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APPLICATION OF THE MRBVS CLASSES TO 
EMBEDDING RELATIONS OF THE BESOV CLASSES 

Abstract . L. Leindler obtained a necessary and sufficient condition in order to a 
function / 6 V having Fourier coefficients of rest bounded variation belong to the Besov 
class. In the present paper the analogue of this result is proved with function having 
Fourier coefficients of mean rest bounded variation. We also discuss embedding relations 
between the Besov classes. 

1. Introduction 
The properties of the Besov classes have been studied by many authors 

(see [7], [13], [14]). First we recall some results concerning classes of se-
quences. 

In [10] Leindler defined a new such class. 

DEFINITION 1. Let 7 : = (7n) be a positive sequence. A null sequence 
c : = (cn) of real numbers satisfying the inequality 

with a positive constant K (c) is said to be a sequence of 7 Rest Bounded 
Variation, in symbol: c G 7 R B V S . 

If 7 = c and cn > 0, then we call the sequence c the Rest Bounded 
Variation Sequence; and briefly we write c G RBVS. In [9] and [11] Leindler 
introduced the class of Mean Rest Bounded Variation Sequences (MRBVS), 
where 7 is defined by a certain arithmetical mean of the coefficients, e.g., 

00 

m 

(1.1) 
n>m/2 
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or 
2m-1 

m ¿ Cn" 
It is easy to see that the class j^MRBVS includes the class RBVS, con-

sequently the almost monotone and monotone sequences, too; but jmMRBS 
does not, in general. In [16] we proved that RBVS 7 ^ M R B V S . Namely, 
we shown that the sequence 

(1.2) dn := < 

1 if n = 1, 
1 + m+ (~l)nm 

if Hm < n < Mm+1, 
(2 V r n f m 

where fim — 2m for m = 1,2,3..., belongs to the class 7 ^ M R B V S but it 
does not belong to the class RBVS. 

The aim of the present paper is to show 7 m M R B V S C 7 ^ M R B V S 
and 7 m M R B V S / 7 ^ M R B V S . In [7] and [11] L. Leindler generalized the 
results of Potapov [13] and Potapov and Berisha [14] to the class RBVS and 
7 m M R B V S , respectively. In present paper we shall also prove that these 
results are true for the class 7 ^ M R B V S . 

Let LP, 1 < p < 00, be the space of 2tt periodic, measurable functions / 
with the norm 

2tr 
J \J(x)\pdx 
0 

, 1 < p < 00, 

c := max \f (x)| p = 00. 

Denote by En ( f)p the best approximation of / in ZT'-metric by trigonometric 
polynomials Tn of the degree at most n and by u>k ( / ; t)p the modulus of 
continuity of order fceN 

uk (/; t)v = sup 
W<t v=0 

¿ ( - 1 )k-vC»kf{x + vh) cvk = 
k + v 

k 

A function a is called a-type if it is measurable on [0,1], integrable on 
[¿, 1] for every <5 G (0,1), and there exist positive constants C\ and C2 such 
that 

(i) a (t) > C\ for all t G [0,1], 
5 25 

(ii) $ a (t) tadt < C25a J a (t) dt for all 6 e (0,60), where 0 < S0 < \ is given. 
0 5 
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A positive function a is said to satisfy A-condition, A > 0, if there exists 
a positive constant C3 such that 

1 25 
j a (t) txdt < C3SX \ a (t) dt, for all S e (0 ,6 0 ) . 

2 5 6 

We say that / G B (p, 6, a) if 

(i) f e w , 
(ii) 0 < 9 < 00, 

(iii) a (t) is a-type, 

(iv) $ a (t) u f . ( f ; t ) d t < o o , k > ^ . 
0 

We write I\ I2 if there exists a positive constant K such that I\ < KI2 • 
If 11 <C I2 and I2 I\ hold simultaneously, then we write I\ x I2. 

Throughout the paper we shall also use the following notation: 

S(av,q,k,n) :— < 

if q = 1, 

n -k 
E I A * 

qu(k+l)q-2 + £ \a„\qvq-2 

i/=n+l 

n k Y1 \aA vk + Y, \au\ 
v=l i>=n+1 

if 1 < q < 00, 

if q = 00. 

