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APPLICATION OF THE MRBVS CLASSES TO
EMBEDDING RELATIONS OF THE BESOV CLASSES

Abstract. L. Leindler obtained a necessary and sufficient condition in order to a
function f € LP having Fourier coefficients of rest bounded variation belong to the Besov
class. In the present paper the analogue of this result is proved with function having
Fourier coefficients of mean rest bounded variation. We also discuss embedding relations
between the Besov classes.

1. Introduction

The properties of the Besov classes have been studied by many authors
(see [7], [13], [14]). First we recall some results concerning classes of se-
quences.

In [10] Leindler defined a new such class.

DEFINITION 1. Let v := (7y,) be a positive sequence. A null sequence
¢ := (cn) of real numbers satisfying the inequality

oo
Z len — ent1] S K(¢)Ym, m=1,2 ...
n=m
with a positive constant K (c) is said to be a sequence of v Rest Bounded
Variation, in symbol: ¢ € yYRBV'S.

If v = ¢ and ¢, > 0, then we call the sequence ¢ the Rest Bounded
Variation Sequence; and briefly we write c € RBV'S. In [9] and [11] Leindler
introduced the class of Mean Rest Bounded Variation Sequences (M RBV S),
where -y is defined by a certain arithmetical mean of the coefficients, e.g.,

1>
(1.1) Vi = ooy > en
n>m/2

2000 Mathematics Subject Classification: 26A15, 42A16.
Key words and phrases: Besov classes, embedding relations, Fourier coeflicients.



304 B. Szal

or

It is easy to see that the class v, M RBV S includes the class RBV' S, con-
sequently the almost monotone and monotone sequences, too; but %,, M RBS
does not, in general. In [16] we proved that RBV'S # v MRBV S. Namely,
we shown that the sequence

1 ifn=1,
(1.2) dn:=Q 14+m+(-1)"m
(2#m)2 m
where p, = 2™ for m = 1,2,3..., belongs to the class v;, M RBV S but it
does not belong to the class RBV'S.

The aim of the present paper is to show 7, MRBVS C ~v;,,MRBVS
and 7,, MRBV S # v MRBV S. In [7] and [11] L. Leindler generalized the
results of Potapov [13] and Potapov and Berisha [14} to the class RBV S and
Y MRBV S, respectively. In present paper we shall also prove that these
results are true for the class v, M RBV'S.

Let IP, 1 < p < o0, be the space of 27 periodic, measurable functions f
with the norm

if pm <n < pnya,

(?V@W¢QP,1§p<w,
0

Ifl :=max|f @) p=oo.

1fllp ==

Denote by E,, (f )p the best approximation of f in LP-metric by trigonometric
polynomials T;, of the degree at most n and by wy (f;¢), the modulus of

continuity of order k£ € N
k+v
, q:( )
P k

A function « is called o-type if it is measurable on [0, 1], integrable on
[0, 1] for every & € (0,1), and there exist positive constants C; and C5 such
that

k

S (D) VCEf (z + vh)

v=0

wk (f31), = sup

(i) a(t) > Cy forallte]l0,1],

26
(i) §a(t)t°dt < C287 § a(t)dt for all § € (0,40), where 0 < & < 2 is given.
)

Oty On
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A positive function « is said to satisfy A-condition, A > 0, if there exists
a positive constant C3 such that

1 24
{a(t)trdt < C36* {a(t)dt, forall &€ (0,d).
26 é

We say that f € B(p,0,a) if

We write I; < I if there exists a positive constant K such that I; < K1.
If I « I and I3 <« I hold simultaneously, then we write I; < I».
Throughout the paper we shall also use the following notation:

( |an| ifg=1,
n 1 o0 1
q q
""k(Dauvu(k*”q‘?) +( > |ay|quq—2)
S(ay,q,k,n) = < v=1 v=n+1
if 1 < g < o0,
n o0
nk S e vF+ Y e if ¢ = c0.
\ v=1 v=n+1

2. Main results
Now, we formulate our results.

THEOREM 1. The class v, MRBV'S includes the class 7,, MRBV S but
Y MRBVS #75, MRBVS.

