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POINCARE AND SOBOLEV TYPE INEQUALITIES FOR
WIDDER DERIVATIVES

Abstract. Various L, form Poincaré and Sobolev type inequalities, forward and
reverse, are given involving Widder derivative ({1]).

1. Background
The following come from [1].
Let f,ug,u1,...,u, € C"1([a,b]), n > 0, and the Wronskians

(1) Wi (z) :=Wug (z),u1 (z),...,u; (z)]
uo (z) up(x) u; ()
|ww @ .. e
@ @) .. o (@)

i =0,1,...,n. Here Wy (z) = ug (z). Assume W, (z) > 0 over [a,b], i =
0,1,...,n. For ¢ > 0, the differential operator of order i (Widder derivative):

_ Wuo (z),u1 (z),...,ui-1(x), f (z))]

2 Lif (%) : Wi (@) :
i=1,...,n+1; Lof (z) := f (), Vz € [a,b)].
Consider al
> ug (t) ug (t) u; ()
e W w1
(3) gi (1‘, t) = ] >
Wi (t) u(()i_l) (t) ugi-l) @t ... ugi_l) (t)
uo () up(z) ...  u(x)

uo(z)

i=1,2,...,n; go(x,t) := uo(t),Vw,t € [a,b].
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EXAMPLE. ([1]) Sets of the form {ug,u1,...,u,} are {1,3:,1'2,...,3:"},

{1, sinx, — cosx, — sin 2z, cos 2z, . .. , (—1)" ' sinnz, (—1)" cos nz |, etc.

We also mention the generalized Widder-Taylor’s formula, see [1].

THEOREM 1. Let the functions f,ug,u1,...,un € C"1([a,b]), and the
Wronskians Wy(z), Wi(z),...,Wr(z) > 0 on [a,b], € [a,b]. Then for
t € [a,b] we have

@) f@)=F0 ((f)’ + Lif ()91 (@,6) + ...+ Lnf (£) 9a (2,8) + Rn(a),
where
(5) Ru (@) = { gn (2,) Lns1 (5) ds.

t
E.g. ([1]) one could take ug(z) = ¢ > 0. If u;(z) = 2%, i =0,1,...,n,
defined on [a, b], then

) LE®) =100 amd g (@)= =L teloy)

We need

COROLLARY 2. (to Theorem 1) Additionally assume that for fized x¢ €
[a,b] we have L;f (z9) =0,7=0,1,...,n. Then
x

(7) f(z)= S In (z,t) L1 f (t) dt, Vz e [avb]'

Zo

COROLLARY 3. (to Theorem 1) Let f,up € C' ([a,b]), uo (z) > 0, for all
z € [a,b]. Then

® f@=i0 ((f)) vuo )] 20 0s, vt fa,
where
) Lof(s) = YV 1w00). F ()] _ uo(s) £/(5) — up(5) £ (5).

ug () a ug ()
We need to make
REMARK 4. We define (see [1])

Wi (x)
z) := Wy(x), T)i=———"x ...,
do(z) = Wole), 61 ()= ot 5
in general
(10) g (z) = V@ Wi (@) g

(Wi (2))?
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The functions ¢; (z) are positive on [a,b]. According to [1] we get, for
any z, o € [a,b] that

¢0 ($) T Tl

N o e AL O
nx_ Dn-1 (-'L'n—l) nS_ bn (.’L‘n) dridzy ... dxy,
- S ¢o (s (s) gn—1 (z, s) ds.

$o (zo) - - ¢n xo)

We get that g, (z,2) = 0, all z € [a,b], and g, (x,20) > 0, = > =0,
x,xg € [a,b], any n € N. Also gg (x,z9) > 0 for any z,z¢ € [a, b].

By (11) we notice that
gn(z,t) <0, T<t, nodd,
gn (z,t) >0, = <t, neven,

Zo

(12)

where z,t € [a, b].
In the next we work under the terms and assumptions of Theorem 1 and
Corollary 2, and the rest of the above conclusions.

2. Results
We give the following weighted Neumann-Poincaré type inequality.

THEOREM 5. Let p, ¢ > 1: %+ % =1, v > 0. Consider f,ug € C*([a,b]),
up >0 on [a,b].