2. Main results 
Now, we formulate our results. 

THEOREM 1 . The class 7^MRBVS includes the class 7mMRBVS but 
rmMRBVS^^mMRBVS. 

THEOREM 2 . Let for 1 < p < q < 00, the function a satisfies X-condition 
with 

X = Q - ^ 6, 0 < 9 < oo, a* (t) = a (t) tx. 

U {an) € 7„Mii5F5 and f has the Fourier expansion 

00 
(2.1) / (x) ~ y ^ on cos nx, 

n=l 
i/ien i/ie Besov classes B (p , a ) and 5 ( 5 , a * ) coincide. Furthermore, for 
any 

o (J* (J* 
h > j , k 2 > ~ , kz>—, a* = a - X, 
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we have 
i l l 

(2.2) i a* (i) Jk2 ( / ; t)q dtc\a (t) < (/; i)p dt « J a* (i) ^ (/; i ) , dt. 
0 0 0 

T H E O R E M 3 . If f G IP, 1 < p < oo, ( a „ ) G 7 ^ M R B V S and f has the 
Fourier expansion (2.1), then 

(2.3) S(av,p,k,n) < uk ^ S (au,p,k,n). 

T H E O R E M 4 . Let f e I f , 1 < p < 00, (an) G 7 ^ M R B V S and f has the 
Fourier expansion (2.1), a (t) = t~r6~l and k > r. f G B (p,9, a) with 9 > 1 
if and only if 

00 

J l : = X ) ° n p < 0 0 . 
n=l 

C O R O L L A R Y 1 . Let f e Lp, 1 < p < 0 0 , ( a n ) G 7 ^ M R B V S and f has the 
Fourier expansion (2.1), a (t) = t~re~l and k > r. If0< 1, then a sufficient 
condition for f G B (p, 9, a ) is 

00 
T V ^ 0 re - i ^ 

J2 : = 2_^ann p < 00 
n=l 

and a necessary condition is 
00 

J 1 = 
0 7-0+0-^-1 . 
nn p < 00. 

n=l 
REMARK 1. Theorem 1 implies that Theorems 2, 3, 4 improve the results 
of [7] and [11]. 

3. Lemmas 
To prove our theorem, the following lemmas will be needed. 

L E M M A 1 . [5, C o r o l l a r y 1] If Xn> 0 and an > 0 , then 
OO y Tl \ p OO s OO \ p 

(3.1) E m £ ° * ) ^ E ^ M E ^ 
n=1 Nfc=l ' n= 1 ^k=n 

and 
00 / 00 p 00 , n xp 

(3.2) E M E ^ ^ E ^ m E * * ) 
n=1 ^fc=l ' n=1 ^fc=l ' 

hold for any p > 1; while ifO < p < 1, then the inequality in (3.1) and (3.2) 
hold with opposite direction. 



Embedding relations of the Besov classes 307 

L E M M A 2 . [3, Theorem 19] If an> 0 and 0 < a < (3 < oo, then 

( î>îO'S(E< 
' «̂ = 1 vn=l n=1 

L E M M A 3 . [1, p. 293] If f eL°° = C and 
oo 

f (x) = ^ an cos nx, x G [—7r, 7r], 
n=l 

where an > 0, then oo 
< U)c • 

k=2n 

L E M M A 4 . [17] If f £ Lp, 1 < p <2, then 
n ( , 1 \ .. < Wfc 

while if p> 2, then the reverse inequality holds. 
L E M M A 5 . [12, p. 847] If f e L9, 1 < p < oo, 0 < 6 < oo, a is a a-type 
function and k > f , then 

oo 1 
KU)p + EeAf)p + H EUf)p ~ s«(*) 4 ( / ; t)p dt, 

J/=1 o 
where 

2 - n + l 

/x(n):= j a(t)dt, n> 1 and 0) = 1. 

L E M M A 6 . If a is a a-type function, then 

(3.3) /x (n + 1) < n (n) 
and 
(3.4) /x (n) « ^ (1) « 1 
hold for all natural number n. 

