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CYCLIC ENTROPIC QUASIGROUPS

Abstract. In this paper we explain the relationship of some entropic quasigroups to
abelian groups with involution. It is known that (Z,, —») are examples of cyclic entropic
quasigroups which are not groups. We describe all cyclic entropic quasigroups with quasi-
identity.

1. Introduction

In this paper we describe cyclic quasigroups in the variety EQ1. This
variety contains abelian groups. The variety of abelian groups is generated by
integers with the usual addition, whereas EQ1 is generated by two algebras:
integers with the usual addition and integers with the usual subtraction.

The first section is devoted to the basic definitions. In the second section
we show that the variety FQ1 is equivalent to the variety of abelian groups
with involution. Thanks to this equivalence, dealing with quasigroups in
EQ1 becomes simpler. The notion of rank of an element can be transfered
from abelian groups to quasigroups in EQ1. In the third section we de-
scribe finite cyclic quasigroups in EQ1. One can also consider infinite cyclic
quasigroups in £FQ1. We deal with this case in the fourth section.

Basic information on quasigroups can be found in [2], [5]. In [3] entropic
(in other words medial) quasigroups are considered. In [1] the tables of
characters of some quasigroups in F@Q1 are found.

DEFINITION 1. (Q,-,/.\,1) is an entropic quasigroup with quasi-identity if:

1. a-(a\b)=0b, (b/a)-a=0b,

2. a\(a-b)=0b,(b-a)/a=1b,

3. (a-b)-(c-d)=(a-c)-(b-d),
4. a-1=a,1-(1-a)=a.
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The conditions 1, 2 and 3 define entropic quasigroup, whereas the con-
dition 4 defines quasi-identity.

We denote the variety of all entropic quasigroups with quasi-identity by
EQ1. Example. (Z, —,+, —,0) is an entropic quasigroup with quasi-identity.

DEFINITION 2. (G,+,—,0,*) is an abelian group with involution if:
1° (G,+,—,0) is an abelian group,
2° 0*=0,a" =aq, (a+b)* =a*+b*

We denote the variety of all abelian groups with involution by AGI.

2. Equivalence of EQ1 and AGI

Toyoda’s theorem presents the description of entropic quasigroups:
THEOREM 1. (Toyoda’s theorem, see [6] and [7]) For every non-empty
entropic quasigroup (Q,-,/.\) there exists a commutative group (Q,+), an

element q € Q and a pair of commuting automorphisms ¢,¢ of (Q,+) such
that

z-y=¢(x)+9y)+qg foralzyeq.
THEOREM 2. (Murdoch’s theorem, see [4]) For every entropic quasigroup
(Q,,/.\) with idempotent element there ezists a commutative group (Q,+),
and a pair of commuting automorphisms ¢, of (Q,+) such that
r-y=¢(z)+9P(y) foralzyeq.

THEOREM 3. IfG = (G,+,—,0,*) is an abelian group with involution then
¥(G) = (G,-,/,\,1) is an entropic quasigroup with quasi-identity, where
a-b:=a+ (b*), a\b:=b*+ (—a*), a/b:=a+ (-b*), 1 :=0.
Proof. ¥(G) is a quasigroup:
1 a-(a\b) = a- (b + (~a"))* = @™ + (b* + (—a"))" = (" +b" + (—a"))" =
b** =b.
2. (b/a)-a=b+(—a*)+a* =,
3. a\(a-b)=(a+b)*+(-a*)=a"+b+(-a*)=b,
4. (b-a)/a=b+a*+(—a*)=b.
U(G) is entropic:
(@a-b)-(c-dy=(a+b)+(c+d) =a+b"+c"+d
=(a+c)+(b+d) =(a-c)-(b-d).
1 is a quasi-identity of ¥(G) :
a-l=a+0"=a+0=a,
1-(1:a) =0+ (0+a*)*=a"=aqa. =
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THEOREM 4. If Q=(Q,-,/,\,1) is an entropic quasigroup with quasi-
identity then ®(Q) = (Q,+,—,0,*) is an abelian group with involution,
wherea+b:=a-(1-b), (—-a):=1/(1-a),0:=1, a*:=1-a.
Proof. The operation + is associative: a+ (b+c¢)=a-(1-(b-(1-¢))) =
a-((1-1)-(b-(1-¢))) = a-((1-0)-(1-(1-¢))) = (a-1)-((1-0)-c) = (a-(1-b))-(1-¢)
(@+b)-(1-¢c)=(a+b)+c.

