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S U B H A R M O N I C A N D MULTIPLE PERIODIC SOLUTIONS 
FOR HAMILTONIAN SYSTEMS WITH 

LOCAL PARTIAL SUBLINEAR NONLINEARITY 

Abstrac t . The existence of subharmonic and multiple periodic solutions as well 
as the minimality of periods are obtained for the nonautonomous Hamiltonian systems 
x = JH'(t, x) with locally and partially sublinear Hamiltonian H; tha t is, there ex-
ist a decomposition R2iv = A © B of R2N, an a 6 ]0,1[ and two periodic functions 
a <E ¿ T i i ( [ 0 , T ] , R + ) a n d b e L 2 ( [0 ,T] ,R+) such that \H'(t,u + v)\ < a(t) |w|Q + b(t) for 
all ( t , u , v ) £ [0, T] x A X B and —> +oo or — oo as |i;| —> oo in B, uniformly in 
u € A for a.e. t in some non empty open subset C of [0,T]. For the resolution we use an 
analogy of Egorov's theorem and a generalized saddle point theorem. 

1. Introduction 
Let H : M x R2N —> M, ( t , x ) H(t,x) be a continuous function 

T-periodic (T > 0) in the first variable, differentiable in the second variable, 
and H'(t,x) — is continuous. Consider the Hamiltonian system of 
ordinary differential equations: 

IN being the identity matrix of order N. 
It has been proved that the system (H) has subharmonic solutions by 

using many different techniques, for example Morse theory, minimax theory. 
Many solvability conditions are given, such as the coercivity condition (see 
[3, 6, 7, 10]), the convexity condition (see [2, 9, 11]), the boundedness con-
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(H) x = JH'(t, x) 

where x G C1 (R, R2A'), J is the standard symplectic matrix: 
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dition (see [8]), the sublinear condition (see [1, 8]). Specially, under the 
conditions 

(1) There exist a G ]0,1[ and two constants a,b> 0 such that 

\H'(t,x)\ <a\x\a + b, Vx G R 2 i V , a.e. t G R . 

(2) lim ^ ~^ o r ~ oo, uniformly in t € R, 
|s|->oo |x| 

Silva [8] proved the existence of subharmonics for problem (H) (see theo-
rem 1.2 in [8]). Recently, Daouas and Timoumi [1] generalized the result 
mentioned above. In this paper, we suppose that the nonlinearity H'(t,x) 
is partially sublinear; that is, there exists a decomposition R 2 / v = A © B 
of R2N such that H is periodic in A and there exist 0 < a < 1 and two 
periodic functions a G L^ ([0, T], R+) and b G L 2 ( [0 ,T] ,R+) satisfying the 
following condition 

(1') |H'(t, u + v) | < a(t) \v\a + b(t), Vu G A, Vv G B, a.e. t G R, 

and there exists a non empty open subset C of [0, T] such that H satisfies 
the local partial sublinearity: 

(2') lim —^ ' — - —> + o o or — oo, uniformly in u G A, a.e. t G C. 
|n|—»oo |-y| 

Under these conditions, we obtain some existence of subharmonics and mul-
tiple periodic solutions for the system ('H). Furthermore, we study the mini-
mality of periods. For the resolution, we use an analogy of Egorov's theorem, 
the Least action principle and a Generalized saddle point theorem [4]. 

2. Preliminaries 
We will recall a minimax theorem: "Generalized saddle point theorem [4]", 

which will be useful in the proof of our results. 
Given a Banach space E and a complete connected Finsler manifold V 

of class C2, we consider the space X = E x V. Let E — W © Z (topological 
direct sum) and En © Zn be a sequence of closed subspaces with Zn C Z, 
WnCW, 1 < dim Wn < oo. Define 

Xn = Enx V. 

For / G C^pf .R) , we denote by /„ = f\Xn. Then we have fn G C^pfn.R), 
for all n > 1. 

DEFINITION 2.1. Let / G C ^ X , R). The function / satisfies the Palais-
Smale condition with respect to ( X n ) at a level c G R if every sequence (xn) 
satisfying 

^ fn(.%n) * C, fn{Xn) * 0 
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has a subsequence which converges in X to a critical point of /. The above 
property will be referred as the (PS)* condition with respect to (Xn) . 

DEFINITION 2.2. Let Y be a closed subset of a space X. The cuplength 
of X relative to Y is the largest integer n such that there exist 
a0 G H*(X,Y), * > 0 and a i , . . . , a „ G H*(X), * > 1 with 

We write then cuplenth(X,Y)=n. We set cuplength(X, F ) = —oo if no such 
integer exists. Here H* denotes the singular cohomology over the real field M. 

T H E O R E M 2 . 1 (Generalized saddle point theorem). Assume that there 
exist r > 0 and a < (3 < 7 such that 

a) f satisfies the (PS)* condition with respect to (Xn) for every c £ [/?,7], 
b) f(w,v) < a for every (w,v) G W x V such that ||u;|| = r, 
c) f(z,v) > (3 for every (z,v) € Z x V, 
d) f(w,v) < 7 for every (w,v) £ W x V such that ||iw|| < r. 

