we deduce from Theorem 3.2 that for all integer k > 1, the system
(H) possesses (p + 1) kT-periodic solutions z},... ,xﬁ“ geometrically dis-
tinct such that for alli=1,...,p+ 1, limy_,o ”:1:2”00 = +400. It remains to
study the minimal period of x}c foralli=1,...,p+ 1.

The following lemma will be needed (see Proposition 3.2 in [5] for a
proof).

LEMMA 3.7. If z is a T-periodic solution of (H), then we have

T T )
(3.47) {(H'(t,2),z)dt < o V|H'(t,2)|" dt.
0 o
Consider the family of functionals
1+ kT
¥(z) = 5 | (Jz,z)dt + | H(t,z)dt
0 0

defined respectively on the spaces X defined as the space X introduced
above, with £ = H%(SI,R”J) and S! = R/kTZ in this case.

It is easy to see that for all kK > 1 and forall i =1,...,p + 1, x}g is a
critical point of ¢, and by (3.27), we have

1 .
(3.48) lim —yr(x}) = +o0.
k—oo k

In a first step, we will show that the set St of T-periodic solutions of (H) is
bounded in X. Assume by contradiction that there exists a sequence (z) in
St such that ||zx|| — oo in X as k — co. Let us write zy = z} +z +29+vk
where zi, € EJ, j = 0,—,+ and v, € V. Multiplying both sides of the
identity
Jip + H'(t,z1) =0

by a:: and integrating, we obtain

, T
(3.49) =i |”+ | < H'(t,zx), 2} > dt=0.

0

By Hélder’s inequality, assumption (Hj) and Proposition 2.2, there exist two
constants ¢; > 0 and ¢z such that

(3.50) =¥l < er 1Pe(zp)l|* + c2.
Similarly
(3.51) lzi || < e [|1Pa(zi)||* + ca.

We conclude from (3.50) and (3.51) that the sequence (zj) is bounded if
and only if the sequence (Pg(zg)) is bounded. Assume that (Pgp(zy)) is
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not bounded, we can assume, by going to a subsequence if necessary, that
| Pe(zk)|| — oo as k — oo. We deduce as in the proof of Lemma 3.3 that

(3.52) Yk = —y€B, [yl =1, as k — oo.

“PB( Dl

Since the embedding X «— L?, z — z is compact, we may assume without
loss of generality that

(3.53) ye(t) = y as k — oo for ae. t € [0,T]
and consequently
(3.54) |Pg(zx)(t)] — +o00 as k — oo for a.e. t € [0,T].

So by Fatou’s lemma, we obtain

T
(3.55) { 1Pa(@e)()]° dt — +oo as k — co.
0

On the other hand, by (Hj)(i) we have

T T
(3.56) | |Pp(zk)(®)® < (H'(t,zx), Pp(zk))dt — dT
° r r
= [(H'(t, zx), ze)dt — {(H'(t, zi), Pa(zx))dt — dT.
0 0

By Lemma 3.7, assumption (H;) and Hélder’s inequality, we can find two
positive constants cs, ¢4 such that

T
(3.57)  [(H'(t,xx), z)dt < HH’ ,z)|* dt
0 . -
<5 {[a(t) |Pa(zk)|* + b(t)]?dt
0
T
< §[62(0) | Po (i) + ()]t
0

B—2a

L (jarern) ™

=C3 ||PB($k)||LB + ca.
On the other hand, as in (3.11), there exists a constant cs5 > 0 such that
(3.58) |zi|| < es|zh|”, i=—+.

2

T
(11Pe@®I°dt) * + 2 bll3:
0

IA
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Therefore, by Proposition 2.2, there exist two positive constants cg, ¢y such
that

(3.59) lzkllp> < collPB(zk)lZs + -
By Holder’s inequality, (3.57) and (3.59), we have
T T 1
(3:60) | J(H'(t, zi), Palow))dt| < IPa(ai)llze (§ 1B (8,20 dt)*
0 0

1
< [es [|Pa(xx)|1§s + crlles | Pa(a) 73 + cd)?

< eg || P(zx)l[73 + co
where cg, cg are two positive constants.

Combining (3.56), (3.57) and (3.60), we can find two constants ¢, c11 >
0 such that

(3.61) IPe(zi)lf5 < c10 1 PB(zk) 3% + cn.

However (3.61) contradicts (3.55) because 8 > 2a. Hence St is bounded
and as a consequence ¥;(St) is bounded. Since for any £ € Sr one has
Yr(z) = ki (x), there exists a positive constant M such that

(3.62) Vz € Sp, Vk > 1, % e ()] < M.

Consequently, (3.48) and (3_.62) show that foralli=1,...,p+1 and for all &
sufficiently large, we have z} ¢ Sr. So if k is chosen to be prime number, the
minimal period of 31:}C has to be kT and the proof of Theorem 3.3 is complete.
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