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EXISTENCE AND GLOBAL EXPONENTIAL STABILITY 
OF PERIODIC SOLUTION OF HIGH-ORDER 

COHEN-GROSSBERG NEURAL 
NETWORK WITH IMPULSES 

Abstract . Sufficient conditions are obtained for the existence and global exponential 
stability of periodic solution of high-order Cohen-Grossberg neural network with impulses 
by using Mawhin's continuation theorem of coincidence degree and by means of a method 
based differential inequality. 

1. Introduction 
The study of the existence of periodic solutions and almost periodic solu-

tions of the nonautonomous neutral networks has received much attention, 
see, for instance, Refs [1-5] and references cited therein. Most widely studied 
and used neural networks can be classified as either continuous or discrete. 
Recently, there has been a somewhat new category of neural networks which 
is neither purely continuous-time nor purely discrete-time ones; these are 
called impulsive neural networks. This third category of neural networks 
display a combination of characteristics of both the continuous-time and 
discrete-time systems [6-9]. In this paper, we will study the existence and 
exponential stability of periodic solution of high-order Cohen-Grossberg neu-
ral network with variable delays and impulses 

(1.1) 

dxj(t) 

dt 
= -CLi(Xi(t)) bi(t)xi(t) + ^ c i j ( t ) f j ( x j ( t - Ti(i))) 

3=1 
n n 

+ dijsWfjiXjit - Tj(t)))fs{xa(t - Ts(t))) + Ii{t) 
j=1 s=l 

Axj(ifc) = Ji(xi(tk)) = -nfikXi(tk), i = 1 , 2 , - ••,/!, fc = 1 , 2 , • • 
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where AXi(tk) = Xi(t¡J") — Xi(t k ) are the impulses at moments tk and 
0 < ii < ¿2 < • • • is a strictly increasing sequence such that lim tk = 

t—>oo 
+oo; Xi(t) is the state of neuron i = 1 , 2 a n d n is the num-
ber of neurons; C(t) = ( c j j ( i ) ) n x n and D(i ) = (diij(i) + di2j(i) + ••• + 
dinj(t))nxn are connection matrix functions, I(t) = (/i(i), I?(t), • • •, In(t))T : 

R+ i—> Rn is continuous periodic functions with period u > 0, f(x) = 
(/i(®i)> h(x2), fn(xn)) is the activation function of the neurons. The 
delays 0 < T{(t) < r (i = 1,2, • • •, n) are bounded function. 

As usual in the theory of impulsive differential equations, at the points of 
discontinuity tk of the solution t \—> Xi(t) we assume that x l ( t f c ) = xi(t^). It 
is clear that the derivatives x[(tk), i = 1, 2, • • •, n, k = 1, 2, • • • do not exist. 
On the other hand, according to the first equality of (1.1) there exists the 
limits Xi( t J ) . According to the above convention, we assume x {(tk) = x { (t^), 
1 = 1,2, • • •, n, k = 1,2, • • •. 

The initial conditions of system (1.1) are of the form 

Xi(s) = (pi(s) ± 0, s e [—r, 0], i = 1, 2, • • •, n, 

where fa G C([—r, 0], R), i = 1, 2, • • •, n. 
Throughout this paper, we assume that 

(H\) The delays 0 < Ti(t) < r (i = 1,2, •••,n) are bounded continuous 
u—periodic functions. 

(H^) ai(u), i = 1,2, • • • ,n are positive and bounded continuous a;—periodic 
functions and 0 < Oj < di(u) <ai, Vu € R, i = 1, 2, • • •, n. 

(H3) fi € C(R, R), j — 1, 2, • • •, n are Lipschitzian with Lipschitz constants 
L j > 0, 

\ f j ( x ) - f j ( y ) \ < L j \ x - y \ f o r j = 1 , 2 , • • • , n , x,y € R. 

(Hi) There exists positive constants Mj > 0 such that \fj(x)\ < Mj for 
j = 1,2, x £ R. 