Then
b
1
(13) 1) I | 1) 4 < (b_a)( 3) || Lt '
uw  b—aju(t) |1, (ap U0 || L,(ab)
When v = q we get
b
1 L
(14) 2) i——S&dt < (b—a) Lif .
uo  b—a uo(t) L, (e U0 |1, (ad)
When v = p = q = 2 we have
b
as) 3| L - L iDy <@p-a|BS .
Ug b —a @ UQ (t) Lg(a,b) Ug Lz(a,b)
Equivalently,

(15%) §(f(“’)— ! §f(t)dt)deS(b—a)2§<L1f(x)>2dx.

Nuo(z) b—a;u(t) 2\ uo ()
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Proof. Let A = - {¢ L& g

b—a Ja up(t)
By the intermediate value theorem there exists ¢ € [a, b] with %(cc)) =
Thus by (8) we get
flx)  flo _{Lif(s)
(16) uo (z) o (c) _E uo (8) ds,
i.e.
flx)  _TLif(s)
(17) o @) A_§ e (5) ds, Vz € [a,b].
Therefore
f () TS ) | I ()]
i o4l R S A
b 1/q
Y, |L1f (s |>q )
<(b—a) PQ( o ) ds , Vz € la,b
Hence
f(z) g v || Lof||”
(19) w0 (@) — Al <(b—-a)r w Lq(a’b), Vz € {a, b].

Consequently we obtain

b v v
f(z) vi1) || Lof
(20) § o (2) — Al de<(b- a)( ) . e ,

proving the claim. =

COROLLARY 6. (to Theorem 5) Let {° LG gt = 0. Then

a ug(t)

(21) y L] <e-ob) |Bf

U0 || L, (a,b) U0 |lLg(ab)
(22) ) 1L <e-ao|2L .

U u

0 Lq(a,b) 0 LQ(avb)
(23) o |l <e-ol2L .

U0 || Ly(a,b) Y0 Ly (a,b)
equivalently,

(23%) S(f(:”) )2dxg (b—a)2S<M)2dax

ug ()

= A.
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It follows the related result.

PROPOSITION 7. Let v > 0 and consider f,up € C!([a,b]), up > 0 on

[a,d].
Then
b
(24) 1) L1 Sf(t)dt <(b-a) 2t :
u  b—a uo(t) g, (ap Y0 1lL1(a)
When v =1 we have
b
@) |l (0 <(p-o) |2 :
U b —a a Uy (t) Ly (a’b) Up Ly (a,b)
Proof. By (18) we have
b v v
(26) fl@) 1 S £ dt| < Lt , Vz € [a,b].
up(z) b-aju(t) U0 lLy(a,b)
Hence
b b v v
(27) Sf(m)_ 1 Sf(t)dt dz < (b—a) L_lf ,
Jduo(z)  b—aug(t) U0 {IL,(a,b)

proving the claim. =
We continue with generalized Dirichlet-Poincaré type inequalities.

THEOREM 8. Let f,ug,u1,-..,un € C*" 1 ([a,b]), n € Zy; Wo,W1,...,
Wy, > 0 on [a,b], and for fized zo € [a,b] assume that L;f (zg) = 0, i =
0,1,...,n. Letp,q>1:%+%=1,l/>0.

Then
b sz v/p 1/v
) 1 Wliateon < (1 (1 Gnlo0Pa1) o) 1l
To \zp
b sz a/p 1/q
@) D iy < (1(1 Gnte07a) " ) Ll

And
, 1/2
(30) 3) ||f||L2<zo,b)s( ( (9a(z, 1)) dt)dm) 1wt aenrn -
o Mo
Proof. By (7) we have

(31) |f (=) =

[ gn(@,t)Lusrf (8 dt\ < [ gule,&) [Lninf (1) dt

zo Zo
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(§ (gn<x,t>>’°dt)l/p(§ Lo (t) th)l/q

o o
z 1/p
< (1 onle870) " MLl agys Yo € )

