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EXISTENCE AND GLOBAL EXPONENTIAL STABILITY
OF PERIODIC SOLUTION OF HIGH-ORDER
COHEN-GROSSBERG NEURAL
NETWORK WITH IMPULSES

Abstract. Sufficient conditions are obtained for the existence and global exponential
stability of periodic solution of high-order Cohen-Grossberg neural network with impulses
by using Mawhin’s continuation theorem of coincidence degree and by means of a method
based differential inequality.

1. Introduction

The study of the existence of periodic solutions and almost periodic solu-
tions of the nonautonomous neutral networks has received much attention,
see, for instance, Refs [1-5] and references cited therein. Most widely studied
and used neural networks can be classified as either continuous or discrete.
Recently, there has been a somewhat new category of neural networks which
is neither purely continuous-time nor purely discrete-time ones; these are
called impulsive neural networks. This third category of neural networks
display a combination of characteristics of both the continuous-time and
discrete-time systems [6-9]. In this paper, we will study the existence and
exponential stability of periodic solution of high-order Cohen-Grossberg neu-
ral network with variable delays and impulses
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where Az;(ty) = z;(tf) — z;(t;) are the impulses at moments t; and

0 < t; < tp < --- is a strictly increasing sequence such that tlim t, =
—00

+o00; zi(t) is the state of neuron ¢ = 1,2,---,n, and n is the num-

ber of neurons; C(t) = (¢i;j(t))nxn and D(t) = (d;1;(t) + digj(t) + --- +
dinj(t))nxn are connection matrix functions, I(t) = (I1(t), la(t), - -, In(t))T :
R* —— R™ is continuous periodic functions with period w > 0, f(z) =
(f1(z1), fo(z2),- -+, fn(xs)) is the activation function of the neurons. The
delays 0 < 7;(t) <7 (i=1,2,---,n) are bounded function.

As usual in the theory of impulsive differential equations, at the points of
discontinuity 4, of the solution t — x;(t) we assume that z;(tx) = z;(t;). It
is clear that the derivatives m;(tk), i=1,2,---,n, k=1,2,--- do not exist.
On the other hand, according to the first equality of (1.1) there exists the
limits z;(tf). According to the above convention, we assume :v;(tk) = a:;(t,;),
i=1,2,- - n k=12

The initial conditions of system (1.1) are of the form

zi(s) = ¢i(s) #0, se[-7,0], i=1,2,---,n,

where ¢; € C([-7,0],R),i=1,2,---,n.
Throughout this paper, we assume that

(H;) The delays 0 < 7(t) < 7 (i = 1,2,---,n) are bounded continuous
w—periodic functions.

(H2) a;(u),i=1,2,---,n are positive and bounded continuous w—periodic
functions and 0 < a; < a;(u) <@;, Yu€R,i=1,2,---,n.

(Hs3) fi € C(R,R), j =1,2,---,n are Lipschitzian with Lipschitz constants
Lj > 0,

(H4) There exists positive constants M; > 0 such that |f;(z)| < M; for
j=1,2---,n,z€R

(Hs) bi(t),ci(t) and dijs(t), 4,5, = 1,2,---,n are bounded continuous
w—periodic functions.

(Hg) There exists a positive integer g such that txyq =tk +w, Yi(k+q) = Yik>
fork=1,2,3,---,i=1,2,---,n.

(H7) H (1 =7#k),1=1,2,---,n are w—periodic functions.
0<tr <t

For convenience, for 4,5, = 1,2, -+ n, we introduce the following nota-
tions:

Qi = inf{lbi(t”’ te [07"‘)]}’ Bﬁ = SuP{lbi(t)la te [O,u)]},
e = sup{leij ()], t € [O,w]},  dijs = sup{|dijs(t)], ¢ € [0,u]},
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w 2
To=supie), te 0oty No= (1 T a-m)”
0 0<tr<t
The organization of this paper is as follows. In Section 2, we introduce
some notations and definitions, and state some preliminary results needed
in later sections. In Section 3, we study the existence of periodic solutions
of system (1.1) by using the continuation theorem of coincidence degree pro-
posed by Gains and Mawhin [15]. In Section 4, we shall derive sufficient
conditions to ensure that the periodic solution of (1.1) is globally exponen-
tially stable. In Section 5, an illustrate example is given to demonstrate the
effectiveness of the obtained results.