Then /_1([/3,7]) contains at least cuplength (V) + 1 critical points of f . 

Now, for giving a variational formulation of ('H), some preliminary ma-
terials on functional spaces and norms are needed. 

Consider the Hilbert space E = R2N), where S 1 = R/TZ, and 
the quadratic form Q defined in E by 

1 T 

Q(x) = - \ (Jx,x)dt 
2 0 

where (.,.) inside the sign integral is the inner product in If x 6 E, 
then x has a Fourier expansion 

ao U a i U • • • U a „ / 0. 

1 n^iLi 

where xm G R2N and Ylmel.^ ^ lml)l®m|2 < 00. By an easy calculation, we 
obtain 

E = < x G E / x(t) — ^ exp i —rat J j xm a.e. 
m> 1 ^ ' 



354 M. Timoumi 

E+ = < x E E / x(t) — ^ exp (-^-rntJj xm a.e. 1. 
^ m< —1 V / J 

Then E = E° © E+ © E~. It is not difficult to verify that E°, E~, E+ 

are respectively the subspaces of E on which Q is null, negative definite 
and positive definite, and these subspaces are orthogonal with respect to the 
bilinear form: 

i T 
B ( x , Y ) = o \ < J x > Y > d í> 

0 
associated with Q. If x G E+ and y G E~, then B(x, y) = 0 and Q(x + y) = 
Q(x) + Q(y)- It is also easy to check that E°, E~ and E+ are mutually 
orthogonal in L 2 ( S \ R2N). It follows that if x = x+ + x~ + x° e E, then 
the expression 

||x||2 = Q ( a ; + ) - Q O O + |x0|2 

is an equivalent norm in E. 
P R O P O S I T I O N 2 . 2 . E is compactly embedded in L2{Sl,R2JV). In particular 
there is a constant a > 0 such that 

||x||£2 < a||x|| 
for all x G E. 

3. Main results 
Consider a decomposition R2N = A © B of R2N with 

A = space {eh,..., eip}, B = space {eip+1,..., eÍ2N} 

where 0 < p < 2N — 1 and (e¿)i<¿<2Ar is the standard basis of R2N. Here, 
PA (resp. PB) denotes the projection of R2N into A (resp.B). 

Let H : R x R2N R, (t, x) i-> H(t, x) be a continuous function 
T-periodic (T > 0) in the first variable, differentiate with respect to the 
second variable, and H'(t,x) = x) is continuous. Consider the follow-
ing assumptions: 
(Ho) H is periodic in the variables Xiy, . . . , X{p. 

2 
(Hi) There exist a e ]0, l[and two T-periodic functions a £ Li-<* ([0, T], R + ) 
and b G L2([0,T],R+) such that 

\\H'(t,x)\\ < a(t) \PB(x)\a + b(t),Vx G R2iV, a.e. t G [0,T], 

(H2) There exists a non empty open subset C of [0,T] and a T-periodic 
function / integrable in [0, T] such that either 

H(t,x) 
|pb(¿)H+oo I P B ( X ) Y 

(i) lim 2a = uniformly in PA(X) G A, a.e. t G C, 
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and 
H{t,x) > f(t), Vx g R2N, a.e. t e [0,T], 

or 

(ii) lim X\ = —oo, uniformly in PA(X) E A, a.e. t € C, 
y J |Pb(x)H+oo \PB(X)\ Y AK , , 

and 
H(t,x) < f(t), Vx 6 R2N, a.e. i e [0,T], 

Our first main result conserns the multiplicity of periodic solutions and is: 

T H E O R E M 3 . 1 . Assume (HQ) — (H2 ) hold. Then the Hamiltonian system 

(H) x = JH'{t,x) 

possesses at least (p + 1) T-periodic solutions geometrically distinct. 

If 0 < p < 2N — 2, we consider the assumption: 

(A) there exists ¿0 € { 1 , . . . , N} such that e¿0, ei0+N G B. 

Our second main result conserns the subharmonics and is: 
T H E O R E M 3 . 2 . Suppose that H verifies (A) and (Hq)-(H2), then for all 
integer k > 1, the system ('H) possesses at least (p+ 1) kT-periodic solutions 
x\,..., geometrically distinct such that for all i = 1,... ,p + 1, 

lim llalli = +00. 

fc^ooll felloo 

R E M A R K 3 . 1 . The Theorem 3.2 generalizes the Theorem 1.2 in [8]. 

Now, consider the assumptions: 20 
(H[) There exist a € ]0,1[, /?> 2a, a 6 (0, T; R+) and b € L2(0, T; R+) 
such that 

\\H'{t,x)\\ < a(t)\PB{x)\a + b(t), Vx € M?N, a . e . i e [ 0 , T ] . 