(H5) bi(t),Cij(t) and dijs(t), i,j,s = 1,2, •••,n are bounded continuous 
u>—periodic functions. 

(Hfj) There exists a positive integer q such that tk+q = tk + uj, 7i(k+q) = 7ifc> 
for k = 1, 2, 3, • • •, i = 1, 2, • • •, n. 

(Hj) J^J (1 — 7^) , i = 1,2, •••, n are u>—periodic functions. 
0 <tk<t 

For convenience, for i,j,s = 1, 2, • • •, n, we introduce the following nota-
tions: 

bi = inf{|6i(i)|, t € [0,w]}, h = sup{|foi(t)|, t £ [0,w]}, 
Cij = sup{\ c{j(t)|, t € [0,u;]}, dijs = sup{|ct,s(i)|, t € [0,o;]}, 
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/ i = sup{|/ i(i)|, *e[o,w]}, N i = ( \ [ ] ( i - 7 i j k ) - 2 V . 

The organization of this paper is as follows. In Section 2, we introduce 
some notations and definitions, and state some preliminary results needed 
in later sections. In Section 3, we study the existence of periodic solutions 
of system (1.1) by using the continuation theorem of coincidence degree pro-
posed by Gains and Mawhin [15]. In Section 4, we shall derive sufficient 
conditions to ensure that the periodic solution of (1.1) is globally exponen-
tially stable. In Section 5, an illustrate example is given to demonstrate the 
effectiveness of the obtained results. 

2. Preliminaries 
In this section, we shall introduce some notations and definitions, 

and state some preliminary results. Consider the impulsive system 

(2 1) i = - T-i(i)), - • • - ^ ( i ) ) ) , t + tk, k = 1, 2, • • • 
\Ax( i ) | t = i f c = Jk{x{t~k)) 

where x <E Rn, f : RxRn —• Rn is continuous; f(t+u>, x(t — T\(t),..., x(t — 
Tn(t))) = f ( t , x ( t — Ti(t)),... ,x(t — Tn(t))) and Jk : R —• R, k = 1 ,2 , . . . 
are continuous; n G C(R, [0, r]), i = 1,2, . . . , n is u>— periodic functions 
and t — Ti(t) —• oo as t —• oo, i — 1 , 2 , . . . , n, and there exists a positive 
integer q such that tk+q = tk + cu, Jk+q(x) = Jk(x) with tk e R, tk+i > tk, 

lim tk = A(t)\t=tk =xt+-xt~. Forijt ¿0 (k = 1 ,2, . . . ) , [0,w]n{ifc} = 
k—>oo k k 
{ii, ¿2, • • •, tq}. As we know, {tk, k = 1,2, • • • } are called points of jump. 

D E F I N I T I O N 2 . 1 . A function x E ([0, oo),R) is said to be a solution of 
system (2.1) on [0, oo) satisfying the initial value condition 

x(s) = 4>(s)^ o , s £ [—r, 0], 

where <j> € C([—r, 0], Rn), if the following conditions are satisfied 

(i) x(t) is absolutely continuous on each interval ( t k , t k + i ) C [0, oo); 
(ii) for any tk G [0, oo), k = 1, 2 , . . . , x(t^) and x(texist and x(t^) = 

x(tk); 
(iii) x(t) satisfied (2.1) for almost everywhere in [0, oo) and at impulsive 

points tk situated in [0, oo) may have discontinuity of the first kind. 

D E F I N I T I O N 2 . 2 . The periodic solution x* of system (1 .1 ) is said to be 
globally exponentially stable (GES), if there exists constants a > 0 and 
(3 > 0 such that 

\xi(t)-x*\ < (3 II 4> - x* II e ~ a t 
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for all t > 0, where 

\\<t>-x* i= sup ( Y > i ( s ) - < i ) . 