THEOREM 2. Let for 1 < p < q < 00, the function a satisfies A-condition
with
1 1 * A
A= P 0,0<b <00, a"(t)=a(t)t"
q

If (an) € v}, MRBV S and f has the Fourier expansion
oo

(2.1) f(z)~ Z an COSNIT,
n=1

then the Besov classes B (p,8,a) and B(q,6,a*) coincide. Furthermore, for
any

o o* o*
ki 2> 5, k227; ksZ—g-, of=0—),
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we have
1 1 1

(22) for @) wp, (fit) dt < o (t)wy, (fit) dt<<§a )wh, (fit),d
0 0

THEOREM 3. If f € LP, 1 < p < o0, (a,) € 'ymMRBVS and f has the
Fourier expansion (2.1), then

1
(2.3) S (ay,p k,n) < wy (f; H) < S(av,p, k,n).
p

THEOREM 4. Let f € IP, 1 < p < o0, (an) € v,,MRBVS and f has the
Fourier expansion (2.1), a(t) =t L andk >r. f € B(p,0,a) with 6 > 1
if and only if

COROLLARY 1. Let f € L”, l1<p<oo, (an) € v MRBVS and f has the
Fourier expansion (2.1), a (t) =tV and k > r. If0 < 1, then a sufficient
condition for f € B(p,0,a) is

B3k} <

and a necessary condition is
Zae r9+9———1 < 0o.

REMARK 1. Theorem 1 1mphes that Theorems 2, 3, 4 improve the results
of [7] and [11].

3. Lemmas
To prove our theorem, the following lemmas will be needed.

LEMMA 1. [5, Corollary 1] If A, > 0 and a,, > 0, then

(3.1) i An <i ak)p <p’ il AL=PgP <i Ak)p
n= k=n

n=1 k=1
and
o0 oo P o0 n p
(3.2) 3 (Z ak) <Py AP (Z Ak)
n=1 k=1 n=1 k=1

hold for any p > 1; while if 0 < p < 1, then the inequality in (3.1) and (3.2)
hold with opposite direction.
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LEMMA 2. [3, Theorem 19} If a, > 0 and 0 < a < 8 < o0, then

£’

n=1 n=1

LEMMA 3. [1,p. 293] If f € L* =C and

[o 0]
flz)= Zan cosnz, € [—m, 7],
n=1
where a, > 0, then

Y ax <4Eq (f)e-

k=2n
LEMMA 4. [17] If f € LP, 1 <p < 2, then

1
1 = »
Wk <f; —) <n7* (ka””lEﬁ(f)p) ;
n P v=1
while if p > 2, then the reverse inequality holds.
LEMMA 5. [12,p. 847 If fe LP, 1 <p < 00, 0 < 8 < 00, a is a o-type
function and k > 7, then

00 1
E§(f)p + EL(f)p + D _n () BS(Hp < Ja(t)f (f;1), dt,
v=1 0
where
2-ntl
u(n) = S a(t)dt, n>1 and p(0)=1.
2-n
LEMMA 6. If a is a o-type function, then
(3.3) pn+1l) < p(n)
and
(3.4) pn)<pl) Kl

hold for all natural number n.

Proof. First we prove (3.3). If a is a o-type function, then for n > 1 we
have
2-n 2-n 2-n
pn+1)= | a@d<(2)” | a@t’dt< (2*)” | a(t)t7dt
2-n-1 2-7n-1 0
2—ntl
<2790, S a(t)dt < p(n).
2—7‘).
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—

Since p (1) = Sa( t)dt < 1, then by (3.3) we obtain that (3.4) also holds.

This completes the proof. m

LEMMA 7. [2, p. 37| Let f has the Fourier expansion (2.1), where a, > 0
and let % -1<p< %, then a sufficient condition for x=7f (z) € LP is

oo v o] P
(3.5) > nptei=? (Z |lax — ak+1 |>
n=1 k=n

and a necessary condition is

(3.6) i nPtpA-2 <i k_lak>p < 00.

n=1 k=n

LEMMA 8. Let f has the Fourier ezpansion (2.1) with (a,) € v;, MRBV'S.
Ifl<p<oo and%—l <B< %, then x=Pf () € L? if and only if

o0
(3.7) Z nPHPA=2 (VP < 0.