Proof. First we prove (3.3). If a is a cr-type function, then for n > 1 we 
have 

2-n 2~n 2~n 

H{n +1)= j a(t)dt<(2n+1)a j a{t)tadt<(2n+l)a \ a{t)tadt 
2 - n - l 2-71-1 0 

2 - n + l 

< 2 aC2 \ a (i) di < /x (n). 
2 - n 
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1 
Since /i(l) = \ a(t)dt <C 1, then by (3.3) we obtain that (3.4) also holds. 

i 
2 

This completes the proof. • 

LEMMA 7. [2, p. 37] Let f has the Fourier expansion (2.1), where an > 0 
and let ^ — 1 < /? < jj, i/ien a sufficient condition for x~7/ (x) € LP is 

OO , OO v p 

(3.5) < oo 
n=l \=n ' 

and a necessary condition is 
OO / OO V p 

(3.6) E n ^ " 2 ( E J b _ l a 0 < o ° -
n=1 ' 

LEMMA 8. Lei / /ias the Fourier expansion (2.1) with (an) G 7^M R B V S . 
If 1 < p < 00 and | — 1 < P < i , then x~@f (x) G LP if and only if 

00 
(3.7) 

n=1 
Proof. The sufficiency of condition (3.7) follows easily from Lemma 7, since 
(3.7) and (an) € 7^ M R B V S imply (3.5). 

Now, we prove the necessity of (3.7). It is clear that 
00 2n 1 2 n 1 

p . » ) E ^ E ^ E « ^ -
re=n fc=n fc=n 

Similarly, we get that 

00 2n+l , 2n+l 1 

fc=n fc=n t._2ra+l 2 
Using inequalities (3.8) and (3.9) into (3.6), we see that (3.6) implies (3.7). 

Thus, if x~Jf (x) G LP, then by Lemma 7 (3.6) holds whence (3.7) is also 
true. The proof is complete. • 

In special case when (3 = 0 the above lemma leads us to the following 
remark. 

R E M A R K 2 . If 1 < p < 00 and (an) G 7 ^ M R B V S , then / G LP if and 
only if 

OO 
( 7 ; f < 00 

n=l 
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or, more precisely 
oo 

71=1 
L E M M A 9 . Assume that f has the Fourier expansion ( 2 . 1 ) , where (an) G 

MRBVS. If I < p < oo and 
oo 

5 > " - 2 ( 7 ; y < oo, 
71=1 

then (OO x I 

£ k=n+1 ' 

The above lemma is a special case of Theorem 1 in [8] for cosine series 
with 7 = 7m-
L E M M A 1 0 . [4, Theorem 3] If f G V, 1 < p < oo, an > 0 and f has the 
Fourier expansion (2.1), then 

oo 
£ k~2av < n~2+pEn(f)p. 

v—2 n 

L E M M A 1 1 . [13, Theorem 2] If f e B (p, 0, a), 1 < p < q < oo and a 
satisfies X-condition with A = ^ — 0, then f 6 B (q,0,a*), where 

a* (t) :— a (t) tx, that is, B (p, 9,a) C B (q, 6, a*); 

furthermore, 
l l 
S a* (t) Jk2 ( / ; t)q dt<^\a (t) Jkl ( / ; t)p dt 
0 0 

for any 

, ^ U 7 ^ ^ J * i 1 ^ k\> K2 > -r- and a : = a — ) + £ > 0. 0 0 \p qj 
LEMMA 12 . If f e IP, 1 < p < oo, (an) e 7 M M R B V S and f has the 
Fourier expansion ( 2 . 1 ) , then 

i 

V=4 n 
Proof. We apply Remark 2 to the function 

An—1 4n—1 
/ (x) — £ ak COS kx + a4„ £ cos kx. 