Consider the nonimpulsive delay differential system 

(2.2) d y i { t ) 
dt = ~ n ( i - ^ r ^ f n (1 --yiJb)yi(i)) 

0 <tfc<i 0<tfc<t ' 

•L(t) n a - 7 i k ) y % ( t ) + j 2 c i j ( t ) f j ( n a - 7 i f c ) % - ( i - r j ( i ) ) ) 
1 0<ifc<i j = 1 V0<ifc<t-T3(t) ' 

n n , ^ 

+ I I ( 1 -7 i f c )y i ( i - r J - ( t ) )J 

3 = 1 » = 1 0<tk<t-Tj(t) ' 

•fs( n ( l - 7 s * ) ^ ( i - r a ( t ) ) J + 7 i ( i ) | , t> 0, z = 1, 2,.. . , ra. 
<tk<t~Ts(t) ' ' 

with initial conditions yi(s) = (f>i{s) ^ 0, s € [—r, 0], « = 1,2,..., n. 

LEMMA 2.1. [6] Assume (H7) holds, then 

(i) if y = (3/1, • • •, Vn) is a solution of (2.2), then 

I I (1 ~~ 7ife)yi> • • • > I I (l-7nfc)i/n) 

îs a solution of (1.1); 
(ii) if x = (x i,...,xn) is a solution of ( 1.1), then 

y = [ II (1 -llk)xi,..., JJ (1 - 7nfc)a;n J 
\ < t k < t 0<tk<t ' 

is a solution of (2.2). 

Let X , Y be real Banach space, L : Dom L C X —> dim ¥ be a linear 
mapping, and N : X —> Y be a continuous mapping. The mapping L will 
be called a Fredholm mapping of index zero if dim Ker L = codim Im L < 

+ 0 0 and Im L is closed in Y . If L is a Fredholm mapping of index zero 
and there exists continuous projectors P : X —> X and Q : Y —> Y 
such that Im P = Ker L, Ker Q = Im (7 — Q), it follows that mapping 
•i'lDomLnKerP:(7-P)̂  —> Im L is invertible. We denote the inverse of the 
mapping by Kp. If Q, is an open bounded subset of X , then the mapping N 

will be called L—compact on ii. If QN(U) is bounded, then KP(I — Q)N : 
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Q —> X is compact. Since Im Q is isomorphic to Ker L, there exists an 
isomorphism J : Im Q — • Ker L. 

Now, we introduce Mawhin's continuation theorem [11] as follows. 

L e m m a 2.2. [10] Let U C X be an open bounded set and let N : X — • ¥ 
be a continuous operator which is L—compact on Q. Assume 

(a) for each A €E (0,1), x £ dQ, fl Dom L, Lx ^ A N x , 

( b ) for each xedQn Ker L, QNx ± 0, and d e g ( J Q i V , Q f l Ker L, 0 ) ^ 0. 

Then Lx = Nx has at least one solution in O O Dom L. 

D e f i n i t i o n 2.3. Let the n x n matrix A — (fljj)nxn have nonpositive 
off-diagonal elements and all principal minors of A are positive, then A is 
said to be an M—matrix. 

L e m m a 2.3. [11] Let x(t) = (xi(t),x2(t),... ,xn(t))T be a solution of the 

differential inequality 

x\t) < Ax(t) + Bx(t), t>t0, 

where 

sup ( x i ( s ) } , sup { x 2 ( s ) } , . . . , sup { x „ ( s ) } ) , 
~T<S<t t~T<S<t t~T<S<t / 

A = ( Q i j ) n x m B = (bij)nxn• 

n 

¿ j ) , hj > 0, i,j = 1 , 2 > 0; 
j=i 

(^2) The matrix -{A-\-B) is an M—matrix. 