Proof. The sufficiency of condition (3.7) follows easily from Lemma 7, since
(3.7) and (an) € v, MRBV S imply (3.5).
Now, we prove the necessity of (3.7). It is clear that

(3.8) Z k > - Zak > 272n

Similarly, we get that

00 a 2n+1 a 2n+1
k k
(3.9) E T > E % > 2n E Ak = 272n+1
k=n k=n 2n+1

Using inequalities (3.8) and (3.9) into (3.6), we see that (3.6) implies (3.7).
Thus, if 277 f (z) € LP, then by Lemma 7 (3.6) holds whence (3.7) is also
true. The proof is complete. m

In special case when 3 = 0 the above lemma leads us to the following
remark.

REMARK 2. If 1 < p < o0 and (a,) € 75, MRBV S, then f € L? if and

only if
[e o]
> nPE ()P < oo
n=1
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or, more precisely
x>
118 = > w2 (.
n=1

LEMMA 9. Assume that f has the Fourier ezpansion (2.1), where (a,) €
v MRBVS. If1 <p< oo and

0
S () < oo,

n=1
then
o 1
_1 _ P
By < T4 '3 (30 w00 )
k=n+1
The above lemma is a special case of Theorem 1 in {8] for cosine series
with v =~7,.

LEMMA 10. [4, Theorem 3] If f € LP, 1 < p < 00, an > 0 and f has the
Fourier expansion (2.1), then

i 1
> ke, <n ().

v=2n

LEMMA 11. [13, Theorem 2] If f € B(p,6,a), 1 < p < q < 00 and «
satisfies A-condition with \ = (zla — %) 6, then f € B(q,6,a*), where

a* (t) == a(t)t*, thatis, B(p,0,a) C B (q,O,a*);

furthermore,

1 1
far ()i, (Fi1),dt < fa(t)wf, (fit),dt
0 0
for any
o o* . 1 1
k1> ~, ko> — and 0" :=0—-{-—-}+¢ £>0.
7 0 p q

LEMMA 12. If f e LP, 1 < p < o0, (an) € v, MRBV'S and f has the
Fourier expansion (2.1), then
1

o] - 1
P
B> (3 vy
v=4n
Proof. We apply Remark 2 to the function
4n—1 4n—1

f(z)— Z ay cos kx + a4y Z coskz.
k=1 k=1
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Thus
4n—1
Z kP2 ()P <l || D cos (k) " - Sana(f IE-
k=4n k=1 p
Since
an—1 mdn—1 T ox - 4n—1
n 2 D
—2 Z cos kx dw—2<§+§) = nz‘su; 2 7\ dx
0 = sin £
; ™ 1
KL nP S S —dz <« nPl,
P
o I
by the theorem of M. Riesz [15], we get
(3'10) Z kP~ 2 < E4n l(f)P + a4nnp ! < Ep(f)z’ + ainnp_l'

k=4n

If (an) € v, MRBV S then applying Lemma 10 we obtain

oo P 1 4n P
(3.11)  af nP7t <Pt ( Z lax — ak+1|> < nft (% Z ak)
k=4n k=2n
4n P o0 D
< (Y k) < (3 k) < B,
k=2n k=2n

The inequalities (3.10) and (3.11) imply the assertion of Lemma 12. =

LEMMA 13. Assume that f € LP, 1 < p < q < oo, has the Fourier
expansion (2.1) with (a,) € v, MRBV' S. If ¢ < oo, then

Si= Y kr PEL(f), < Bi(f)q
k=4n

and if ¢ = oo, then
Sy = Z k-_lEk(f)p K En(f)q-
k=4n
Proof. By Lemma 9, we have

o0 [oe] q
s Y K2 G e 00 1 3 RS eyt
1

k=4n k=4n
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Using the inequality (3.2) of Lemma 1 and Lemma 12, we get