(.H'2) There exist a non empty open subset C of [0, T], two positive constants 
c, d and a T-periodic function / integrable in [0, T] such that either 

(i) (H\t,x),PB(x)) >c\PB(x)f - d, Vx e R2N, a.e. t e C, 
and 

(H'{t,x),PB(x)} > f(t), Mx € R2N, a.e. t € [0,T], 

or 

(ii) (H'(t,x),PB(x)) < -c\PB(x)f + d, V I 6 R 2 N , a.e. t e C, 
and 

(H'(t,x),PB(x)) < f(t), for all x 6 R2N, a.e. t € [0,T], 

Our third main result conserns the minimality of periods and is: 
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T H E O R E M 3 . 3 . Assume (A), (Ho), (H[) and (H'2) hold. Then for all 
integer k > 1, the system (H) possesses at least (p + 1) kT-periodic solu-
tions xl,..., xpk geometrically distinct such that for all i = l,...,p + l, 
lirtifc_>00 ||icjfc|| = +oo. Moreover, for all i = 1 , . . . ,p + 1 and for any suffi-
ciently large prime number k, kT is the minimal period of x\. 

EXAMPLE 3.1. Let A : R x R2N K, (t,r) A(t,r) be a continuous 
periodic function in (t,r), differentiable in r and t,r) is continuous. Let 
0 < a < l , 0 < e < l — a and consider the Hamiltonian: 

H(t, r, p) = a(t) [1 + |p — A(t, r ) | 2 ] a + 2 

where a : K —> M is a continuous periodic function not identically null and 
having a constant sign. Then the Hamiltonian H satisfies all the above 
assumptions. 

Proof of Theorem 3.1. To begin let us observe the following 

R E M A R K 3 . 2 . We remark that if x is a periodic solution of x = JH'(t, x) 
then y(t) = x(—t) is a periodic solution of y = —JH'(—t,y). Moreover, 
—H(—t,x) satisfies (H2)(i) whenever H(t,x) satisfies (H2)(ii). Hence it 
suffices to assume that H satisfies (H2)(i). 

The following two lemmas, which are analogeous to Egorov's lemma, will 
be needed in the proof of our results. The first lemma treats the sequence 
case and the second does the continuous function case. They deal with 
tending to +00. 

L E M M A 3 . 1 . Suppose that C is a non empty open subset O/M with meas(C) 
< 00, F is a given set and fn(t, u) is a sequence of functions defined inCxF, 
continuous in t such that fn(t,u) —> +00 as n —> +00, uniformly in u € F, 
for a.e. t £ C. Then, for any p > 0, there exists a subset Cp of C with 
meas(C — Cp) < p such that fn(t,u) —> +00 as n —> +oo, uniformly for all 
(t, u) eCpx F. 

Proof. Without loss of generality, we may assume that fn(t,u) —> +00 as 
n —> +00, uniformly in u G F, for all t £ C. For every r > 0 and every 
positive integer n, define 

00 

C(n,r)= p| {t € C/fk(t,u) > r,Vu E F}. 
k=n+1 

Then C(n,r) is measurable and 

C(m,r) C C(n,r) if m < n. 
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Hence we have oo 
C = ( J C(n,r) 

ra= 1 
because that fn(t, u) —> +00 as n —> +00, uniformly in u € F, for all t € C. 
By the properties of Lebesgue's measure one has 

meas(C) = lim meas(C(n, r)) 
n—>00 

which implies that 
l im m e a s ( C — C(n,r)) = 0 . n—>oo 

Hence for any p > 0 and for every integer i there exists nt E N such that 

m e a s ( C - C(nhi)) < 

Set 00 
Cp = f]C(m,i). 

i=1 

Then one has 

meas(C — Cp) = meas(C — C(rii, Ï)) = meas([J(C — C{rii, i)) 
i-

p 
i=1 i—1 

00 00 

< meas(C - C(ni, i)) < ^ ^ = p. 
i—l i= 1 

Futhermore, fn(t,u) +00 as n —> +00, uniformly for all (t,u) G Cp x F. 
Indeed, for every r > 0, choose io > r. Then we have Cp C C(nl0, ¿0), which 
implies that 

fn(t,u) > i 0 > r 

for all n > rii0 a n d all (t, u) € Cp x F. 

L E M M A 3 . 2 . Suppose that H satisfies assumption (H2)(i). Then for every 
p > 0 there exists a subset Cp of C with meas(C — Cp) < p such that 

( 3 . 1 ) l im X\a = + ° ° I uniformly for all (t, PA{X)) G C P X A. 
|PB(X)|->+OO \PB{X)\ 

Proof. Suppose that H satisfies (H2)(i) and set for t e [ 0 , T ] , (u,v) G Ax B 

H(t,u + v) 
f(t,u,v) = 

and 

12a 

f„(t,u) = inf f(t,u,v) 
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for all integer n > 1, t G [0,T] and u G A. By the continuity of f(t,u,v) in 
v for almost every t € C and all u G A one has 

fn(t, u) = i n f { f ( t , u, v)/ |u| > n, 

V = ip+\eip+1 H 1- 6jve»2JV/íp+i, • • •, 6 jv € Q} 
for all n > 1, almost every í £ C and all u G A, which implies that /„(., u) 
is mesurable for all positive integer n and u G A. 