Then there always exists constants A > 0, r^ > 0 (i = 1 , 2 , . . . , n ) such that 

n 

Xi(t)<ri£xj(to)e*(t-t°K 

3=1 

3. Existence of periodic solutions 
In this section, based on the Mawhin's continuation theorem, we shall 

study the existence of periodic solution of (1.1). For convenience, we intro-
duce the following notations: 

x(t) = ^ 

If 

(Ai) aij > 0 (i 
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G i ( t ) = ~ n ( 1 - 7 i k r ' a i f n ( i -7ifc)ww){&i(i) n ( i - ^ w 
0<tk<t <tk<t ' ^ 0<tk<t 

+j2cij(t)fj( n (l-YjMt-Tjit))) 
j=l <tk<t-Tj{t) ' 
TL n / ^ 

+ E E W ) n -nfjk)yj(t-Tj(t)) 
j = l S = 1 0<tk<t-Tj(t) ' 

•fs( n ( 1 -7 s fc) i/ a ( i -r s ( i ) ) )+/i(t) }> t> 0, 

where y = (yi, J/2, • • •, Vn)T is w—periodic function, i = 1 ,2 , . . . , n. Our main 
result of this section is as follows. 

T H E O R E M 3 . 1 . Assume that (Hi) — (H7) hold, then the system (1.1) has 
at least one to—periodic solution. 

Proof. According to the discussion in Section 2, we need only to prove that 
non-impulsive delay differential system (2.2) has an to—periodic solution. In 
order to use the continuous theorem of coincidence degree theory to establish 
the existence of solution of (2.2), we take 

X = Z = (x(f) e C(R,Rn) : x(t + u>) = x(t), t e R, x = (xi,x2 , • • • ,xn)T} 

with the norm 
n 

II x 11= Izfcio, kfclo = sup \xk(t)\, k = 1 ,2 , . . . ,n, 
fc=i i £ t M 

then X and Z are Banach spaces. 
Set 

J u UJ 
Lx = x and Px = — \ x(t)dt, x G X; Qx = — I z(t)dt, z G Z 1.1 ^ /. 1 J 

and 

UJ OJ 0 0 

Ny = (Gi(t), G2(t),..., Gn(t))T, y G X. 

Obviously KerL = {y|y G X, y = /i, h. G -R71}, ImL = G X, Jq x(s)ois = 
0} and 

dim KerL = n = comdim ImL. 

So ImL is closed in Z, L is a Fredholm mapping of index zero. It is easy to 
show that P and Q are continuous projectors satisfying 

ImP = Ker L, ImL = Ker Q = Im(I - Q). 
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Furthermore, through an easy computation, we can find that the inverse 
Kp : Im L —> Ker P fl dom L of Lp has the form 

t ^ UJ t 

Kp{z) = J z(s)ds j j z(s)dsdt. 
o o 

Thus 

(1 UJ u> \T 

-\G1(t)dt,---,\Gn(t)dt) , yeX 
o / and 

KP(I-Q)NV 

( ft G ì ( s ) d s \ ( £ ft ft G! ( s ) d s d t \ / (± - i ) ft G ì ( s ) d s \ 

Jo Gj(s)ds 
l fw ft 

J o J o G j { s ) d s d t (uj ~ è) Jo Gj(s)ds 

\ ft Gn(s)dsJ \ 1 ft ft Gn(s)dsdt J \ ( ± - ± ) ft Gn(s)dsJ 

Clearly, QN and Kp(I — Q)N are continuous. Using the Arzela-Ascoli the-
orem, it is not difficult to show that QN(tt), KP(I — Q)N(il) are relatively 
compact for any open bounded set Q. C X. 

Now we reach the position to search for an appropriate open, bounded 
subset fI for the application of the continuation theorem. Corresponding to 
the operator equation Lx = ANx, A £ (0,1), we have 

(3.i) *;w=a{- n (i-7ifc)-iai( n (i-m^w) 
0 <tk<t 0 <tk<t 

bi(t) I I (!-7ifc)®i(i) 
o <tk<t 

+ H (l--yjk)xj(t-Tj(t))\ 

j = 1 <tk<t~Tj(t) ' 
n n / 

+e e ( n i 1 - (t ~ Tj(t)) 
j=l S = 1 0<tk<t-Tj(t) ' 

•fs( n (1 --yak)xa(t - Ts(t))j + I i ( t ) j , x e x , 
0<tk<t — Ts(t) ' J J 

i = 1,2,..., n. 