0o 00 k+1
S1€ 3 Oha) B+ D7) ()" b+ )G (Zl“ -

k=4n k=4n

< Z )7 k9? < BY(f)q-
k=4n

To estimate Sz we apply Lemma 9. Thus

oo o0
Se< S b b (kD) Y kl‘l( > )”l”‘2>

k=4n k=4dn I=k+1

8=

e 00 1 00 %
= Z Vet Z k» ( Z (’Yl*)plp_2) = So1 + Sao.

k=4n k=4n I=k+1
Then
fore) 00 21.+l 00 2’L+1
*
SDIEDIDIE LD DI Zav
k=4n =2 k=2in =2 k=2in v_
fore) 21,+1 27,—{—1 00 21,+1
XY aYiey ¥ oa
1=2 y=2i~1n  k=2in 1=2 p=2i~1p
and

) L > 2itly | p %
<3 @) Z( (Z ) z—2>
m=2 i=m “=2%in U:%

311

y
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o0 L > . 21y
< Z (2™n)? Z (2’n) Z ay
m=2 i=m =2i-1p
o 2it1n . oo 2itlp
< Z ay Z (2™n)r < Z Z ay.
l=2 v=2"1p 1=2 y=2i-1p
Hence
oo 2itlp 00 2tn—1 21y
Sg<<Z Z av—2< Z Gy + agiy, + Z av)
1=2 y=2i~1n =2 'u:2i—1n v=2in+1
00
SZav—l—Zav—{— Z av<<Zav
v=2n v=4n v=4n+1 v=2n

and by Lemma 3
So K En(f)q-

Thus our proof is complete. »

LEMMA 14. [14, Theorem 1] If f € IP, 1 < p < oo, f has the Fourier
ezpansion (2.1) and 6; := min (2,p), 6 := max (2,p), then

1
S (@01, km) < i (i) < (o ki),
P

4. Proofs of Theorems
4.1. Proof of Theorem 1

First we show that ¢ € ¥, MRBV S implies that 7, < 7, if & > .
Indeed, if px > I, then

20—1
I~ 1ch>>z:|c,,——c,,+1| > Z|c,,—c,,+1| > cy.
Thus 2k—1 21-1 2k—1
S Y sy e
p=k v=l u=k
whence 011 k1

5 :l_IZc,,>>I~c_1 Zcuzﬁk.
v=l p=k

Using this we have

Sl

Z len — 1| <KV € Fm =

n=m

therefore ¢ € v, MRBV S.

m—1
> o <<
n>m/2
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In [16] we proved that the sequence d, defined in (1.2), belongs to the

class v, MRBV S. Now, we show that d ¢ 7,, M RBV'S. Namely, for m > 1
we have

d; — d; >2ﬂm_2d doalz S 2 20m=D
_Zﬂml - z+1| ,z,;ml - z+1| 12#; ( )2 - (2Mm)2 .
Since
__2“551(1_ <pm 1+2m L Hm 1 )_ 1+m
- @nPm 2 @nPm) T m@e

1=pm
the inequality
> ldi = diga] < K (d) T,
does not hold, that is, (d,) does not belong to ¥,,MRBVS. Hence
v MRBVS # 7, MRBV S and our proof is complete. u

4.2. Proof of Theorem 2
By Lemma 11, the first inequality in (2.2) holds, whence
B(p,0,0) C B(g,0.07).

To prove the second inequality in (2.2), we use Lemma 5. If f € B (q,0,a*),
then
1

I == B{(F)g + EL (g + 3 1" (1) En(f)g < [ 0" (8) wl (f32), dt < o0,
n=1

0
where k3 > "7* and
2—n+1
p*(n) = S a*(t)dt for n>1 and p*(0)=1.
2—n

Since g > p > 1, then for A\ = (5 — 5)0we have

u(n) < () 2"(573)°.