Moreover, + is commutative: (b+a)=b-(1-a)=(1-(1-b))-(1-a) =
(-00)- (L) D=1 (1) (1) D =a-(h=atb

0 is a unity because: a+0=a-(1-1)=a-1=a,

(—a) is the negative of a : (—a) +a = (1/(1 a))-(1-a)=1=0.

Hence ®(Q) is an abelian group.

* is an involution: 0* =1-1=1=0,

(@) =1-(1-a)=aq,

(@+b)"=1-(a-(1-8)) =(1-1)-(a-(1-8)) =(1-a)-(1-(1-0)) =

(1-a)+b*=a"+b*. »

ProPOSITION 1. If Q@ =(Q,-,/,\,1) is an entropic quasigroup with quasi-
identity then

a) z-(1/y) = z/(1-y),
c) z/y =y\(1- ).
Proof.

Concerning a):

z-(1/y) = (- 1/y))- A y)/1-y) = (=-1) - (1/y) - 9))/(1 - v)
=((z-1)-1)/0-y)=2z/(1-y).

Concerning b):

1-(y-z)=1-1)-(@g-z)=(1-9)- 1-zx)=(1-y)-(1-2)-1)
=(1-(1-2)-@y-=z-y.
Concerning c): z/y =y\(y - (z/y)) = y\(1- ((z/y) ‘y) =y\(1-z). =
Applying Theorem 2 one can prove Theorem 5 but one needs only to

show that ¢ = id and ¥ = *. However we present a simpler proof which does
not depend on the mentioned Theorem 2.

THEOREM 5. If Q@ =(Q,-,/,\,1) is an entropic quasigroup with quasi-
identity then U(®(Q)) = Q.

Proof. Let @ =(Q,-,/,\,1) be an entropic quasigroup with quasi-identity.
Then (I)(Q) = (Q) +, —,Oa* ) and \If(q)(Q)) = (Q, 1y /1, \la 1) ) where
a1b=a+b"=a-(1-(1-b)) =a-b.
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Using Proposition 1 we have:

a\1b=b"+(=a*) = b*- (1- (=a*)) = b* - (1- (1/(1-a*))) "B ™
bt (1/(1-(1-a%) =" (1/a*) "B P p /(1 a¥) =
(1-8)/(1-(1-a)) "2 a\(1- (1-5) = a\b
and
a/ib=a+(=b)=a-(1-(-b")) =a-(1-(1/(1- (")) =
a-(1-(1/6) "B P a-(1/(1-b)) "“’" a/(1-(1-b) =afb.
THEOREM 6. IfG = (G, +, —,0,*) is an abelian group with involution then
B(V(G)) =

Proof. Let G = (G,+,—,0,*) be an abelian group with involution. Then
v(G) = (G, /,\,1) and ®(¥(G)) = (G, +1,—1,0,**) , where
(

at+i1b=a-(1-0)=a+(1-b)*=a+(0+b0)" =a+b™*=a+b.
Moreover

—18=1/(1-0) =0+ (~(1-)") = (0 +a")") = ~(&"") = o
anda** =1-a=0+a*=a* n

EXAMPLE. Let Z, = (Z,+,—,0,*) = ®(Z,+,/,\,0), where z* = = and
Z_=(Z,+,-,0,*) = ®(Z,—,/,\,0), where z* = —z. It is easy to check
that Z_, Z, € AGI.