Suppose that x(i) = (x i ( i ) ,x2 ( i ) , . . . ,xn(t))T G X is a solution of system 
(3.1) for some A e (0,1). Integrating x,;(i):r-(£) over the interval [0,w], we 
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obtain 

= iU2(*)lo = jxi(i)a:;(i)di 
2 5 

= m { - n ( i - ^ r ^ i n ( i - ^ ^ i w ) 
0 ^ 0<tk<t \<tk<t ' 

bi(t) n ( l - 7 i f c K 2 ( i ) 

o <tfc<t 

+ E Cij(t)/i ( n - - 7}(t)) W ) 
3=1 ^0<tfc<i-r,-(t) ' 

7 1 7 1 / \ 

+ e e d ^ ) f 3 ( n a - - ^ w ) ) 
i=l S=1 0<ife<t-Tj(t) ' 

' / » ( I I s k ) X s { t - T s { t ) ) ^ j X i { t ) + I i { t ) X i ( t ) j d i , 

' 0<tk<t—rs(t) 

i = 1, 2 , . . . , n. 

That is 

j a i l [ ] ( l-7ifc)®i(0)6i(<)®i(i)di 
o \<tk<t 

eu> 
~ JO - n ( i - i i f c r W n (i - 7ifc)»t(i)) 

- 0<tk<t '-i ' 0 <tk<t 

dt • ^ c i j ^ f j ( n a - - ^ - ( i ) ) j x i ( i ) 
j = l <tk<t-Tj(t) ' 

UJ r / \ 71 71 

+ s - n ( i - ^ r W n ( i - i ^ w j e e ^ w 
o L o < t k < t \<tk<t ' j=l s = i 

•/¿( I I ( l - 7 J - f c ) ® i ( i - r j ( t ) ) ) 
<tk<t-Tj{t) ' 

•fs( I I ( 1 --Y8k)Xs(t-Ta(t)))Xi(t) 

<tk<t-Ts(t) ' 

dt 

- n ( i - ^ f c r w n { i - - y i k ) x i ( t ) ) i i ( t ) x i { t ) d t 
o L o < t k < t ^ o < t k < t ' 
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F r o m c o n d i t i o n s ( # 2 ) , ( # 4 ) a n d ( # 5 ) , it f o l l o w s t h a t 

LI w / \ 

aibi\\xi(t)\2dt<\ [ J ( l - 7 i f c ) _ 1 O i ( I I ( i - ^ i W ) 

0 0 0<i f c<i \<tk<t ' 

• ¿ M t ) i / j ( n ( i - 7 j f c ) ® j ( i - T i ( t ) ) ) i x M d t 

j=1 0 <tk<t-Tj{t) ' 

+ s n ( i - T i f c ) - 1 a / n ( i - 7 i f c ) ® i ( i ) ) ¿ ¿ i d y - w i 
0 0 < t k < t <tk<t ' j=1 S=1 

• / i ( n ( i - i j ^ x j i t - T j i t ) ) 

|aj i( i )|di 

+ s n ( i - T i f c ) - 1 ^ ^ n ( i - 7 i f c ) ® i ( i ) ) 
0 0<tk<t 

u n 
0 <tk<t 

\Ii(t)\\Xi(t)\dt 

< [âi^CijMjlxiWl J J ( I - 7 < f c ) 1dt 
0 j=1 0 <tk<t 

n n 

+ S n ^ d i j s M j M s l x i W l d t 
0 0 < t k < t j = l S=1 
LJ 

0 o<tk<t 

<âi [ ^ C i j M j + ^ ^ d i j s M j M s + U M JJ (1 — 7ifc) 2dt 

3=1 j = l S = 1 0 0<tfc<i 

= TVjOi ( CijMj + Y^ Y dijsM3Ms + l i ) f S \xi{t)\2dt ) , i = 1 , 2 , . . . , n. 