Now the fact 
fn(t, u) —> +oo as n —> oo 

uniformly in u G A, for almost every í G C follows from the same property 
of f(t,u,v). By Lemma 3.1 there exists, for every p > 0, a subset Cp with 
meas(C — Cp) < p such that fn(t,u) —» +oo as n —» +oo uniformly for all 
(t, u) G Cp x A, which implies the desired property of f(t,u,v). 

Assume that 0 < p < 2N — 1. We are interested in the existence and 
multiplicity of periodic solutions to the system (7i). By making the change 
of variables t —> the system (Tí) transforms to 

(Hk) ú = kJH'{kt, u). 

Hence, to find fcT-periodic solutions of (Tí), it suffises to find T-periodic 
solutions of (Tik)-

Associate to the systems (Tik) the family of functionals (</>&) defined on 
the space E = H^S1, R2N) by: 

j T T 

cj)k(u) = - \ (Jú, u))dt + k j H(kt, u)dt. 
2 o o 

It is well known that every functional fa is continuously differentiable in E 
and critical points of fa on E correspond to the T-periodic solutions of the 
system (Tik), moreover one has 

T T 

<f>'k(u)h = \ (Jú, h)dt + k \ (H'(kt, u), h)dt 
o o 

for all u,h G E. Consider the space X = (W © Z) x V with W = E~, 
Z — E+ © B and V the quotient space 

V = A/ {x ~ x + e¿, i = ii,...,ip} 

which is nothing but the torus Tp. Here, B ( c Z) consists of constant 
5-valued functions. We regard the functional (pk as defined on the space 
X = (W © Z) X v as follows 

^T T 

(3.1) fa(u + v) = - \ (Jú, u)dt + k \ H(kt, u + v)dt. 
2 o o 
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To find critical points of 4>k we will apply Theorem 2.1 to this functional 
with respect to the sequence of subspaces Xn = En x V, where 

En = Ix G E/ x(t) = ^ exp mtJjum a.e. 1, n > 0. 

\m\<n V / J 
Let us check the Palais-Smale condition. 

L E M M A 3.3. For all level c G K, the functional (f>k satisfies the (PS)* 

condition with respect to the sequence (Xn)nepj. 

Proof. Let (un, un)neN be a sequence such that for all n G N, (un, vn) G Xn 

and 

(3.2) (f>k(un + Vn) —• c and 4>k}n(un + vn) 0 as n oo, 

where 4>k,n is the functional 4>k restricted to Xn. Set un = + u~ + vn, 

with it+ € E+, u~ G E~, G B and vn £ V. We have the relation 

T 
(3.3) 4>Kn(un + vn).u+ = ||u+|| + 

o 

Since (f>'k n(un + vn) —• 0 as n —> oo, there exists a constant ci > 0 such that 

(3.4) Vn G N, I ^ K + < ci ||«+|| . 

By assumption (H\ ) and Holder's inequality, with p = ^, q = , we have 

(3.5) 
T 
\(H'{kt,un + vn),u+)dt 

T 
< J[a(fci) \PB(un(t))\a + b(kt)] |«+| dt 

0 
T T 

< \\u+\\L2 [ ( $ [ a 2 ( H ) \PB(un(t))\2a dt)l2 + (5 & 2 ( fc i )d i ) i ] 
0 0 

< R I L * IMlT^ \\PB(Un)tL2 + \\b\U. 

Then by (3.3), (3.4), (3.5) and Proposition 2.2, there exist two constants 
C2, C3 > 0 such that 

(3.6) ||u+|| <c 2 ||P B K )|| a + C3. 

Observing that a similar result holds for (u~): 

(3-7) ( K l ] <c2\\PB(un)\\a + c3. 

We conclude from (3.6) and (3.7) that the sequence (un ) is bounded if 
and only if the sequence ( P b ^ u ) ) is bounded. Assume that (Pri(un)) is 
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not bounded, we can assume, by going to a subsequence if necessary, that 
j|jPb(tin)IE —> oo as n —> oc. Since 0 < a < 1, we conclude by (3.6) and (3.7) 
that 

u 
(3.8) up ? v.. 0, n - ^ O a s n ^ o o . 

II^PbMH II-PBMII 
Therefore, we have 

(3.9) yn = U n y e B , \y\ = 1 as n oo. 
\\PB{Un)\\ 

It follows that 

, x R l 

Consequently, by (3.6), (3.7) and (3.10), we can find a positive constant C4 
such that 

(3.11) | K | | < c 4 k i q , i = +,~. 