2. Preliminaries

In this section, we shall introduce some notations and definitions,
and state some preliminary results. Consider the impulsive system

(2 1) xl(t) = f(t,.’l,'(t),l'(t - Tl(t))’ s ,.’I)(t - Tn(t)))a t 75 Tk, k= L2,
Az(t)|e=e, = Jr(z(ty))
where z € R™, f : Rx R® — R™ is continuous; f(t+w,z(t—71(t),...,z(t—
() = ft,z(t — 11(t)),...,z(t — 7n(t))) and Jp : R — R, k= 1,2, ...
are continuous; 7; € C(R,[0,7]), 1 = 1,2,...,n is w— periodic functions
and t — 7;(t) — o0 as t — o0, ¢ = 1,2,...,n, and there exists a positive
integer ¢ such that txiq = tx + w, Jriq(x) = Ji(z) with t; € R, g1 > t,
klim te = 00, A(t)|t=t, = Tyt =Ty Forty #0 (k=1,2,...), [0,w]N{tx} =
—00
{ti,t2,...,tq}. As we know, {tx,k =1,2,---} are called points of jump.

DEFINITION 2.1. A function z € ([0,00), R) is said to be a solution of
system (2.1) on [0, co) satisfying the initial value condition

z(s) = ¢(s) #0, se€[-7,0],
where ¢ € C([—7,0], R"), if the following conditions are satisfied

(i) z(t) is absolutely continuous on each interval (¢x,tx+1) C [0, 00);
(ii) for any tx € [0,00), k = 1,2,...,z(t;) and z(t,) exist and z(t;) =
z(tk);
(iii) z(t) satisfied (2.1) for almost everywhere in [0,00) and at impulsive
points ¢ situated in [0, c0) may have discontinuity of the first kind.

DEFINITION 2.2. The periodic solution z* of system (1.1) is said to be
globally exponentially stable (GES), if there exists constants a > 0 and
8 > 0 such that

|zi(t) —2i| < Bl ¢ —a* || e
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for all t > 0, where
l6-a I sup (Z 66) i1,
s€[-7,0]
Consider the nonimpulsive delay differential system

ez Y- T a-mwa( IT a-wu)

0<tp<t 0<t <t

{ne) T a-mm+ X eson( I a-wout-n0)
j=1

0<tr<t 0<ty <t—7;(t)

+Zde(t)fj( I (1—7jk)yj(t—fj(t)))

J=1s=1 0<tp<t—7;(t)
'fs( H (1 = vor)ys(t — rs(t))) + Ii(t)}, t>0, i=12,...,n.
0<tr <t—T4(t) :
with initial conditions y;(s) = ¢i(s) #0, se€[-7,0], i=1,2,...,n
LEMMA 2.1. [6] Assume (H7) holds, then
(1) f y= (y1,.-.,Yn) is a solution of (2.2), then

w=< I a-vov,-, I1 (1—7nk)yn>

<t <t 0<tp<t

is a solution of (1.1);
(ii) of x = (z1,...,2Zn) is a solution of (1.1), then

y=< II a=wp)z,-, ] (1—’Ynk)$n)

0<tp<t 0<tp<t

is a solution of (2.2).

Let X,Y be real Banach space, L : DomL C X — dimY be a linear
mapping, and N : X — Y be a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dim Ker L = codim Im L <
+o00 and Im L is closed in Y. If L is a Fredholm mapping of index zero
and there exists continuous projectors P : X — X and @ : Y — Y
such that Im P = Ker L, Ker @ = Im (I — @), it follows that mapping
Llponzrkerp:(1—p)X — Im L is invertible. We denote the inverse of the
mapping by K. If Q2 is an open bounded subset of X, then the mapping N

will be called L—compact on Q. If QN(Q) is bounded, then K,(I — Q)N
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Q — X is compact. Since Im @ is isomorphic to Ker L, there exists an
isomorphism J : Im Q — Ker L.

Now, we introduce Mawhin’s continuation theorem [11] as follows.

LEMMA 2.2. [10] Let @ C X be an open bounded set and let N : X — Y
be a continuous operator which is L—compact on ). Assume

(a) for each A € (0,1), x € QN Dom L, Lz # ANz,
(b) for each x € 00N Ker L, QNzx # 0, and deg(JQN,Q N Ker L,0) # 0.

Then Lz = Nz has at least one solution in N Dom L.

DEFINITION 2.3. Let the n X n matrix A = (aij)nx” have nonpositive
off-diagonal elements and all principal minors of A are positive, then A is
said to be an M —matrix.