\/=1 j=1 s=l ' 

331 

H e n c e , 

(3 .2) ( c t t ) < 2 d f y < M i 
a4b, 

Y CijMj + Y Y 1 dijsMjMs + l A := Si, 

i = 1, 2 , . . . , n . 

L e t L G [0,w] ^ ifc, fc = 1 , 2 , . . . , m , s u c h t h a t I x A t A l = i n f | x j ( i ) | , 
te[o,w] 
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i = 1 , 2 , . . . , n. Then, by (3.2), we have 

\Xi fe)= 1^(^)1 ^Jdi^ 2 < ( ] \Xi(t)\2d?J 2 < Si. 

Thus, 

(3.3) 1x^)1 < A . 
VW 

From (3.3), and since Xi(t) = + ^ x'i(s)ds, it follows that 
LJ q U! 

(3.4) \Xi(t)\ < + j |s;(t)|di = - L + j |x;(i)|di. 
o v u o 

On the other hand, from 
W U! 
\\x'i(t)\dt <aibi\\xi(t)\dt 
o o 

(n n n \ u> 

Y^ CijMj + Y Y 1 d i j s M j M s + 7i J j Y\ (1 - 7 ^ d t j = 1 j = 1 5—1 ' 0 o<tk<t 
/u \ 

< aibi^l 5 ¡Xi(t)\2dt o ( ™ Tl ^ \ /W \ 5 

j=l 3=1 «=1 ' ^0 0<tt<i ' 
\ ^ / " n " \ 

= a , ^ f j \xi(t)\2dtJ + aiNi^/uf ] T c ^ M j + dijsMjMs + 7 < ) . 
' = 1 j = 1 5 — 1 ' 

Together with (3.2), we get 
cj 

(3.5) \\xi(t)\dt<aibiy/uSi 
o 

(n n n \ 

YCijMj + ^ ^dlJSM.,Ms + Ii) := A-J = 1 j = l 5=1 / 
In view of (3.3), (3.4) and (3.5), we obtain 

g. 
\xi(t)\ < + Di := Ri, ¿ = 1,2, . . . , n . 

y/LO 
m 

Denote = where K is a sufficiently large positive constant, 
i=1 

clearly, is independent of A. Now, take 0, = {x € X :|| x(t) ||< A}. It is 
obvious that Cl satisfies the requirement (a) in Lemma 2.2. 
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When x G dfl fl Ker L, x = (x\,x2, • • •, xn)T is a constant vector in Rn 

with || x ||= A. There 

, U> YW \ T 

QNx = [~\ Gidt,..., - j Gndt 1 , x G X 

V^ o u o ' 

where 

Gi = [ ] (1 - J i k ^ a j f ] (1 —"fik)yi \ bi(t) n 

„<tk<t ^o<tk<t ' L o<tk<t 
n , 

+ I I (i-Tjfc)?/; 
j= 1 0<tk<t — TJ 

j = l S=1 <tk<t-Tj ' <tk<t-Ts ' 

i = 1,2,..., n. 

Take J : ImQ —> KerL, R —> R. Then, if necessary, we can let K be 
greater such that xTJQNx < 0. So, for any x G dQ Pi KerL, QNx ^ 0. 
Furthermore, let 3>(7;x) = —JX+(1—J)JQNX, then for any x G <9f2flKerL, 
xT^(-y, x) < 0, we get 

deg{ JQN, tt n Ker L, 0} = deg{-a;, fl D Ker L, 0} ± 0. 

So, condition (6) of Lemma 2.2 is also satisfied. We now know that to sat-
isfies all the requirements in Lemma 2.2. Therefore, (2.2) has at least one 
ui—periodic solution. As a sequence system (1.1) has at least one u;—periodic 
solution. The proof is complete. • 

4. Global exponential stability of the periodic solution 
Suppose that x* = x2,..., x* )T is a periodic solution of system (1.1). 

In this section, we will use a technique of differential inequality to study the 
exponential stability of this periodic solution. 