Now, we apply the fact that (4>k(un)) is bounded to get 

(3.12) 
\un\ 0 \Un\ \un\ 

where C5 is a positive constant. Using (3.11) and (3.12), we can find a 
constant C6 satisfying 

T H(kt,u°n),. _ r H(kt, un) ] H(kt,u°n)-H(kt,un) 
^ ' J I 0|2a J | 0 \ 2a J |„0|2q 

0 \Un\ 0 I n I 0 \Un\ 

, T { H ( k t , u ° n ) - H ( k t , u n ) ^ 
^ C6 + 1 dt-

0 \un\ 

On the other hand, by mean value theorem, assumption (Hi) and Holder's 
inequality, we have 

T 

(3.14) J [H(kt, u°n) - H(kt, un)]dt 

0 
T 

= - \ < H'(kt, + 9(u+ + u ~ + vn)), u+ + u ~ + v n > dt 

0 

< J [a{kt) |PB(u°n + 9(u+ + u ~ + u„))|Q + b(kt)} |u+ + u~ + vn\dt 

0 

< ||PB(u°n + e(u+ + u~)\\aL2 + ||b||l2] I K + U - + vn\\L2. 
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By considering (3.14) and Sobolev's embedding E ^ L2(0, T ; R2N), we can 
find a constant C7 > 0 such that 

T 

( 3 . 1 5 ) J [H(kt, u ° ) - H(kt, un)]dt 
0 

< c r i K r + H i i + f + ||<||r + i ] [ R | | + K i i + 1 ] . 

After combining (3.11), (3.13) and (3.15), we get 

(3.16) ) Q dt < c8 

0 \Un\ 

for some positive constant eg. However, the condition (3.16) contradicts 
(H2)(i) because | —> 00 as n —> 00. Consequently, (un) is bounded in X. 
Going if necessary to a subsequence, we can assume that un — u , u^ —> u° 
and vn v. Notice that 

( 3 . 1 7 ) Q(u+ - u+) = {<t>'Kn{un + vn) - <t>'Kn{u + v)).(u+ - u+) 

T 

-k \ (H'(kt, un + vn) - H'(kt, u + v),u+ - u+)dt 
0 

which implies that u+ —> u+ in E. Similarly, u~ —> u~ in E. It follows 
t h a t (un,vn) —> (u,v) i n X a n d 4>'k(u + v) — 0 . S o 4>k s a t i s f i e s t h e ( P S ) * C 

condition for all c G M. The Lemma 3.3 is proved. 
Now, let us prove that for all A; > 1, the functional 4>k satisfies the 

conditions a), b) and c) of Theorem 2.1. 
a) Let (u, v) E W x V, with u — u~~ G E~, we have by using mean value 

Theorem, assumption (Hi) and Proposition 2.2 

T 

(3 .18) (f>k(u + v) = - ||u~ ||2 + k \ H(kt, u~ + v)dt 
0 

T T 

= - ||2 + k \ H(kt, v)dt + k \ H'(kt, v + 0u~)u~dt 
0 0 
T T 

< - ||ii"||2 + k \ H(kt, v)dt + k j [a(kt) \PB(u~)\a + b(kt)} \u~\dt 
0 0 
T T 

< -\\u~\\2+ k\H(kt,v)dt + k\\u~\\L2 [(J a2(kt) \u~\2a)^ + | | 6 | | l 2 ] 
0 0 

< - Ilit" ||2 + ||u- II [eg ||u~ ||a + cio] + C11 
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where eg, cio, Cn are three positive constants. So 

(3.19) (¡>k(u + v) ~~> as u E W, ||it|| —> oo, uniformly in v E V. 

b) Let (u, v) G Z x V, with u = u+ + u°, we have by using mean value 
theorem 

Il +II2 = r 11 

(3.20) 4>k{u + v) = ||u+1|2 + k J H(kt,u+ + u° + v)dt 

o 
T T 

+ k j H (let, u° + v)dt + k J {H'(kt, u° + v + 6u+), u+)dt. 

0 0 
By assumption (Hi) and Proposition 2.2, we can find a constant c\2 > 0 
such that 

T 

(3.21) k\(H'(kt,u°+ v + 9u+),u+)dt 

o 
T 

< k\[a(kt) \PB(u° + eu+)\a + b(kt)} \u+\dt 

o 
T 

<k\\u+\\L2 ([ia2(fcf)(|u°| + h+|)2a dt + II2 

< c 1 2 | | u + i | [ | u ° i a + i h + i r + i ] -
Therefore, by using (3.20) and (3.21) we obtain 

(3.22) <f>k[u) < \\u+\\2 + k\ H(kt,u° + v)dt-c12\\u
+\\ [|u°|a + ||u+||a + 1]. 

o 
2 

Now let cZ > then by assumption (H2)(i), there exists a constant e > 0 
such that 

T 
a,2a 

(3.23) k\H(kt,u° + v)dt > d u — e. 