LEMMA 2.3. [11] Let 2(t) = (z1(t), z2(t), ..., z.(t))T be a solution of the
differential inequality

z (t) < Az(t) + BZ(t), t > to,

where

T
0= (g (19 mp ) s fonC)

A= (aij)nxna B = (bij)nx'n-
If

n

(A1) ai; 20 (i #7), bi; 20,4,5 =1,2,...,n; > _;(to) > 0;
j=1

(A2) The matriz —(A + B) is an M —matriz.

Then there always exists constants A >0, r; >0 (i = 1,2,...,n) such that

n
xi(t) <y ij(to)e)‘(t_t()).
j=1

3. Existence of periodic solutions

In this section, based on the Mawhin’s continuation theorem, we shall
study the existence of periodic solution of (1.1). For convenience, we intro-
duce the following notations:



328 J. Liu

aw=- I (1—m>—1ai( I <1—m)yz~(t>){bi<t) I 0wl

0<t <t 0<t, <t 0<tp<t

#3005 1 a-mo(e-n)
j=1

0<t <t—7; @)

n n
+ X daos( I a-wene-n0)
j=ls=1 0ty <t—7;(t)
AT -vu-no)+50} 20
0<ty <t—Ts(t)
where y = (y1,92, .. .,¥n)T is w—periodic function, i = 1,2,...,n. Our main
result of this section is as follows.

THEOREM 3.1. Assume that (H1) — (H7) hold, then the system (1.1) has
at least one w—periodic solution.

Proof. According to the discussion in Section 2, we need only to prove that
non-impulsive delay differential system (2.2) has an w—periodic solution. In
order to use the continuous theorem of coincidence degree theory to establish
the existence of solution of (2.2), we take

X=Z={z(t) € C(R,R") : z(t + w) = z(t), t € R, © = (z1,%2,...,2Zn)  }

with the norm

|z ||= Z lzelo, |zklo = sup |zx(t)], k=1,2,...,n,
k=1 te(0,w]
then X and Z are Banach spaces.
Set

Lr=2 and P.’L‘=—1—
w

z(t)dt, z € X; Qz= z(t)dt, z € Z

O e £

1
w

O §

and
NZ/: (Gl(t)’G2(t)"“aGn(t))Tv yEX.

Obviously Ker L = {yly € X, y = h, h € R*},InL = {z|z € X, {j z(s)ds =
0} and
dim Ker L = n = comdim ImL.

So ImL is closed in Z, L is a Fredholm mapping of index zero. It is easy to
show that P and ) are continuous projectors satisfying

ImP=KerL, ImL=KerQ =1In(l—Q).
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Furthermore, through an easy computation, we can find that the inverse
Kp:ImL — Ker PNdomL of L, has the form

t wt

Kp(z) = Sz(s)ds — (—‘1)- S Sz(s)dsdt.
0 00
Thus " " T
QN, = (éSGl(t)dt, ,§ Gn( )dt) , yeX
0 0

and
Kp(I - Q)Ny

§o Gi(s)ds 2§ 56 G1(s)dsdt (& - %)S‘a’ Gi(s)ds

=| $5Gi(s)ds | — | L 8§ So ( )dsdt | — | (L - -)So (s)ds
{6 Gn(s)ds L gg Gr(s)dsdt (£-1 gg Gn(s)ds

Clearly, QN and K,(I — Q)N are continuous. Using the Arzela-Ascoli the-
orem, it is not difficult to show that QN(Q), K,(I — Q)N(Q) are relatively
compact for any open bounded set 2 C X.

Now we reach the position to search for an appropriate open, bounded
subset (2 for the application of the continuation theorem. Corresponding to
the operator equation Ly = ANz, A € (0,1), we have

(3.1) :z:;(t):)\{— H (1- ")’ik)_lai< H (1- ’sz)«%(ﬂ)
0<ty<t 0<t) <t
. [bi(t) H (1 = vig)zs(t)

0<t, <t

+ZCU t)f]( H (]. —’)’jk).’L‘j(t—Tj(t))>

j=1 0<tp<t—7;(t)
n n
+2. 2 dio®) ( [T G-mwmt- n(t)))
j=1s=1 0<tp<t—7;(t)
( H (1 — vs)ws(t — Ts(t))> + Ii(t)] } zeX,
0<t,<t—Ts(t)
i=12,...,n