T H E O R E M 4.1. Assume (H\) — (H7) hold. Moveover, suppose that matrix 

A — a(3A(C + m(D + D))L is an M—matrix, where A = diag(a1b1,a2b2, • • •, 

—n—n)> A = diag(ai,a2,... ,an), C = (ctJ)nxn, D = diag(dnj + di2j H b 

dinj)nxn, D — diag(diji + dij2 + • • • + dijn)nxn, L — diag(Li,L2,..., Ln), 

a = m a x { sup T T (1 - 7 i k ) } , (3 = max { sup T T (1 - Hk)~1}, 
i < *< " te{0MQ£tt<t 1 - l ~ n te[0H0<t f c<t 

m = m a x { M j , Ms}. Then the ui—periodic solution of system (1.1) is globally 

exponentially stable. 
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Proof . According to Theorem 3.1, we know that (1.1) has an ui—periodic so-
lution x* — (x\,x2, • • •, Suppose that x(t) = {x\(t), X2(t),..., xn(t))T 

is an arbitrary solution of (1.1). 

Let y(t) = x(t) — x*, then (1.1) can be written as 

' dyi(t) 
dt 

= -ai{yi(t)) bi{t)yi(t) + J ^ c i j - Tj(t))) 
3=1 

(4-1) 3=1 s=l 

0j(Vj(t - Tjm9s(ys(t - Ts(t))) + fs(x*s)9j(yj(t - Tj(t))) 

.Ayi(ife) = —JikViitk), t> 0 , i = l , 2 , . . . , n , f c = 1 , 2 , . . . , 

where 

<*i(yi(t)) = ai(yi(t)+x;), 9j(yj(t-Tj(t))) = fMt-TjM+xp-fjixp 

fj(yj(t - Tj(t)) + X*) = Pj(yj(t - Tj(i))), j = 1,2,...,n. 
Due to the assumption of Lemma 2.1, we consider the following nonimpulsive 
delay differential system 

(4.2) 
dui{t) 

dt = - n ( i - T i f c ) - 1 « / n ( i - ^ K w ) 
0 < t k < t v0 < t k < t 

•¡hit) n ( i -7 i fc)«i ( t ) 
0 < t k < t 

+ ( n î 1 ~ ^ ^ { t ~ Tj(t)) 
j = l 0 < t k < t - T j ( t ) 

3=1 s=1 
ßi n ( i - 7 ^ u j i t ~ T j ( t ) ) \ 

0 < t k < t - T j ( t ) ' 

•9s( II (l-7sk)Us{t-Ts(t)y) 
< t k < t - T s ( t ) ' 

+fs(x*s)9j{ n - l3k)uj(t - Tj{t)) J , i = 1 , 2 , . . . , n . 
0 < t k < t - T j ( t ) 

with initial condition u(s) = ip(s) = <p(s) — x*, s G [—r, 0]. 
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Let Z{(t) = \ui(t)\, then the upper right derivative D +zl(t) along the 
solutions of system (4.2) is as follows: 

(4.3) D+Zi{t) = D +\Ui{t)\ = u'i^sgniuiit)) 

( n 

o <tk<t ^=1 o <tk<t 
n n 

+  M3 I I {l-%k)Ls\us{t-Ts{t))\ 
j = lS=l L 0 <tk<t~Ts(t) 

+MS ( l — j j ^ L j l U j ( t — T j ( t ) ) \ | 

0 <tk<t~Tj(t) 
n n n 

j = 1 j-1 S=1 
n n n 

= -Q.ibiZi(t)+a(3ai ^ C i j L j Z j (Lszs (t)+LjZj (t)). 
j = 1 j = 1 S=1 

That is 

D+z(t) < —Az(t) + a/3ACLz(t) + a(3m~A{DL + DL)z(t) 

= -Az(t) + a/M(C + m(D + D))Lz(t), 

where 

A = diag(a1bl,a2b2,.. .,anbn), 

A = diag(ai,a2,... ,an), 

C = (Cjj)nxn) 

Z) = (d j l j + + • • • + dinj)nxni 

D = diag(dij\ + d i j 2 H h d i j n ) n x n . 