k=1 fc=l 
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Thus 

E K P ~ 2 ( R I ) P « < £ C O S ( A , ) 
k=4n k=1 

4n—1 

Since 
4ra—1 m—i p 7r 4n-l p / n 7T\ 
£ cos (fc-) = 2 $ ^ c o s k x dx = 2 n + H 
fc=l p o k=1 ^o 

cos 2nx sin 4n
2 

sinf 
dx 

1 
<C np J dx + $ —dx < np \ 

o I x P 

by the theorem of M. Riesz [15], we get 
oo 

(3.10) £ F - 2 (7£)p « £&_!(/)„ + a^n?-1 < ER(f)p + a^n*"1. 
k—4n 

If (an) e t ^ M R B V S then applying Lemma 10 we obtain 

/ °° \ P / 1 4 N \ P 

(3.11) a\nn^<nP-^Y, I«* ~ I ) « ^ ( ^ E 
fe=4n ' ^ k=2n ' 

, 4n • oo xP 

k=2n ' k=2n ' 

The inequalities (3.10) and (3.11) imply the assertion of Lemma 12. • 

L E M M A 1 3 . Assume that f e LP, 1 < p < q < oo, has the Fourier 
expansion (2.1) with (an) G 7 ^ M R B V S . If q < 00, then 

00 

k=4n 
and, if q = 00, then 

00 
52 := kv~lEk{f)p < En(f)q. 

k=4n 

Proof. By Lemma 9, we have 
00 , \ 00 , 0 0 

s i « E + E E 
fc=4n k=4n \=fc+l 

- 2 
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Using the inequality (3.2) of Lemma 1 and Lemma 12, we get 

oo oo , i ! /k+1 

k=4n k=4n ^1=1 
oo 

« E (l*k)q W-2 « E«(f)q-
k=4n 

To estimate S2 we apply Lemma 9. Thus 

00 00 / 00 
OO OO s OO \ 

s 2 « e « ¿ " S î + i i f c + i ) 1 " * + E E w r r - 2 ) 
k=4n k=4n \=k+1 ' 

OO OO , OO \ i 

E + E ( E ( 7 f p = «11+5 2 2 . 
k=4n fc=4n \=fc+l ' 

Then 

and 

00 00 2i+1 00 2 < + 1
 1 k 

fc=4n ¿=2 £=2*71 ¿=2 k=2in v-k 

00 
2i+1 71 00 2<+i n 

« E E E * « E E 
i=2 t ^ 4 " 1 « k=2ln i=2 u=2i~1n 

00 2 m + 1 n / 0 0 \ 1 

m=2 k=2mn l=2mn ' 

00 2 m + 1 n / 00 2 < + 1 n v i 

= E E ' " ' E E W H ' 
m=2 k=2mn z—772 l=2in ' 

00 2 m + 1 n / 00 2 i + 1 n / I x p 

« E E * K E E ( E « » ) < 

rra=2 k=2mn \=ml=2in V=L 

00 00 • 2 t + 1 n • I \ p \ 
« E ^ E Î E I E M h 

771=2 ¿=771 l=2in V=L 

00 00 2 i + 1 n / 2 i + 1 n v « E (2mn)" E E M E n 
m—O /»' — m oi — 1 /w-. ^ 7 oi / 



312 B. Szal 

2 i + 1 n 

« £ (2™n)? £ ( 2 V ) - " ] T av 

m=2 i=m v=2 i_1n 
oo x 2i+1n i „ _ . 

m=2 i=m v=2i~1n 
oo , 2i+1n i oo 2i+1n 

av. 
i=2 v=2i~1n m=2 i=2 j;=2i_1n 

Hence 
oo 2i+1ra oo , 2*n-l 2i+1n s 52 ̂  E E = E ( E a v + + E av) 

i=2 v=2i~ln i=2 u=2i-1n ^=2^+1 
oo oo oo oo — E^ E ^ ̂  E E 

v—2n v=An v=4n+l v=2n 
and by Lemma 3 

S2 < En(f)q. 
Thus our proof is complete. • 

L E M M A 1 4 . [14, Theorem 1] If f e L*3, 1 < p < oo, f has the Fourier 
expansion (2.1) and 0\ := min(2,p) , 62 := max(2,p) , then 

S (au,9i,k,n) < uk ( / ; - ) < 5 (av,e2,k,n). 
V n J P 

4. Proofs of Theorems 
4.1. Proof of Theorem 1 

First we show that c € ^fmMRBVS implies that 7fc <C 7; if k > I. 
Indeed, if fi > I, then 