(z1(t), 22(t),...,za(t))T € X is a solution of system

Suppose that z(t) =
(3.1) for some A € (0,1). Integrating x;(t)z;(t) over the interval [0,w], we
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obtain
0= 2a2(0ls = {0
0
=A S{_ H (1 - 7zk) lai< H (1 - ’sz)xz(t))
0% 0<tr<t 0<t, <t
|:bz(t) H (1 - 7zk)wz2(t)
0<t <t
s cij(t>fj( T Qe n(t)))wi(t)
7j=1 OStk<t—Tj(t)
+szijs<t)fj( I Q- n(t)))
j=1s=1 0<t,<t—T;(t)
fs (1 = vsp)zs(t — 75(t)) Jzi(t) + Li(t)zi(t) | pdt,
(OStkE—Ts(t) * ) :| }
i=1,2,....n
That is
far( T -0 ey
0 <t <t
> [— I] (- mrlai( ] a- m)xm)
0Lt <t 0<t<t

'Xn:cij(tm'( II (1—’ij)fca'(t—Tj(t))>$i(t)]dt

Jj=1 0<tp<t—7;(t)

+:(§;[ O_H (1 - i) <H (1 = vie)zi(t) )iid”s

0<t, <t j=1s=1

I —mwes- w)))

0<ty <t—7;(t)

(
'fs< (1 — ye)zs(t — Ts(t))>xi(t)] dt

0<t <t—7q(t)
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From conditions (H2), (Hy) and (Hs), it follows that

oo TT a-mm)

a:b; | |zi(t)Pdt <
0<tr <t

|

0 0

-Zlcz'j(t)lfj( 11 (1—vjk)zj<t—n<t>>)
j=1 Ostk<t—"rj(t)

+§ II =)™ ai< 11 (1—’Yik)$i(t))
0

<ty <t 0<t, <t

' fj( II «a —’ij)wj(t—Tj(t))>
0<

te<t—T;(t)

w

(1 —7ix)
0<tp<t

|:(t)]dt

n

Z Z |dijs(t)

j=1s=1

|zi(t)|dt

o I @ —m)mi(t))

i) |z:(t)]dt

N

_Na,<Zc”M +ZZd”sMM +1)<§ |:ci(t)]2dt) =12,

7j=1s=1

Hence,

1

(3.2) <u§)\zi(t)\2dt>2 < (Z%M +ZZd,]sM M, +I>

0 —z—z j=1 s=1

i=1,2,...

331

y T

Let t; € [0,w] # tx, K = 1,2,...,m, such that |z;(t;)| = inf |z;(t)],

tef0,w]
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i=1,2,...,n. Then, by (3.2), we have

w % (") 1
Ve =l (1at) < (Vaofar) <,
0 0
Thus,
S
(3.3) |za(t;)| < \/5
From (3.3), and since z;(t) = z;(t;) + SL x;(s)ds, it follows that
‘i’ : S; ‘i’ /
(3.4) |z ()] < las(t)] + | |z:(®)ldt = —= + | | (t)ldt.
2 5 \/a 5 2
On the other hand, from
w w
§ lzi(t)|dt < @b § |zs(t)]at
0 0
n n w
+3; (Z eiM;+ > deM M +T; ) | (1 — yi) " tdt
j=1 j=1 s= 0 0<ty<t
o 2
< azbz\/a(g |a:z(t)|2dt>
n 0 non__ w %
+a; (Z Ci; M; + Z dijs M; M, + Iz) \/J(S (1 — i) 2dt)
j=1 j=1 i<s=1 0 0<te<t
_ W 3 n n n _ _
= a,b“/G(S |xl(t)|2dt> + EZN“/&_J( CMi+ > > dijs MM, + Iz>
0 j=1 j=1s=1
Together with (3.2), we get

[

(3.5) | |zs(t)|dt < @biv/wS;
0 n n
+a;N; \/_(Z CU ZZEijijMs —f—TZ) = D;.