From this and Lemma 6, we get
Ip = Eg(f +E0 p+Z/Jz EQn

3

= E§(f), + E{(f p+2p n) Egn (£)p+ > _ 1 (n+3) Eonis(f)p
=1 n=1
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< E§(f)p + EF (f) "‘Z# ESuis(f)p
1 1 0
< EY(f)p+ EV(f +Zl‘ (n) ( 2"\» q)E2n+3(f)p>

< EJ(f)p+ EL(f)p + Z w (
Hence, if ¢ = o0, by Lemma 13
I, < E§(f)q+ E{(f +Z,u n) ES.(f

and immediately I, < I;. If ¢ < oo, then applymg Hoélder’s inequality with
q and q—f—l and Lemma 13, we obtain

on+3

I < E(fp + By + 3o ( S kE2m f)p)

n=1 k=9n+2

p* (1) B3a(f)a,

NE

<L EJ(f)g+ EY(f)g+

1l
—

n
and thus I, < I.
Finally, we use again Lemma 5, whence
1 1
Sa(t)wzl (fit)dt < < I < Sa* (t)w,(’c?3 (fit) dt < oo
0 0
follows with k; > §. Thus we get the second inequality in (2.2), and therefore

B(q,0,a") C B(p,0,c)
also holds. This completes the proof. u

4.3. Proof of Theorem 3

As the begin we verify the first inequality in (2.3). If 1 < p < 2, then
(2.3) follows from Lemma 14.

If 2 < p < o0, then using (1.1), Lemma 12, Jackson’s theorem and the
property of wg (f; (5)p, we get

(5 o) (5 (Sha-a)v)’

v=n+1 v=n-+1

«(3 wire 2)1 < Bpgy (), < (£53)

v=n-+1 p
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Since (an) € v;,MRBV S, using Hélder’s inequality with p and -Z5, and

applying again Lemma 12, we obtain

1 v yol v 1 p
vPtaP < vPt (; Z al) < (Z l_Eal>
=3

=2

p—1?

v v 1 P v v
< Zaf(El_ﬁ) < v”_zzaf < Zl""%f

<<Z i 2<<Z (PP < By (),

=%

Putting it into the following sum and applying Lemma 4, we get the following
estimate

(42) n7k (i agv(kﬂ)p—a) z <n* (i Efg] ( f)pvk:p—-1> »

v=1
1
P 1
<<n_k(ZEp )p(p + 1)*P~ 1>p<<w;c (f;—) .
"/ p

u=0

From (4.1) and (4.2) the first inequality in (2.3) also holds for 2 < p < o0,
thus it is true for any 1 < p < co.

Now, we prove that

(4.3 o (£:3) <S(ennn)
p

also holds. For 2 < p < oo it follows from Lemma 14. If 1 < p < 2, then
using Lemma 4 and Lemma 9 we get

1
Wk (f; 1) <<n_k(ZEp )pv*P™ 1)
v=1
(S e 1 3 3 i),
v=1

v=1 I=v+1
n—k (211: v(k+l)p—2 (,7:+1)P
v=1

+ Xn:,ukp—l i plp 2 + kap 1 i )plp_2> P
v=1

I=v+1 l=n+1

I=

(=
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n
«nt (Z v TP (35 )P

v=1
n

+ Plp ZZ kp— 1_+_,nkp Z plp 2)

l=n+1

n
k(z,u(k‘+1)p 2 _+_nkp Z plp 2)

v l=n+1

|

N

=

[y

—k (Ql + nkPQQ)’l’ .

Let N = N (n) be such that 2V <n —1 < 2N¥+1 then

ka+l)p 2 +Z,Uk+1p 2(’)’,, 1)1’

N i+l =
<<z )4 30 S (o
=2 j=2!
N ;l+1 i+1 p
<<Z Vos1) +ZZ<(k+1‘%‘1 3 a#)
1=2 ;=9l i+l

=5
N 2+ 41

< z ) +zz( > ki)

=2 j=9l 1+1

and by Holder’s inequality with p and 1—)1_’—1 we have

N 2itl i+1
(44 m<<z )l 43S Y
1=2 ;=9! “_1,+1
4 N 2it1 i+1 (k4 p_2
~1 p—
SPIUED D M) SRR
l= 21 2! p= 1+1
4 N 2+t h1) 2
+1)p—
<Yl S
v=2 =2 p=2i-1
4 N 2l-1 (ks
+1)p— -
« g3 F A gl
p.:l 1=2 u=21_1
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2l+1