So by (3.22) and (3.23), we have 

(3.24) <f>k(u) >\\u
+\\2+ d\ 

0|2 a 
e - C i 2 | | « + l | [ | u T + | | u + r + i] 

+ 1 I +11 I 01" \U — Cl2 It + r2 1 
d - ^ 

I 0\2 a 
m — e 

> \u+\\2 — C\2 | k + r + 1 ~~ c12 | k + | + I 0|2a m — e. 
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Therefore 

(3.25) fikiu + f ) —> oo as u & Z, ||ti|| —> oo, uniformly in v G V. 

Hence by Lemma 3.3 and properties (3.19), (3.25), we deduce that, for all 
k > 1, the functional <fik satisfies all the assumptions of Theorem 2.1. There-
fore, for all integer k > 1, the Hamiltonian system (Ttk) possesses at least 
(p + 1) T-periodic solutions . . . , upk+1 geometrically distincts. The proof 
of Theorem 3.1 and part 1 of Theorem 3.2 are proved. 

Proof of Theorem 3.2. In the following, we will suppose that 0 < p < 
2N-2. 

By Theorem 2.1 and Remark 2.1, the sequences (ulk) obtained in the 
proof of Theorem 3.1 satisfy for all? = 1 , . . . ,p + 1 

(3.26) 4>k(u{) = b{ > inf My/kip + u) 
uezxv 

where ip(t) = exp(^tJ)ei0 G W, with xlk{t) = a £;T-periodic solution 
of (H). 

We will prove, that for all i = 1 , . . . ,p + 1, the sequence (ulk) has the 
following property 

(3.27) lim IM<) = +oo. 
k—»oo K 

This will be obtained by using the estimates (3.26) on the critical levels 
of (f)k, and implies that for all i = l , . . . , p + 1, the sequence (||w/c||00)fceN 
goes to infinity as k goes to infinity. For this, we will need the following two 
lemmas. 

L E M M A 3 . 4 . Let io G { 1 , . . . , N} be such that EJ0, EJ0+JV G B and given 

u(t) = e x p (^rtjjei0 + u+(t) + u° + v 

with u+ G X+, u° G B, v G V. Then we have 

(3.28) PB(u(t)) j- 0, for a.e. t G [0,T], 

Proof. Arguing by contradiction and assume that Pg(u(i)) = 0 for a.e. 
t G [0,T\. We have 

u+(t) ~ exp(^rmtJjum a .e . t G [ 0 , T ] 
m<-l ^ ' 

cos (Ymt)ûm+sin (̂ mt̂ jJûm 
m<-1 

a.e. t G [0, T], 
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where um 6 R2N. Denote um = Ylf=iam,jej + Ylf=iPm,j ej+N, with 
«m j , Pm,j G K, then 

N 

u -M - E E 
j=1 m< — 1 

N 

,2ir \ n . /2tt 
Omj COS ( — m i 1 - f3mj sin I — m i 

+ X X c o s ( % m t ) + s i n ( Y m t p e i + N a -e -

j=1 m< —1 L \ / \ / 

But PB(u(t)) = 0 implies P e i o (^ (0) = 0 a nd Peio+N(u(t)) = 0, which gives 
us 

'27r. 
~T 

cos | —t I + X 
m< —1 

. 2vr \ „ . /2tt 
am,i0 cos ( —mt 1 -/?m,j0 sml — mt + Pe i Au° )= 0 

and 

sin | ~ t ) + 
m< —1 

, 2tt \ /2TT 
Pm,io cos ( — mt I +am,,0 sml — m i 

then we obtain 1 + Oi-\,i0 = 0, 1 — a~i,i0 = 0 which is impossible. The proof 
of lemma 3.4 is complete. 

L E M M A 3 .5 . Suppose that H e C^R x M2iV,R) satisfies (H2)(i), then 

(3.29) 
. 4>k(\/k<p + u) 
mt > +oo, as k +oo, 

uezxv k 

where tp(t) = exp(^iJ )e j0 , with io G {1 , . . . , N} is such that ej0, ej0+jv GB. 

Proof. Arguing by contradiction and assume that there exist sequences 
kj —> oo, (uj) C Z x V, and a constant c\ G M such that 

(3.30) 4>kj(y/kTjip + Uj) < kjCi, Vj € N. 

Taking Uj = + Uj + ^j) with e Uj G B, Vj £ V, we obtain, 
by an easy calculation 

T 

(3.31) faiiy/kjV+Uj) = kj[\\u+\\2-l + \H(kjt, y/k](<p+u+ + u°j+vj))dt]. 
o 

By assumption (H2)(i), the Hamiltonian H is bounded from below, so we 
deduce from (3.31) that there exists a constant C2 > 0 such that 

(3.32) tkjiy/kjV + ty) > fcj[||ut||2-c2]. 