7j=1 j=1s=1
In view of (3.3), (3.4) and (3.5), we obtain

|i(t)

S,
< \/Za =R, i=1,2,...,n
m
Denote A = ZR" + K, where K is a sufficiently large positive constant,

i=1
clearly, A is independent of A\. Now, take Q = {z € X :|| z(¢) |[< A}. It is
obvious that € satisfies the requirement (a) in Lemma 2.2. '
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When = € 9QNKer L, = (z1,Z2,...,%,)" is a constant vector in R™
with || z ||= A. There

1 w 1 w T
QNz = (— {Gudt,...,— Gndt) zeX
Yo Wy
where
Gi== IT (= as( IT =) [s0 TT a-vm
0<tp<t 0<tr<t 0<tp<t
+Zcij<t>fj( [T -vou)
0<tp<t—7y
+szus f]( H (1_'7jk)yj> fs( H (1 7sk) )+I( ):|
j=1s=1 0<tp<t—7; 0<tp<t—Ts
i=12,...,n

Take J : Im(J — Ker L, R — R. Then, if necessary, we can let K be
greater such that 2T JQNz < 0. So, for any z € 0Q NKer L, QNz # 0.
Furthermore, let ®(;z) = —yz+(1—~)JQNx, then for any z € 0QNKer L,
zT®(y;z) < 0, we get

deg{JQN,QNKer L,0} = deg{—z,Q2NKer L,0} # 0.

So, condition (b) of Lemma 2.2 is also satisfied. We now know that w sat-
isfies all the requirements in Lemma 2.2. Therefore, (2.2) has at least one
w—periodic solution. As a sequence system (1.1) has at least one w—periodic
solution. The proof is complete. O

4. Global exponential stability of the periodic solution
Suppose that z* = (2}, z3,..., )7 is a periodic solution of system (1.1).
In this section, we will use a technique of differential inequality to study the

exponential stability of this periodic solution.

THEOREM 4.1. Assume (Hy) — (H7) hold. Moveover, suppose that matriz
A—aBA(C+m(D+ D))L is an M—matriz, where A = diag(a;b;,asbs, - . .,
in—)n)} A= diag(ﬁl,ag, e ,En), C = (Eij)an, D= dz‘ag(ﬁ,-lj + Eigj + -4
Einj)nxny ﬁ = diag(am + 3”2 + 4 amn)nxn, L = diag(Ly, Lo, ..., Ly),

a = max{suwp [] l—m} B = max{sup J[ (01—}
1<i<n tG[O w] 0<ip<t 1<i<n te[0,w] 0<tL<t

m = max{M;, Ms}. Then the w—periodic solution of system (1.1) is globally
exponentially stable.
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Proof. According to Theorem 3.1, we know that (1.1) has an w—periodic so-
lution z* = (z},23,...,7%)T. Suppose that z(t) = (z1(t), z2(t), ...,z (¢))T
is an arbitrary solution of (1.1).

Let y(t) = z(t) — z*, then (1.1) can be written as

( dy;it) = —a;(yi(t)) [bi(t)yi(t) + Zcij(t)gj(yj(t —7i(t)))
dzgs
(4.1) < + SZ:;

% =i

(st = 75(8)))gs st = () + £ ()95 5 (¢ — n(t)))H

\Ayi(tk) :—'yikyi(tk), t>0, 1=1,2,...,n,k=1,2,...,

where
oi(yi(t)) = as(ws(t)+=7),  g;(y;(t—75(2))) = f5(y;(t—75(8))+=})— f;(x5)
Filyi(t — 75(8) + 25) = B(y;(t —75(2)), 7=12,...,n

Due to the assumption of Lemma 2.1, we consider the following nonimpulsive
delay differential system

(4.2) du(;ft) =— 1T @ —’Yik)_lai( IT @ _'Yik)ui(t)>

0<tp <t 0<t, <t

-{b,-(t) IT (0 —vin)w(®)

0<tp<t

+ Z cij(t)g; < IT Q= weut- Tj(t)))

0<ty<t—7;(t)

N z”: Z": dise(?) [53_ ( IT  —w)u(t— Tj(t‘)))

j=1s=1 0<t<t—r;(t)

o T -swut-nw)

0<t,<t—Ts(t)

+fs@g (] (1_'7jk)uj(t—7'j(t)):|}, i=1,2,...n

0<tp<t—7j (t)

with initial condition u(s) = ¥(s) = ¢(s) — z*,s € [-7,0].
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Let z(t) = |u;(t)|, then the upper right derivative D*2;(¢) along the
solutions of system (4.2) is as follows:

(4.3)  Dtz(t) = DY ui(t)] = wy(t)sgn(ui(t))
< —gibilui(t)|+ [T (1—va)” az{z% IT @) Lslus(t—m5()