Zo

IA

That is
T v/p
(32) F@I < ( 5 <gn<x,t>)”dt) TR,
and
b b sz vip
33) (@) de< ( S ( S (gn(m,t»pdt) dw) Vet FI, oty

proving the claim. =
We give

THEOREM 9. Same assumptions as in Theorem 8.
Then

To ,Zo v/p 1/v
(34 1) ufnLu(a,zo)S(S(slgn(w,tnpdt) dm) Vst fll g, oy

a T

o /T0 Q/P 1/q
(35) 2) nfnLq@,zo)s(s(s|gn<w,t>lpdt) dx) 11l ey

a T

And
o ,To ) 1/2
(36)  3) /]y amn) < (S ( [ (galz,0)) dt)da:) TR TR

T

Proof. By (7) we have
Zo
S gn(z, ) Lpy1f (2) dt’

T

ey £

@7 [f=@)l=

9n (@) Lot s £ (8) dt‘ _

8

0

<\ |gn(®, )] [Lnta £ ()] dt

o

S |gn (2, £)” dt>1/p<z§|Ln+1f(t)|"dt)

Zo

J

1/q

A /‘\H""g

1/p
lgn (2, )P dt) Vst g, amny -
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That is
zo v/p
(38) F @) < (x 9n(a, )P dt) Vst F1, e
T
and

o To /T0 v/p
(39) | |f @) dz< ( § ( [ lga(z, P dt) dz) 1 P oy

a a T

proving the claim. =
We continue with

PROPOSITION 10. Let f ug,u1,...,u, € C" ([a,b]), n € Zy; Wy, Wr,
...y Wn > 0 on [a,b], and for fized zo € [a,b] assume that L;f (z9) = O,
t1=0,1,...,n; v > 0.

Then

b sz v 1/v
0) 1) [fllp s < ( S ( S gn<x,t>dt) dm) T
x0 \x

b,z
) 2) 1fln e < (S (S gn(x,t)dt)dx) Il oty

Proof. By (7) we have

(42) [f(@)| < § gn (2, 8) |Lpsa f (D)l dt < (S gn(l’,t)dt> [t 1f Nl oo o b -

o zg

That is

(43) |f<x>|"s(§gn<w,t>dt) T
and
b b x v
48 [ If@Pde< ( S (s gn<m,t>dt) dx) Vi1 F I o

proving the claim. =
We give

PRoPOSITION 11. All as in Proposition 10.
Then

xo /X0 v l/V
(45) 1) [Fllnamn < (S (S |gn<x,t>|dt) dx) It s fomny -

a T

(46) 2 Il ey < ( S ( s agnu,tndt)dw) AT,

a T
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Proof. By (7) we have
(47)

F @) < § lgn(@ O] [Lagrf (6)] dt < ( S |gn<w,t)|dt) TR

z T

That is

Zo

(48) F@I < (S 9n(2, 1) dt) It f1Z, fm
and

(49) w @ do < (T(1 lon(o,01de) e ) Mss e

a xr

proving the claim. m

We continue with reverse Dirichlet-Poincaré type inequalities.
THEOREM 12. Let f,ug,ui,...,u, € C"1 ([a,b]), n € Zy; Wy, W4,...,
Wn > 0 on [a,b], and for a fited a < zo < b assume that L;f (zg) = 0,
1=0,1,....,n. Let 0 <p<1l,¢g<0: %—i—% =1, v > 0. Further suppose
that Lypi1f ts of fized sign and nowhere zero on [z, b).

Then

b sz v/p 1/v
(50) 1) ||f||L,<zo,b)z(s(§ gn<z,t>>Pdt) dz) 11l oo -

1/p
G 2) 1flls,@on = (S (S gn(z,1)) dt)dm) I Lrt1£l 2, (wo,0)

To ‘To

b sz 1/p
(52) 3) ||f”L1($0’b) > (S (S gn(z,1)) pdt) d.’):) ”Ln+1f”Lq(a:0,b)'

Zo “Zo

Proof. Here we have by (7) and assumption that

x
(53) If @)| = § gn (2,1) |Lnia f ()] dt,
zo
Vr € [.’L‘(), b]
Hence by reverse Holder’s inequality we obtain