21—1 00 00 

^ c„ » ^ - CV+l| > ^ - C„+l| > 

2k—\ 21—\ 2k—\ 

E r l E » E 
fi=k v=l n=k 

whence 2/ -1 2fc—1 

71 = i ' 1 E c - » E c ^ = 

Using this we have 
00 2 m — 1 

E lC" _ C » + l l « 7 m < 7 f = — E 
n=m n>m/2 

therefore c <E 7 ^ M R B V S . 
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In [16] we proved that the sequence d, defined in (1.2), belongs to the 
class 7 ^ M R B V S . Now, we show that d £ jmMRBVS. Namely, for m > 1 
we have 

oo 2/im—2 2fj,m—2 , . 
£ W - * « I > £ | * - * « | > £ ' 

î=Mm l=(lm i=fJ.m V ' V ' 
Since 

2fj,m-l 
- = J _ y ^ ^ = 1 / f a l + 2m fim 1 \ 
7 m Vm ¿ ¿ m Vm V 2 (2Mm)2m 2 (2Mm)2my 

1 + m 

f*m \ " y&r-"' ) m " ) m/ nt^1-'")2 

the inequality 
oo 

does not hold, that is, (dn) does not belong to 7 m M R B V S . Hence 
7^MRBVS ± ^mMRBVS and our proof is complete. • 

4.2 . P r o o f of T h e o r e m 2 
By Lemma 11, the first inequality in (2.2) holds, whence 

B (p, 6, a) C B (q, O.a*). 

To prove the second inequality in (2.2), we use Lemma 5. If / 6 B (q, 0, a*) , 
then 

00 1 
Iq := Ed0(f)q + E{{f)q + (n) Ed2n(f)q « J «* (*) < ( / : *), dt < 

n=l 0 

where and 
2-n+l 

fi* (n) := J a* (t) dt for n > 1 and /x* (0) = 1. 
2 - 7 1 

Since q > p > 1, then for A = ^ — 9 we have 

(n) 2n(p~«)°. 

From this and Lemma 6, we get 
00 

Jp := Ed0(f)p + E f ( f ) p + £ v (n) E°n ( / ) „ 
n=l 
3 00 

= £ * ( / ) , + E f ( f ) p + £ > ( « ) E^n ( f ) p + » ( » + 3) (/ ) p 

n=l n=l 
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CXJ 

« Ee0(f)p + £*(/)p + (n) Ee2n+3(f)P 
n=l 

« E0o(f)p + E f ( f ) p + f > * (n) ( 2 - ( i - i ) ^ ( / ) V 
n=l ^ ' 

00 / 2"+3 (1 i\ 
+ + E ^ r l E k ( f ) P ) . 

n= 1 fc=2n+2 ' 

Hence, if <7 = 00, by Lemma 13 
00 

i p « + + E w ^ (/), 
n=l 

and immediately I p <C If q < 00, then applying Holder's inequality with 
q and and Lemma 13, we obtain 

00 , 2n+3 v £ 

n=1 fc=2n+2 ' 
OO 

« £ * ( / ) , + (/) , + E ^ * W 
n=l 

and thus I v <C 
Finally, we use again Lemma 5, whence 

1 1 

J a (t) J k l (/; t)p dt « « Iq « j a* (t) < (/; dt < 00 

0 0 
follows with ki > Thus we get the second inequality in (2.2), and therefore 

B(q,e,a*)cB(p,0,a) 
also holds. This completes the proof. • 

4.3. Proof of Theorem 3 
As the begin we verify the first inequality in (2.3). If 1 < p < 2, then 

(2.3) follows from Lemma 14. 
If 2 < p < 00, then using (1.1), Lemma 12, Jackson's theorem and the 

property of u k (/; S ) p , we get 

I 00 / 00 - ^ - A (00 / 00 / 00 \ p \ -

E ^ 2 V < ( E ( E i ^ - ^ i ) v P ~ 2 ) v=n+1 \i=n+l ' 