THEOREM 7. The variety generated by Z_ and Z, is equal to AGI.
Proof. Let us observe that if equality
a1z + a7y + ...+ anTn + alx) = bz + W3t + .. 4 by + b T

(for some a;, a;, b;, b, € Z) is satisfied in Z_ and Z then a; = b; and a] = b}

for ¢ = 1,...,n because if we put z; = 1 and z; = 0 for j # ¢ we obtain
a; +a;, = b; + b, (for Z}) and a; — a} = b; — b (for Z_), hence a; = b; and
a; = bl

For every term t(x1,...,x,) there exist ai,al,...an,a), € Z such that
equality ¢t(z1,...,2n) = a1z1 + a2} + ... + anzp + a2}, holds in AGI. If

t(z1,...,2n) = s(z1,...,Zn)

is valid in Z_ and Z, then there exist ai,dl,...an,a, € Z and
by, b}, ... by, b, € Z such that t(z, .. ,xn) = a121 +a’1m’{+. ot anzntanz)
and s(x1,...,2,) = b1z + blxl .+ bpxy + bz} holds in AGI, hence
a1z + aizi + ...+ apzy + ahzh blxl + blxl o+ bpxy + ULz is
true in Z_ and Zy, so a; = bi and af = b, for ¢ = 1,...,n therefore

t(z1,...,2n) = s(x1,...,Tn) is satisfied in AGI. Thus an equality is valid
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in Z_ and Z; if and only if it is valid in AGI. There is why the variety
generated by Z_ and Z, is equal to AGI. =

3. Finite Cyclic quasigroups in EQ1

DEFINITION 3. Let Q@ = (Q,-,/.\, 1) be an entropic quasigroup with quasi-
identity, a € @ and ®(Q) = (Q,+,—,0,*).
( a+---+a forn>1
N———

n—-times
If n € Z then na = 0 forn=20

S_a)+~--+(—a) for n < —1.

7

-~

\ —n—times

In AGI every subalgebra generated by only one element has the form:
(@) ={na+ka* |n,keZ}.

In FQ1 we can introduce three kinds of ranks:

r+(a) = min{n € N [na=0,n>1}, (it is the usual rank of a in
abelian groups),

r«(a) =min{n € N | n > 1, Jyecz na* = ka},

rer(a) =min{n € N | ri(a)a* = (r«(a) + n)a}.

The following proposition shows that the ranks mentioned above do not
depend on the choice of generator.

PROPOSITION 2. Let Q =(Q,-,/.\,1) be a finite entropic quasigroup with
quasi-identity. If @ = (a) = (b) then r4(a) = r+(b), r«(a) = 7«(b), 4y (a) =
Txt(b).

Proof. Since b € (a) there exist ¢,d € Z such that b = ca + da*. Let us
note that if na = 0 then na* = 0 and nb = n(ca + da*) = cna + dna* = 0.

Similarly, if nb = 0 then na = 0. Hence r1(a) = ry(b). Moreover, na* =
ka < nb* = kb therefore r.(a) = 7.(b) and 7. (a) = ro4(b). =

DEFINITION 4. Let Q =(Q,-,/.\,1) be a cyclic entropic quasigroup with
quasi-identity and @ = (a) for some a € Q. Define r(Q) = ry(a), r«(Q) =
ro(0), 724 (Q) = rer (a).

From Proposition 2 this definition does not depend on the choice of the
generator a.

PROPOSITION 3. Let Q =(Q,-,/.\,1) be a finite cyclic entropic quasigroup
with quasi-identity and Q@ = (a) for some a € Q. If c € Z then ca = 0 &

m+(Q)lc.

Now we show some properties of ranks.
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THEOREM 8. If Q =(Q,-,/.\,1) is a finite cyclic entropic quasigroup with
quasi-identity then 7.(Q)|r+(Q), r(Q)Ir+(Q),0 < 1 (Q) < 74+(Q) and
Tx 2
r(Q)2r 4 (Q) + =
Proof. Let Q = (z),a=r4+(z), b=r.(z), k = req(z). Let a = bV’ +r and
0 <7 <b. Then 0 = az* = b'bz* + rz* = b'(b+ k)x + rz*.Hence
ra* = —b'(b+ k).
By definition of r.(z) we obtain r = 0. Hence bla. Let k = b"b+ r' and
0 <7’ < b. Then
br = (b+k)z* = (b+b'b+1")z*
=(1+V)b+k)z+1'z*, sor

ol

(1+8")bx* +r'z*
*=(="b-V"k - k).