T 1/q

T {ntr oyar) i (S Lniaf (O2)
1/q

> (§ (gn<z,t>>f’dt)1/p (§ L )7 dt)

Zo

true for all z € (xo, b].
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That is
14 V/p 14
(55) F@F = (§ @@ 0Pdt) ISy

true for all z € [xo, b],
and

_ b b,z v/p
(56) SIf(w)l”dwz(S(S(gn(w,t))”dt> dm) Vet FI, oty

Zo

proving the claim. =
We give

THEOREM 13. Let f,ug,u1,...,u, € C*1([a,b]), n is odd; Wy, Wh,...,
Wy > 0 on [a,b], and for a firted a < zo < b assume that L;f (zo) = 0,
1=0,1,....,n. Let 0 <p<1,¢g<0: %4—% =1, v > 0. Further suppose
that Lyy1f is of fized sign and nowhere zero on [a, zy).

Then

To sTO v/p 1/v
(57) 1) ||f||L,(a,ZO)z(§(§<—gn<w,t)>”dt) dz) 11 £l ey

a T

To /T0 1/p
59) 2) 1)L 0 > ( S ( S (—gn<w,t>>"dt)dx) TARYI.

a T

To /X0 1/p
(59 3) 1fllpeen > ( S ( S (—gn(z,mpdt) d:c) Vsl o)

a x

Proof. Here by (7) and assumption we have
x T

(60) = || gn(@, ) Loa f (1) dt' = || gn(, ) L1 f (t) dt‘
To T

zo

= | (=gn(@,1)) |Lns1 £ (t)| dt.

T

2 g (—gn(@,t)) Lnt1 f (t) dt

T

So by reverse Holder’s inequality we obtain

z0 1/p sxo
6)  1f@)]> (S (—gn(a:,mpdt) (S ILn+1f(t)|th)

T

1/q

T 1/p
> ( x <—gn<m,t>>"dt) Mt am

T

true for all z € [a, o),



292 G. A. Anastassiou

and
v/p
(62) F@I > (S (—gn<x,t)>Pdt) Vs FI oy

true for all z € [a, zg].
Thus

T

0 o /L0 v/p
63) | If@)|de> ( S ( S <—gn<m,t>)f’dt) d:c) It 1

a a T

proving the claim. =
We add

THEOREM 14. Now n is even, the rest as in Theorem 13.
Then

To /X0 V/P l/V
64) 1) ufnLV(a,zO)z(s(ngn(x,t))"dt) dw) Vs e -

a T

Zo /T0 1/p
65) 2) 1fllg,0m > (S ( S (gn<x,t>>"dt)dx) Il amo)-

a T

To /TQ 1/p
66)  3) 1flls,(ammy > ( S ( S <gn<a:,t>>”dt) dw) 1ot fll g m

a T

Proof. Similar to Theorem 13. =
We continue with Sobolev type inequalities.

THEOREM 15. Same assumptions as in Theorem 8. Call

(67) M, := max {(lf (gf (gj(a:,t))pdt) V/pda:)l/y}, v > 0.

0<j<n 20 \zg
Then
M,, -
©) 0 Wl < (525) (S 1Sl on )
=0
M1\ [
(69) 2) 1F 2y zo,0) < ] Z||Lj+1f”Lq(10,b) ;

Il
=}

J
and when v =p=q =2 we get

Ms 1 =
1) 8 Wi < (22 (> 1541 e )
]:
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where
(71) My, = O%agn{ Cg; Cg: (g5(z, t))2dt> dx) 1/2}.

Proof. The assumptions of Theorem 8 are fulfilled for all j = 0,1,...,n.
Thus by (28) we get

b sz v/p 1/v
(72) ufuLV(m,b)s(S(Ugj(w,t))f’dt) dm) 12541y o

T “\Tg
< My,l ”Lj-f-lf“Lq(zO,b) )

forall  =0,1,...,n.
From (72) by addition we get

(73) (04 D sgaoty < Mot (U501 1)

j=0
proving the claim. =
We continue with

THEOREM 16. Same assumptions as in Theorem 8. Call

T /T v/p 1/v
._ . P
(74) M,2 = Orélja,sxn{ (§ (i lg;(z, )] dt) dx) },
v>0.
Then
Ml/,2 "
(75) D Wliuan < (22 ) (X 15510 0 )