0<tr<t =1 0<tp<t

+ZZd”s|: H (I—Vsk)leus(t_Ts(t))l

j=1s=1 0<t, <t—7s(t)

o, ] GewLlut-n0)] |

0<tp<t—r;(t)

= —ab;zi(t)+ B Y i LilT; (1) +aBaimy Y dije(La[Ts(t)|+L;1T;(2)])

j—l j—l s=1
—a;b; 7 (t +ozﬁ6,2c”L Z;(t —I—aﬁ(i@mZZles (LsZs(t)+LjZ;(t)).
j=1s=1

That is
D*z(t) < —Az(t) + aBACLZ(t) + aBmA(DL + DL)Z(t)
= —Az(t) + aBA(C + m(D + D)) Lz(t),

where
A = diag(a1by, 890, - - -, a5by,),
A = diag(ay, az, - .., 0n),
C ( )nxm
D = (dij + digj + - - - + dinj)nxn,

D= dzag(d,-jl + dijz +--- 4+ dijn)nxn-

By initial conditions z;(s) = ¢i(s) # 0, s € [-7,0], i = 1,2,...,n, we
know that z;(0) > 0, according to Lemma 2.3, if the matrix A — aSA(C +
m(D + D))L is an M —matrix, then there must exist constants u > 0,7; > 0
(¢=1,2,...,n) such that

n
z(t) = lw() <Y Z(0)e ™™ =1 ) _[w(0)le™, i=1,2,...,n.
j=1 j=1

By initial conditions, we have %(0) = ¥/(0) = #(0) — z*, then the solution of
(4.1) satisfies
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@l =TT Q=wlu® < J] @ —7) nZIu )|e Mt

0<tp<t 0<tp<t
n
= I a=wwr Z 0) —z*le™ < am; ZI@ —z*le™H,
0<ty <t j=1 j=1
1=1,2,...,n
That is
|2i(t) — | <anZ|¢z — ajle™Ht
7=1
n
= an[ sup (Z )]e‘“t
s€[—7,0] =1
=ar;||¢—z*||e ™, i=1,2,...,n
From Definition 2.2, the w—periodic solution z* = (z},z3,...,z5)T of sys-

tem (1.1) is globally exponentially stable. m

5. An illustrative example

In this section, we give an example to illustrate the effectiveness of our
results. Consider the following Conhen-Grossberg type neural network model
with delays and impulses

(
da:;t(t) = —a;(z;(t)) [b (t)z:(t) + ch Vfi(z;(t = 7(2)))
7j=1
(5.1) ¢ 2 2
303 dije() f( (= 73 (0)) folws(t = 7s(2))) + L)
j=1 s=1
| Azi(ts) = }z(xz(tk)) = —vuxi(ty), 1=1,2,k=1,2,...,

where a;(u) =2+ (3%) arctanu, b;i(t) =4(sint+6), ci;(t) = %cos(t +
i)+ g5 diglt) = digg(t) = gein(e i+ ) + I,
(i = 1,2) are continuous 2w —periodic functions. f;j(u) = §(|u +1|—|Ju—1))
(1=1,2),¢g=2,[0,27]N{tx} = {t1,t2}, r11 = 0.3, r12 =0.2, 791 = 0.2 and
To2 = 0.3, Tl(t) = Tz(t) = 2m7.

The system (5.1) is supplement with initial values given by

Ii(t) = 2 + 2cost

z;(s) = pi(s) =sins, s€ [—g,O], i=1,2.
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Obviously, f1(0) = f2(0) =0, fi(u) and fo(u) satisfy the Lipschitz condition
(Hs) with constants L; = Ly = 1, and |f;(u)| < 1 satisfies (Hy); b;(t), ci;(t),

- 7
dijs(t) satisfy the condition (Hy) with b; = 28, b; = 20, &; = - and

36
- 7 ) . "
dijs = 36 respectively; aq(u) and az(u) satisfy the conditions (Hz), (H7),
11 1
(Hg) with a11 = a12 = —6—,a21 = a9y = 5 It is easily verified that
220 13 TT
A= 6 0 A= 6 0 C = 36 36
N ) e
6 6 36 36
7T 7T 7
_[36 36 =_136 36 _ (10
36 36 36 36
So
2549 _2}
i ) _ 72 72
A—aﬂA(C+m(D+D))L— 91 9549
72 72

is an M —matrix. It then follows from Theorem 2 that system (5.1) has a
unique 27 —periodic solution which is globally exponentially stable.
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