By definition of r.(z) we obtain ' = 0. Hence b|k .
Moreover, (k + b)z* = (b"b + b)z* = b’(b+ k)z + (b + k)z. Thus, bz =
(k+b)z* = (b"(b+k)+(b+k))x and 0 = (b"(b+k)+k)z = (% b+k)+k)x =
(k + % + k)z = 2k + %)x, by Proposition 3 we have a|2k + %. .

And now we preceed to the definition of maps '72,17 needed to define some

canonical cyclic quasigroups in EQ1. We denote the integer part of a by [a],
whereas (a), denotes the remainder after dividing a by b.

DEFINITION 5. Let a,b,k € N and a,b> 1. Let 4%, : Z x Z — Z x Z be
a mapping such that

Tep(@y) = (@+ [ 2] 6+ ko, 0)e)

and let
(z,9) @ (2,1) = vap(@ + 2,y + 1).
Let T : Z x Z — Z x Z be a function such that T'(z,y) = (y, z).

It is easy to check the following properties of the operation of taking the
integer part.

PROPOSITION 4. Letb,t,y € Z and b > 1. Then
t y+ (t Y+t
B2 - [5] er@m-wro

The next proposition will be helpful in proving that @’;,b is associative.

PROPOSITION 5. Let a,b,k € N and a,b > 1.

a) If (z,y) € Za X Zy then 7¥(z,y) = (z,y).
b) (z,y) ®F , 7E,(2,1) =76 (@ + 2,y + 1).
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Proof.

a) f0<z<aand 0 <y <bthen [¥] =0, (z), =z and (y)s = y. Hence
7 (@) = (& + 0}, (8)s) = (2, ). This ends the proof of a).

(2.9) @bkl 8) = () @y (G + 5] 0+ e )

—%b( (z + H (b+k)) a,y+())
= ((s+ e+ [H o mat [F2) 04 m) L+ @)
Pr‘£-3( [“t] (b+k)) a,(y+t))

—fyab(;v—i—z y+t).

First we show that the set Z, x Z, with the operation 69’3,1; is an abelian
group.

THEOREM 9 Let a,b,k € Z and a > 1,b > 1,k > 0. Then the algebra
(Z X Zp, D ab’ (0,0)) is an abelian group, where —(x,y) = ’yf’b(—x, —y).
Proof. Obviously the operation &F ap 18 commutative. We show that EB

is associative: (z1,y1) ®F, ((:v2,y2) af, ($3,y3)) = (z1,31) ®F, ’Ya,b($2 +

P 5b
T3,Ys + y3) = ’Yffb(l’l + (2 + z3), 51 + (Y2 + y3)) = 75,17(933 + (z1 +
Prop. 5b
T2),y3+ (W1 +u2) = (23,8) BF (21 + T2y y1 + 1) =

%’fb(l”l + 2,1 + Y2) @k (z3,y3) = ((051,3/1) @k (xz,y2)) ®k ($3,y3)
If (z,y) € Zs x Zy then by Proposition 5a we have (z,y) & (0 0) =
V¥ o(z,y) = (z,y). Finally

(:L" y) @g,b _(1"1 y) = ( y) 632 b ’Ycl;,:,b(—wa _y)

Prop 5b ")’!:b(m + (—.’E),’y + (_y)) = fyl’j’b(0,0) = (0,0) u

Next we show the following proposition (we use it to prove that * is an
involution.)

PROPOSITION 6. Let a,b,k € Z and a > 1,b > 1,k > 0 and bla,blk,0 <
2
k < a,al2k + ’%. Then 'yf’b oTo '75,1) = 75,1; oT.
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Proof. Let (z,y) € Z x Z. Then

Yo o(T(ap(2,9))) = 7E o (W)os (x + [§] (b+K))a)

_ (<(y)b+ (z+ [} (0+K))a (b+k)> | ((IJr [%} (b+k))a)b>'

b
Moreover, mlf,b(T(a:,y)) = ((y + [%] b+ k))a , (a:)b) )
Let

(%) x+[%](b+k):aa’+r, 0<r<a.