J

3 |
o

M,
(76) 2) Wl < (322 (3

7=

0 L5 o )

and when v =p=q =2 we get

M n
T8 Wl < (222) (Z_; 5415 s )

where

(78) My = o?%"n{ (go (? (g5(z, t))2dt) d:c) 1/2}.

a T

Proof. Similar to Theorem 15, based on Theorem 9. u

We continue with L., results.
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PROPOSITION 17. All as in Proposition 10. Call

b sz v 1/v
KV’]_ = Orél]'aéxn{ <3§0 <ZSO gj(.’II, t)dt) dfl,‘) }, v>0.

Then
Ku,l =
(79) D W liueon < (525 ) (115 )
§=0

and

K1, $
) D Wlin < (524) (2230 12541 s e )

Proof. Similar to Theorem 15, based on Proposition 10. =

PROPOSITION 18. All as in Proposition 10. Call

(81) K,2:= Oréljasxn{ Cﬂj (ISO lgn(z, )] dt) Vdm) UV}, v>0.

T

Then
KV,2 &
(82) D W lzuose < (522 ) (D151 amer )
=0

and

Kio =
) D Wl < (222 (;0 1541 s )

Proof. Based on Proposition 11. =

We continue with reverse Sobolev type inequalities.

THEOREM 19. Assume here that Ljif is of fized sign and nowhere zero

on [zo,b], for j =0,1,...,n. The rest are supposed as in Theorem 12. Call
. b sz , v/p 1/v
(84) Sy = o%lgn{ (,_SO (xso (95(z,1)) dt) dx) }, v>0.
Then
Sul =
(85) D) Wl 2 (224 (2; (541 0o )
j=

S n
)2 W = (755) (S 1 hon)
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and

S n
6D 9 Wl 2 () (M1l eom )

=0

Proof. The assumptions of Theorem 12 are fulfilled for all j = 0,1,...,n.
Thus by (50) we get

b sz v/p 1/v
) Wiy = (1(§ @@07d) ) 1l

o “To
2 Sy L1l L (0,8

forall 7 =0,1,...,n.
From (88) by addition we get

n
Z ”Lj+1f”Lq(20,b)>,

(89) (14D sy 2 S
=0

proving the claim. =
We continue with

THEOREM 20. Assume all as in Theorem 13. Here n =2k + 1, k € Z;
v > 0. Further suppose that L 1f is of fized sign and nowhere zero on
[a, zo] for all odds j € [1,n]. Call

(90  Spi= min {(g(g (_gj(x,t))pdt)"/”dx)”"}.

odd j€[l,n] 2 \z

Then
S,
(91) 1) £z, a0y = (k—+21) ( > |1Lj+1f||Lq(a,xo))’

j€(1,n)
odd
S,
©) ) Wl 2 (525) (T 115l )

Jelln]
odd

and

(93) 3) £l (az0) = (kSizl) ( > IILj+1fHLq(a,xo)>.

Jj€[Ln]
odd

Proof. As in Theorem 19, based on Theorem 13. Since n =2k +1, k € Z,,
there are (k + 1) odd numbers in [1,n], so we apply (57) (k+ 1) times. »
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We finish with

THEOREM 21. Assume all as in Theorem 14. Here n =2k, k € Z,; v > 0.
Further suppose that L1 f is of fixed sign and nowhere zero on [a,xo) for
all evens j € [0,n]. Call

(94) S,3:= min {(zgo(zf (gj(z,t))pdt)u/pdw>1/y}.

even j€[0,n] 2\

Then
S,
(95) D 1l = (72 ) 30 L1 fllL, g,
(a,70) k+1 q(a,zo)
7€l0m]
) 2 ||f||L,,<a,z0>z( )(Z Iz, +1f||Lqm>)
j€[0,n]
and
S
O 9 W = (222) (2 MssiSlen )
JE[0,n]

Proof. As in Theorem 19, based on Theorem 14. Since n = 2k, k € Z+,
there are (k + 1) even numbers in [0, n], so we apply (64) (k + 1) times. =
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