« ( E 1 (<yvp-2)p « % ] ( / ) p « ( / ; • 
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Since (a„) G 7 ^ M R B V S , using Holder's inequality with p and and 
applying again Lemma 12, we obtain 

/1 v \P f v 1 \P 
^ - ^ « « P - M - ^ a j J « ( ^ r i a t j 

« ¿ ^ ( ¿ ^ y 1 « v p ~ 2 i a ? « i x x 
1 V \ t u / ; 1 

2 t — 2 t — 2 t — 2 

OO 
« E « E ^ y i P ~ 2 « (/)P • 

7 V I I) L8J '—2 2 

Putting it into the following sum and applying Lemma 4, we get the following 
estimate 

(4.2) n - k ( E a l v ^ - A ' « „ " * ( Z ^ 1 ) ? 

From (4.1) and (4.2) the first inequality in (2.3) also holds for 2 < p < 00, 
thus it is true for any 1 < p < 00. 

Now, we prove that 

(4.3) < S ( a „ , p , A ; , n ) 

also holds. For 2 < p < 00 it follows from Lemma 14. If 1 < p < 2, then 
using Lemma 4 and Lemma 9 we get 

u k ( / ; << n ~ k ( è ^ ( A ^ 1 ) p 

(n n 00 \ -

E ^ f e O ^ + i r ' + E ^ 1 E a t r r - 2 ) * 

t)=i ¿=11+1 ' 

n n n o o s i 
+ E ^ P _ 1 E ( 7 f ) p ' p - 2 + E ^ p _ 1 E w p - 2 ) P Z=t;+1 u=l l=n+1 ' 
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\=i 
n I oo ^ 1 

+j2hmp-2J2vkp~1+nkp E w p - 2 ) P 

1=2 v=l l=n+1 ' 

/ n °° \ I 

\=1 l=n+1 ' 

:= n~k (fii + nfepn2) * • 

Let N = N (n) be such that < n - 1 < 2JV+1, then 

nx = ( 7 : + 1 ) p + ( 7 : + 1 ) p 

3 N 2l+1 

u=l /=2 1=21 

4 JV 2i+1 / t+1 x p 

v-« E W + i ) ' + E E ; * 1 E * 

*>=2 /=2 ¿=2' V 

4 TV 2'+1
 / ¿+1 

« E f e f + E E E ii=9 7=9 A—o/ V.__ t+ 

V 

v=2 1=2 i=2l V ^ 

and by Holder's inequality with p and we have 

4 N 2,+1 ¿+1 
(4.4) + £ a; 

N 2i+1 i+1 
a 

v=2 1=2 i=2' fj,= i±L 
4 N 2i+1 + l 

« E ( ^ + i ) p + E E m a; 
v=2 1=2 n=2l~l 

M=i ;=2 v=2'-1 

« E W + i ) p + E E r l E 

(/c+l)p—2 p 
i r 



Embedding relations of the Besov classes 317 

M=2 !+l J 

4 2 n - 1 2n 2n+1 

^ v ^ p i v ^ (fc+ijp-2 p . v ^ (fc+i)p-2 p , v ^ (fc+i)p-2 p 
« 2 ^ + 2 . ^ a £ + ¿ ^ A* + 

fi=1 ¿¿=1 fi=4 /x=5 

2JV+1+1 2*l+1+l 2n 

fj,=9 fi= 1 ^=1 

Now, we estimate il2 • Using Holder's inequality wi th p and , we get 

00 00 2 m + 1 n 

(4.5) i i 2 = £ ( 7 « V i ) p ( i + i r 2 < E E 

l=n+1 m=0 i=2mn l=n+1 m=0 ¿=2" 