Notice that

z—(o+ [%] (b+k)>a=a:—(z+ [%] (b+k) —aa) = - [%] (b+k) +ad’

is divided by b since bla and b|(b + k). Hence the second coordinates of
'yf’b(T('yf,b(w,y))) and 'y(’f’b(T(a:,y)) coincide. Let

(%) y=b'+r, 0<r <b.
Then
(1" + [%] (b+ k))a T
W)+ ; (b+k) - (v+[7] 0+0)
(0 oy r+b(b+k)—ad] 1z
)by +(b+k)<[ - [b]
Prop. 3 z] V(b+k)—ad rz
23 _pp +(b+k)([b}+——b H
/ P
:—bb’+(b+k)(b(b+]z) aa’)
b2 + b2 + 2kbb + k?V — ad'(b+ k)
- b
2 / 2
=b,2kb;k —aa(b;k):(szr%)b’—aa’b:k

is divided by a, because a|(2k+ %) and b|(b+k). Hence the first coordinates
of 'yL’f,b(T(qff’b(x,y))) and ’yf’b(T(:U,y)) coincide. =
DEFINITION 6. Let a,b,k € Z and a > 1,b > 1,k > 0. Define

ng,b = (Za X Zba @Z‘b, ) (0’ 0))*> )

where —(z,y) = 7%, (—2,—y) and (z,y)* = 7% (v, ).
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The following theorem shows that Q’;’b belongs to AGI if some conditions
concerning a, b, k are satisfied. Moreover ng,b is cyclic because it is generated
by (1,0).

THEOREM 10. Let a,bk € Z witha > 1,b > 1,k > 0 and bla,blk,0 < k <
a,a|2k + Ebi Then Q’g,b s an abelian group with involution.

Proof. From Theorem 9 we know that Q’;,b is an abelian group. Moreover

(0,0 = 7%,(0,0) "2 % (0.0). Let (2,y) € Zo X Z. Then (z,y)™ =

V(T L (T(2,9)))) Ve (T(T(2,y)) = 1 p(@y) 2 ° (2,y). Now

*
we prove that ((az, y) ®f, (2, t)) = (z,y)* ®¥, (2,1)*. Notice that

Pr(m. 6

* Prop. 6
(v @k, (5)) = A o(TOhoo + 2,y +6) 8 P b (T + 2,y +1)

=y +t,z+2)

= ((y+t+ [z—;—z} (b+k)>a,(w+z)b>

= ((L1), » (L2)p)

Hence Ly — Ry = x4+ 2z — (), — (2), = b [%] +b [%] and b|Ls — Ry so
(L), = (R2), - By Proposition 4 we have

(+) =]+ 3]+ [(x)b;:(z}b] _ |:.’E-l|)—z:| |

There exists o’ € Z such that Ry = (y + [§] (b+k))_+ (t+ [§] 0+ k), +
[—L——(m) A | (b+k) = y+ [§] (0+F)++[F] (b+R)+ [—M)b}:(z) ] (b+k)+ad
y+t+ (b+k) [2] + ad’ = L1 + aa’ hence (L1), = (R1),. =
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PROPOSITION 7. Let Q =(Q,-,/.\,1) be finite cyclic entropic quasigroup
with quasi-identity and Q = (x) for some x € Q. Let a = r4.(Q), b = r.(Q),
k=r(Q). Ifa: ZxZ — Q is a function such that a(n,l) = nx + lz*
then a o fy(’f’b = q.

Proof. Letn,l € Z andl =0bb + 1,0 <r <b. Then a(n,l) = nz +lz* =
nz + bbz* + rz* = nz + V(b +k)z +rz* = (n+ [}] (b+k))z + rz*
(n+ [5] b+ k) 2+ Dz = a(r5y(n, 1) =

It turns out that every cyclic algebra in AGI is isomorphic to some Q'; b

It follows that every cyclic quasigroup in £Q1 is isomorphic to some \IJ(Q’; b)-

THEOREM 11. Let Q =(Q,-,/.\,1) be a finite cyclic entropic quasi-
group with quasi-identity and a = r4(Q), b = r.(Q), k = 7+(Q). Then
2(Q) = Qg