Combining this with (3.30), we conclude that (uj~) is bounded in X . Taking 
a subsequence if necessary we can find u+ G E+ such that 

(3.33) ut ( i ) u+(t) as j - » oo for a.e. t <E [0,T]. 
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We claim that (uj) is also bounded in X . Indeed, if we suppose otherwise, 
(3.33) implies that 

(3.34) y/t^\PB((p(t)+uf(t) + u^ + Vj)\ +oo as j ^ oo for a.e. t G [0,T], 

Let p > 0 and Cp be a mesurable subset of C defined as in lemma 3.2, we 
have 

(3.35) \ H(kjt, y/kj(ip(t) + u~j~{t) + + Vj))dt oo as j +oo. 
cP 

In the other hand, we have 

(3.36) J H(kjt,y/Fj(^(t) + uf(t) + u,¡ + vj))dt> j f{kjT) 
[0 ,T]-CP [0 ,T\-CP 

T 
>-\\m\dt. 

0 
Therefore, we have by (3.35) and (3.36) 

T 
(3.37) j H(kjt, a/kj(ip(t) + Uj~(t) -h Uj + Vj))dt —> oo as j —> +oo, 

o 
and we deduce from equality (3.31) that 

(3.38) 4*kj (y/k j^P + Uj) oo as j —>• oo 
Kj 

which contradicts (3.30) and proves our claim. Taking a subsequence if 
necessary, we can assume that there exists u° G B and v G V such that for 
almost every t G [0, T] 

(3.39). uj{t) + u°j+ Vj -»• u(t) = u+(t) + u° + v, as j -> oo. 

By Lemma 3.4, we know that P s ( y ( í ) + u(t)) ^ 0 for almost every t G [0, T], 
Therefore 

(3.40) ^/kj\PB{f{t)+u+{t) + u°j+Vj)\ - f +oo as j -»• oo, for a.e. t G [0,T]. 

As above, by using (3.40), (H2)(i) and Lemma 3.2, we obtain (3.37), which 
contradicts (3.30). That concludes the proof of Lemma 3.5. 

We claim that = | | j ^ —• oo as k —> oo. Indeed, if we suppose 
otherwise, (ulk) possesses a bounded subsequence (ulkn). Since 

(3.41) M 4 J = -1]{H'(knt,uÍn),uln)dt + ]H(knt,uln)dt 
Kn z o o 

the sequence ( - ^ ) is bounded, contrary to (3.26) with (3.28). Consequently, 



366 M. Timoumi 

we have 
(3.42) lim ||4II = lim llujJI =+oo , 

k—>oo 00 k—>oo 00 

that concludes the proof of Theorem 3.2. 
Proof of Theorem 3.3. As in Remark 3.2, we can assume without loss of 
generality that the Hamiltonian H satisfies (i/^XO- The following estimate 
will be needed later. 
L E M M A 3.6. If assumptions (H0), (H[) and (H'2) hold, then for allx G R2Ai 

such that \PB(X)\ > 1 and almost every t € C, we have 

(3.43) H(t,x) > H(t,PA(x)) + PB(x)f - 1) 

+ dLog \PB(X) \ — — B(T)-
a + 1 

Proof. For x € M2iV such that \PB(x)\ > 1 and for almost every t £ C, we 
have 

i 
|PB(*)| 

(3.44) H(t,x) = H(t,PA(x)) + j (H'(t1PA(x) + sPB(x)),PB(x))ds 
o 

1 
+ 5 (H'(t, PA{x) + sPB(x)), PB{x) > ds. 

i 
|PB(*)| 

By (!![), we have 

(3.45) j (H'(t, PA{x) + sPB(x)), PB(x))ds 
o 

i |ps(*)| / i \ 
J [a(t) \sPB(x)\a + b(t)] \PB(x)\ds = -LL + b(t). 
o Q + 1 

On the other hand by (H^jii), we have 
l 

(3.46) J (H'(t, PA{x) + sPB(x)),PB(x))ds 
i 

|PB(*)| 

> i [c |SPb(x)|^ + = ^(IPbWI^ " 1) + dLog{\PB{x)\). 

|PS(*)| 

Then property (3.43) follows from properties (3.44)-(3.46), which completes 
the proof of Lemma 3.6. 
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Now, since ( H [ ) implies ( H i ) and (3.43) with (i/o) and ( H ^ ) ( i ) imply 
(H2)(i), we deduce from Theorem 3.2 that for all integer k > 1, the system 
( T i ) possesses ( p + 1) fcT-periodic solutions x \ , . . . geometrically dis-
tinct such that for alH = 1 , . . . , p + 1, l im^oo = +oo. It remains to 
study the minimal period of x l k for all i = 1 , . . . , p + 1. 

The following lemma will be needed (see Proposition 3.2 in [5] for a 
proof). 