(k+1)p—2 41 (k+1)p—2
+ 3 o+l (2 +1)
u:2l+1
2N+1
k 2 k 2 k
<<Zap_+_z (k+1)p— p+z (k+1)p— p+Z (+1)p2ﬁ
2N+1+1 (k+1)p—2 2"+1+1 (k+1)p-2 (k+1)
+1 +1 +1)p-2
S 3 < 3y
©n=9 p=1 pn=1
Now, we estimate Q9. Using Holder’s inequality with p and ;TziLl’ we get
%) oo 2Mtln
P
45) Q2= ), ()@Y Y P ()
l=n+1 m=0i=2"n

oo 2mtlp oo 2mtlp

XY (F Y )« Xy (3 i)

Iio

m=0i=2"n #:Hi m=01=2Mn #:M
2 2
oo 27t1ln 41 i+1 , \P-1
m=01i= 2mnu_1_+_1 — i+l
2 2
oo 2Mm*lp i+1 oo 2Mmtlp i+1
<<E Ezp32ap<<i E EuanP
m=01i=2"n m=01i=2"n #_1+1
oo 2mtln4l 2m+tin co 2mtlp4d
< E E uP~ 2a” E il E E uP~ 2a”
lt 2""n+1 =2Mn m=0 y=2m-1p
0] 2Mn—1
— p—2 p m(p—2)
—§< > W%+ b2
=0 _2mnp41
i e
gmtly
p—2_p D m+1 p—2
+ E: PR iy (2704 1)
p=2mn+1
o0
2
< E: P ap+§:up2ap+§:ﬂp2ap+ E:#p%p
pu=n+1 p=2n+1
oo
§ : p— 2ap
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From (4.4), (4.5), applying Lemma 2 we obtain

2n 00 1
1 - »
Wi <f, E) & n—k (Z #(k+l)p 2aﬁ + nkp § : #p_2aﬁ)
p

- — 1
#=1 p=ngt
n (k+1)p—2 2n (kD) n
— ok tUr=2 p the=2 p kp p—2 p
= (U Y A e S et
u=1 p=n+1 p=24
%) 1
kp Z p—2.p \"
+n 7 au)
p=n+1
n (h+1)p—2 2n )
—k +)p-2 o kp P2 p
cnt(Su g e Y e
pu=1 pu=n+1
n 0o %
k+1)p—2 k ~2
+ Z plk+ip ab, +n'? Z uP aﬂ)
p="kL p=n+tl
= (k+1)
—k +1)p—2 2
cn (S a) 4 (3 ) < Stankn)
p=1 p=n-+1

This proves (4.3) for 1 < p < 2, and consequently (4.3) is true for any
1 < p < 00. The proof is complete. m

4.4. Proof of Theorem 4
In the proof we use the following inequality
1

(46) J _St—TG 1 0 f, dt ana 1 0( 1) .
p

0
Hence, by Theorem 3, we obtain

1 o0 1 2]
J < ano 1( (Z M(k+l)p_2az>p N ( Z ,up_2aﬁ)p)

=1 p=n+1
3 0o
(k+1)p—2 P o—
<<Zn(r k)o— 1(2# » aﬁ) +an 1( e 2ap)
p=1 =1 p=n+1

If g > 1, then by Lemma 1

B

kO

J < inr0+e—1—ﬁ— e (Z N(r—k)o—1>

n=1 =n

e _g_re " _6_
+ an0+o 1-¢ Z(Z o= 1) < Zao ro+6-2-1
n=1

p=1
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From the above estimate we get that J < J;.
An easy consideration, by (4.6) yields that

o0
1
(4.7) J <y 2] (f; 27)
n=0 p
Hence, if % < 1, then using again Theorem 3 and (4.7), we obtain that

2'n.