00 2 m + 1 n • i+1 s p 00 2m+1n , ¿+1 

« E E [ r l E m « E E ( E 
m=0 i=2mn ,,—i±l ' m=0 i=2mn i ± l r— 2 2 

00 2 m + 1 n i+l / i + l ^ p - 1 

< 
00 2 m + n i+l / i + 1 x j 

E E E « î ( E 
m=0i=2mn ..—i+1 \ , - i t l 7 

— 9 r— 9 

00 2 m + 1 n i+1 00 2m+1n i+1 

« E E E < t « E E ^ E » p ~ 2 < 
m=0 i=2mn ,/—i+i m=0 i=2mn „—i+I 

2 f 2 - 2 

00 2 m + 1 n+l 2 m + 1 n 00 2 m + 1 n+l 

« E E E i " 1 « E E ^ 

m=0 )1=2mn+i i=2mn m=0fi=2m-1n 

00 , 2 m n - l 
E ( E + 

m = n \ 2 T n 7 ! + l m=0 — 2mre + l 
2 

2m+lr 

+ 
ti=2mn+l =2mn+l 7 

00 00 00 00 

< E E » p ~ 2 < + E 

/Lt="+1 [i=n n=n+1 /i=2n+l 

00 

« E 

^ 2 
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From (4.4), (4.5), applying Lemma 2 we obtain 

Uk 

2 re oo \ I 
p 

^ V=1 u-n±l ' A»— 2 

(
n 2n n 

E /+1)p_2<+-fcp E ^ 
/x=l /i=n+l 

OO s i 

+nkp E 
/¿=n+l ' 

(n 2 n 

/i=l fi=n+l 
n oo v i + E + E ^2<Y 

n=a±i n=n+l ' 

(re x i , oo x I 

ii=l ' \=n+l ' 

This proves (4.3) for 1 < p < 2, and consequently (4.3) is true for any 
1 < p < oo. The proof is complete. • 

4.4. Proof of Theorem 4 
In the proof we use the following inequality 

(4.6) J := i t - r e - ^ l (/; t ) p d t * E (/ ; ^ • 
0 n=l V 

Hence, by Theorem 3, we obtain 
OO / / n \ -\ 0 

re=l ^ V=1 >=n+l ' ' 
oo / n >. £ oo / 00 

n=l V=1 V=™+1 

If ^ > 1, then by Lemma 1 

J < t n ' ^ - i - ^ a ' J f > < - ^ > ) * 
n=l V=n ' 

OO 2 / n \ ~ 00 

+ E n " p an I E ^ ) < E a « 
», — 1 V,— 1 / n —1 

re+e-i-^-^^e I v^ ..ro-i r // v^ 

n= 1 n=l 
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From the above estimate we get that J <C J\. 
An easy consideration, by (4.6) yields that 

(4.7) J x f ^ i / ; ! ) • 
n=0 V / P 

Hence, if | < 1, then using again Theorem 3 and (4.7), we obtain that 

2n x — oo / oo x « 
(4.8) I S T ,, (k+1)V-2nP V i V 9™* I V " V ^ " 

OO / Z \ — OO / oo 
J <<: £ 2nt.r-k)0 fc P + £ anr® ( £ ^ 

n=0 V = 1 n=0 V=2 n 

oo / n 2 i + 1 x i oo / oo 2l+1 

« E Î E E « " " " « ¡ o ' + E ( E E 

n = 0 1=0 n=2l ' « = 0 \=n il=2l 

oo , n 2l+1 / ^ \p\-« y , i n { r - k ) " ( E E ( t ; E ) 
n=0 VZ=0 »=# 

oo / oo 2 i + 1 • /x x p x £ 

n=0 Xl=n^=2' 

/ n / 1 2 ! + 1 

£ Oi) 2 i« f e + 1)p~ 1 ' 
ra=0 M=0 ^ t=2'-1 ' 
oo / oo / ^ 2 i+1 x p \ -

n = 0 V l = n V 1 = 2 ' - ! 7 7 

oo n / i 2 i+1 \ 0 , a\ 

n = 0 / = 0 ^ i=2'-i ' 

oo °° / i 2 i + 1 \ 0 / flx 

+ E ^ E ( | E « 0 
n = 0 ¿=n ^ i=2l~l ' 

If 6 > 1, then 

2 i + 1 oo oo / /i \ 2 i+1 

ai 
n=0 1=0 i=2'~1 n=0 l=n i=2l~1 

oo / „ x 2l+1 oo oo , „ x 2l+1 I 

n=0 ¡=0 ¿=2'-! n=0 i=n j=2 !" 
oo , . x 2l+1 oo oo / „ \ 2'+1 I 

=0 ¿=2'-! n=i Z=0 i=2i~1 n=0 
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oo , \ 2i+1 oo 2i+1 