LEMMA 3.7. I f x i s a T - p e r i o d i c s o l u t i o n o f ( H ) , t h e n w e h a v e 
T rp T 

( 3 . 4 7 ) \ ( H ' ( t , x ) , x ) d t < — J | H ' ( t , x ) f d t . 
0 0 

C o n s i d e r t h e f a m i l y o f f u n c t i o n a l s 
^ kT kT 

i p k { x ) = ~ \ ( J x , x ) d t + I H ( t , x ) d t 
2 6 o 

defined respectively on the spaces X ^ defined as the space X introduced 
above, with E = iT^(5 ' 1 ,R 2 i v) and S 1 = R / k T Z in this case. 

It is easy to see that for all k > 1 and for all i = 1 , . . . , p + 1, x \ is a 
critical point of ipk and by (3.27), we have 

(3.48) lim l M 4 ) = 
k—too K 

In a first step, we will show that the set S t of T-periodic solutions of (TC) is 
bounded in X . Assume by contradiction that there exists a sequence ( x i n 
S t such that ||iEfc|| —> oo in X as k —> oo. Let us write Xk = x ^ + x ^ + x ^ + v^ 
where x ^ G E ^ , j = 0, —, + and v^ e V . Multiplying both sides of the 
identity 

J x k + H ' ( t , x k ) = 0 

by and integrating, we obtain 
T 

(3.49) ||x+f + J < H ' ( t , x k ) , x + > d t = 0. 
o 

By Holder's inequality, assumption (H[) and Proposition 2.2, there exist two 
constants c\ > 0 and C2 such that 

(3.50) \ \ x + \ \ < c 1 \ \ P B ( x k ) W a + c 2 . 

Similarly 

(3.51) \ \ x ^ \ \ < c 1 \ \ P B ( x k ) \ \ a + c 2 . 

We conclude from (3.50) and (3.51) that the sequence ( x k ) is bounded if 
and only if the sequence (Ps(xk)) is bounded. Assume that (Psixk)) is 
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not bounded, we can assume, by going to a subsequence if necessary, that 
II-PbOejOII —> oo as A; —> oo. We deduce as in the proof of Lemma 3.3 that 

^k (3.52) yk = ||pB(gfc)|| ||y|| = 1, as A; ^ oo. 

Since the embedding X L2, x i—> x is compact, we may assume without 
loss of generality that 

(3.53) Vk(t) y as k oo for a.e. t e [0, T] 

and consequently 

(3.54) \PB(xk)(t)\ +oo as k oo for a.e. t € [0,T], 

So by Fatou's lemma, we obtain 
T 

(3.55) \\PB(xk){t)fdt^+ooask^oo. 
o 

On the other hand, by we have 

T T 
(3.56) c\\PB(xk)(t)f < \(H'(t,xk),PB(xk))dt-dT 

0 0 
T T 

= 5 (H'(t, xk),xk)dt - j (H'(t, xk),PA{xk))dt - dT. 
0 0 

By Lemma 3.7, assumption (H[) and Holder's inequality, we can find two 

positive constants C3, C4 such that 

T rp T 
(3.57) \(H'(t,xk),xk)dt < — j \H'(t,xk)\2dt 

0 0 
T 

<^\Ht)\PB(xk)\a + b(t)}2dt 
0 

T 
<^\[a2(t)\PB(xk)\2a + b2(t)]dt 

T .T T 2a 
{t)) ^ {\\PB^kmfdt)0 +2\\b\\2L2 

= c3\\PB(xk)\\la0 + c4. 

On the other hand, as in (3.11), there exists a constant C5 > 0 such that 

(3.58) | | 4 | | < c 5 K n , i = ~,+. 



Periodic solutions for Hamiltonian systems 369 

Therefore, by Proposition 2.2, there exist two positive constants cq, C7 such 
that 

(3 .59) \ \ x k \ \ L 2 < c 6 \ \ P B ( x k ) \ \ a
L 0 + c 7 . 

By Holder's inequality, (3.57) and (3.59), we have 
T T 1 

(3 .60) \ ( H ' ( t , x k ) , P A ( x k ) ) d t < \ \ P A ( x k ) \ \ L 2 M \ H ' ( t , x k ) \ 2 d t y 

0 0 

< [C6 ||PB(Xfc)||^ + C7][C3 \\PB(xk)\\% + C4]5 

where C8, eg are two positive constants. 
Combining (3.56), (3.57) and (3.60), we can find two constants c io,cn > 

0 such that 

(3 . 6 1 ) \\PB(xk)\fL0 < cio \\PB(xk)\\la0 + c n . 

However (3.61) contradicts (3.55) because (3 > 2a. Hence St is bounded 
and as a consequence iPi(St) is bounded. Since for any x G S t one has 
ipk(x) = kijj) (x), there exists a positive constant M such that 

(3 .62) Vx G S T , Vfc > 1, ^ \ ^ k { x k ) \ < M . 

Consequently, (3.48) and (3.62) show that for alH = 1 , . . . , p+1 and for all k 
sufficiently large, we have xl

k ^ St- SO if k is chosen to be prime number, the 
minimal period of xl

k has to be kT and the proof of Theorem 3.3 is complete. 
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