= n\r— (k+1)p—2 T
49 <D (S “rap) 33 )’
p=1 p=2m
2l+1 2l+1

< Z 2n r—k)8 (Z Z (k+1)p— 20%) + Z gnré (f: Z L aﬁ)
1=0 p=21 I=n ;=2
n 201

< Z gn(r—k)8 (Z 3 <% i: ai>p>g

=0 p=2! i=4

1. \P\»
g
P

/,L—2l i=L

8
< Z 211,(7' k)O( ( .)pQI((’H‘l)P_l)) ?
=0

oo 21
+Z2nr0 Z

2l+1

1211

If 8 > 1, then

9l+1 9l+1

J <<§:2n(r_k’ozn:21((k+m_ VY +Z2’”"Zz (51 37 o
"= =0 =21"1 j=ol-1
ol+1 olt1

<<§:2z((k+1)0—§ Z 0Z2n(r k)o+z2 Z 922,”9
1=0

i=2i-1  n=| ¢=2i-1  n=0

10 l
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) 0 ol+1 oo 2it1
DL VLSS
=0 j=2l-1 1=0 j=21-1

o0
_o_
< Zirow r el < ).

To prove that J > J; when € > 1, we start again with (4.7) and using

Theorem 3 we get that

13 S (St ) s (50 )

s

-1 )
:121+1 H= o
_ZQRT k)@(zz (k+1)p— 2“;’1) +Zznr0(22# aﬁ)
i
i ZT(T ” <Z2l((k+l)p 2)2§ap) ZQ"’"e (Zgl(p 2)2231«1”)
p=2! =
>>22n(r k)022 (k+1)9__ (_Ti >%
2t :
p=2
9l+1 P
3t (3 o)’
p=21
ol+1 0
>>Zzn(r k)022 (k+1)0-2 <2l ZL )
p=2
+i2nr0i21(a-g) (122%(1 )0
2 wl -
n=0 I=n =

Since (an) € v;, MRBV S, we have that
o0 n-—1 o 00 2]
J> Zzn(T—k)022l((k+l)9_5) ( Z |a“ — a#+1|)
n=0 1=0 =it
0 00 0 o0 0
+ 227”‘0221(0_5) ( Z |(lp, - au+1|)
n=0 l=n
)
> Z2l((k+1)0—— ( Z |au - au+1|> ZQn(T k)6

n= 2l+1
1=0 p=2t+1 n=l
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00 1(9—2) 00 g 1 .
+ E 2\ ( E lay. — au+1|) E ozm
n=

l=n #=21+1
o0 oo 6
(ro+0-2
>>22 (T+ p)< Z [a#—au+1|)
lZO u:21+1
o= i(ro+6-2-1) 2 (ro+0—2-1) 221
> 320 (S gyl DRLAERD
=0 p=2+1 ‘u=v p=2l+1
oo 21+2_1 . 00 .
> Z Z Ur9+o—5—1ag > Zvro+e—5—1ag > Ji.
=0 y=21+1 v=2

In the case g < 1, using (4.6), the Theorem 3 and Lemma 1, we get
(4.9)

J> Zn(r k)9— 1(2 (k+1)p—2aﬁ) +an0 1( Z up 2ap>

pu=1 p=n+1
oo é
9+6—2-1- ’“—’“EQ —k)o—1 v
>3 n(zw >
n=1 u=n
> é 6> n
n=1 pn=1

and the proof is complete. =

4.5. Proof of Corollary 1

The proof of Corollary 1 goes analogously as the proof of Theorem 4.
First we prove the necessity. If # < 1 then % < 1 and by (4.9) we obtain
that J > Ji.

Consequently, we prove the sufficiency. If § < 1 then by (4.8) we get

%) n 0 ol+1 [} 0o 0o 0 2l+1 [’
J< Z 2n(r—k)0 Z 2l(k9—;) ( E ai) + Z gnrd Z 21(_5) ( Z ai)
n=0 =0 §=20—1 n=0 l=n =211
00 n 2l+1 0o 00 oi+1
< Z gn(r—F)8 Z 21(1«9-%) Z o + Z gnrd Z 21(-%) Z of
n=0 =0 =1 n=0 l=n =211
oo o 2T 0o 2+ ,
«3 2 T W« Y il <,
=0 j=2t-1 1=0 j=2!-1

where J is defined in Corollary 1. This ends our proof. m
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