By initial conditions Xj (s ) = <^(s) / 0, s £ [ — 0 ] , i = 1,2, . . . , n , we 
know that £¿(0) > 0, according to Lemma 2.3, if the matrix A — a(3A(C + 

m(D + D))L is an M—matrix, then there must exist constants // > 0, > 0 
(i = 1, 2 , . . . , n) such that 

n n 

Zi(t) = |«i(i)| < 0 )e"M i = r< X ) 1^ (0 ) l e "^ , i = 1, 2 , . . . , n. 
j=i j=i 

By initial conditions, we have u(0) = ^ (0 ) = 0(0) — x*, then the solution of 
(4.1) satisfies 
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1^(01= n ( i - 7 i f c ) M i ) i < n ^ - ^ n ^ ^ m e -
0 <tk<t 0<tk<t 3=1 

n n 

•fit 

I I i 1 - 7ik)ri E - ^ ^ ^ a r i E -
0 <tk<t j=l j=l 

i = 1 , 2 , . . . , n . 

That is 

3=1 

= an sup 
j.e[-T,o] \ j = 1 

= an || <f) - x* || ¿ = 1,2 , . . 

,-fj.t 

From Definition 2.2, the uj—periodic solution x* = (a:*,^, • • • sys~ 
tem (1.1) is globally exponentially stable. • 

5. An illustrative example 
In this section, we give an example to illustrate the effectiveness of our 

results. Consider the following Conhen-Grossberg type neural network model 
with delays and impulses 

2 

(5.1) 

dxt(t) 

dt 
= -Oi(Xi(t)) bi(t)Xi(t) + E ^ - W / i t e i * - Tj(t))) 

2 2 
3 = 1 

+ E E dijsWfjiXjit - T j m f s M t ~ Ta(t))) + Ii(t) 
¿=1 s=l 

k AXi(tk) = Ji(xi(tk)) = -~YikXi(tk), i = l,2,k = l , 2 , . . . , 

where a,i(u) — 2 + ( — J arctanu, 6j(i) = 4(sini + 6), Cj,-(i) = - cos(i + 
\07T / 9 

« + j) + j2> « M * ) = « M * ) = 9 s i n ( i + i + J') + i2> = 2 + 2cosi 

(i = 1,2) are continuous 2tt—periodic functions. fi(u) = ~(\u + 1| — \u— 1|) 
(i = 1,2), q = 2, [0, 2tr] n {i f c} = {ti , i 2 } , rn = 0.3, n 2 = 0.2, r2i = 0.2 and 
r2 2 = 0.3, n{t) = t 2 ( i ) = 2tt. 

The system (5.1) is supplement with initial values given by 
7T 

Xi(s) = (Pi(s) = sins, s € [ - - , 0 ] , i - 1,2. 
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Obviously, / i (0) = /2(C)) = 0, fi(u) and f-iiv) satisfy the Lipschitz condition 
(.H3) with constants L\ = L2 = 1, and | / j (u) | < 1 satisfies (H4); bi(t), Cij(t), 

7 
dijs(t) satisfy the condition (Hi) with bi = 28, b{ = 20, c%3 = — and 

oD 7 
dijs = —) respectively; a\(u) and 02(u) satisfy the conditions (H2), (H7), 

36 _ 
11 13 

(Hg) with an = ai2 = —, a2i = «22 = — • It is easily verified that 

A = 

( 220 
0 

D = 

So 

0 N 

220 

iL 
36 
_7 

V36 

6 

6 _ 

V ° -6 J 
7 ^ 

/ 7 7 \ 
36 , D = 

36 36 
7 , D = 7 7 

3 6 / V 36 3 6 / 

C = 

L — 

A - aß A ^C + m(D + D)J L = 

( 2549 
~72~ 
_ 9 1 

~72 

72 
2549 

72 / 
is an M—matrix. It then follows from Theorem 2 that system (5.1) has a 
unique 2ir—periodic solution which is globally exponentially stable. 
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