« ^ ' K ' - M E a * « E E 
¿=0 i=2'-! /=0 i=2'_1 

oo 
„ V^ - —1 Q j 

p < < 
i=l 

To prove that J J\ when ^ > 1, we start again with (4.7) and using 
Theorem 3 we get that 

271 x « o o / oo \ — 
p 

OU • ^ \ — CXJ • LXJ \ 
j » E 2 " ( r - f c ) 0 ( E ^ + 1 ) P _ 2 < ) P + E 2 H E 

n=0 V=1 n=0 V=2n ' 
\ z. oo / oo 

= E 2 - ( r - f c ) e ( E E / + 1 ) P ~ > J P + E 2 " r * ( E E 
n=0 ^1=0m=2' ' n=0 2' ' 

oo ^n-1 2i+1 v « oo / oo 2i4- ^ ^ 
» E 2 n ( r _ f c ) e ( E 2/((fc+1)p~2) E < ) P + E 2 n r 0 ( E 2 ' ( p - 2 ) E a l ) P 

n = 0 ^1=0 n=2l ' n=0 ^l=n ^ = 2 ' ' 

oo n-\ , flW , 2<+1 N « 

n=0 i=0 ^ ^=2' ' 
oo oo , 2l+1 x £ 

n=0 Z=n ^ ^=2' ' 

n = 0 / = 0 ^ u=2l ' oo oo / a \ / i 2 '+ 1 

n=0 i=n ^ n=2l 

Since ( a n ) G j ^ M R B V S , we have that 
oo n—1 / \ / oo 

j » E 2 ^ - ^ E 2 / ( ( f c + 1 ) ' " F ) ( E 
n=0 1=0 V=2Z+1 

oo o o / N / o o sfl 

+ E 2 ^ E 2 ' K ) ( £ i ^ - ^ i i ) 
n=0 l=n V=2i+1 

O O / / 00 \ 0 oo 

/=0 >=2'+! ' n=l 
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00 / a\ / 00 \9 I 

l=n >=2I+1 ' n=0 
00 / a\ / 00 \ 0 

1=0 V=2 ,+1 

00 / fl \ 2 i + 2-l / 00 x g 00 , s 2'+2-l 

¡=0 t;=2,+1
 \i=v ' 1=0 v=2l+x 

00 2 l + 2 - l 00 
„ V^ rd+e-^-l 0 „ V^ 6 ^ 7 

v P a v ^ > 2 ^ v a v ^ J i . 

1=0 v=2l+1 V=2 

In the case | < 1, using (4.6), the Theorem 3 and Lemma 1, we get 

(4.9) 

00 / n \ 00 / 00 \ ~ 

n=l V=1 V=«+l 
» ¿ n ^ - f - ' - ^ a ^ f ; ^ - ' ) » - ) 5 

n=l V=n ' 
00 2 / n \ ~ 0 0 

, V ^ 0 / V ^ r6—l 1 p ^ V ^ 0 „ T + p p < 1 ) p > J l 

n=l ¿̂¿=1 ' n=l 
and the proof is complete. • 

4.5. Proof of Corollary 1 
The proof of Corollary 1 goes analogously as the proof of Theorem 4. 

First we prove the necessity. If 9 < 1 then | < 1 and by (4.9) we obtain 
that J » J i . 

Consequently, we prove the sufficiency. If 6 < 1 then by (4.8) we get 
00 n / f,\ / 2 '+1 00 00 / fl\ / 2 '+1 \ 0 

£ a i ) £ a*) 
n=0 Z=0 î=2,_1 ' n=0 l=n i=2l~1 ' 

00 n / R\ 2 '+1 00 00 / 2'+1 

n=0 Z=0 ¿=2'-! n=0 l=n i=2l~l 

00 , , 2'+! 00 2i+1 

i=0 i=2'-1 ¿=0 1=2'-! 
where J2 is defined in Corollary 1. This ends our proof. • 
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