Proof. Let Q = (z) for some z € Q and o : Z, X Z, — @ be a function
such that a(n,l) = nx + lz* for each (n,l) € Z, x Z,. We show that « is
an isomorphism. If y € @ then there exist n,! € Z such that y = nx +
1zt TR T a('yf,b(n,l)). Hence « is onto Q. Let (n,l),(n',l') € Z4 x Z and
a(n,l) = a(n',l'). Hence nz + lz* = n’z +l'z* and (I - I")z* = (n' — n)zx so
by defintion of b we have | — I’ = 0. Therefore nz = n'z, so (n —n')z =0

and a|n — n’ thus n — n’ = 0 and « is injective. Let (n,l), (n/,l') € Z; X Z.
Then a((n,1) ®F, (n', 1)) = a5, (n + 0/, + 1)) PR T ynnl 1+ 1) =
(n+n)z+ (+1)z* =nz+lz* +n'z+Uz* = a(n,l) + a(n',l'). Moreover
o((n,1)") = a(rk,(1,n) T E T a(l,n) = letnet = (na+la)* = (aln, )"
Hence « is a homomorphism. =

COROLLARY. Let Q1, Qs be a finite cyclic entropic quasigroups with quasi-
unities. Then Q1 = Qs if and only if r1(Q1) = 14+(Q2), T«(Q1) = r(Q2),
ret(Q1) = 1.+(Qa).

4, Infinite cyclic quasigroups in EQ1
In this section we assume that @ is infinite.

DEFINITION 7. Let @ = (Q,-,/.\, 1) be an entropic quasigroup with quasi-
identity, a € Q and ®(Q) = (Q,+,—,0,"). Let x € Q. Then B.(Q) = {b ¢
N — {0}: 3gezbz* = kx}.

The set B, (Q) does not depend on the choice of a generator x:

PROPOSITION 8. Let Q@ € EQ1 and < z >=<y >= Q. Then By(Q) =
By(Q).
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Proof. Since x €< y > there exist r,s € Z such that x = ry + sy*.
If z € By(Q) then we can find k € Z such that zy* = ky. Hence zz* =
z(ry + sy*)* = zry* + zsy = rky + ksy* = kz and z € B;(Q). Therefore
By(Q) € B:(Q). Analogously Bz(Q) € By(Q). =

PROPOSITION 9. If Q € EQ1, <z >= @ and ax =0 then a = 0.

PROPOSITION 10. If Q € EQ1, Q =< z > and bx* = kx then k = b or
k = —b.

Proof. If bz* = kx then b%z* = bkx = kbz = k?z*. Hence (b — k¥)z* =0
and (b2 —k?)z=0s0b? = k. m

Let us observe that if b # 0, ba* = kz and k = b then bz* = not = —bz.
DEFINITION 8. Let @ € EQ1 and @ =< x >. Then
o0 for B,(Q) =@
BQ={% 2
min B;(Q) for B,(Q) # @.
DEFINITION 9. Let Q € EQ1, Q@ =< z > and B(Q) # oo. Then
+1 if B(Q)z* = B(Q)x
sgna(@) = { T T BQz =B
-1 if B(Q)z* = —B(Q)z.
Similarly to Proposition 8 it can be proved:

PROPOSITION 11. Let Q € EQ1, B(Q) # o and @ =< z >=< y >.
Then sgn.(Q) = sgny(Q).

So sgn.(Q) does not depend on the choice of z and we can define
sgn(Q) = sqng(Q) for @ € EQ1 such that Q =< z > and B(Q) # oo.

DEFINITION 10. Let b€ Z — {0}. Let v : Z x Z — Z X Z be a mapping
such that ’Yb(m’ y) = (:1: + [%] b’ (y)b) and (117, y) Dp (Z, t) = ’Yb(‘r +2,9+ t)

Similarly to Proposition 5 and Proposition 6 one can prove:
ProPoOSITION 12. Let b€ Z — {0}.
a‘) If (.’L',y) € 7Z X Zb then ’Yb(‘rvy) = (SC, y)
b) (z,y) ®b w(2,t) = Wz + 2,y +1).
PROPOSITION 13. Letbe Z — {0}. ThenypoT oy =7p0T.

In the next theorem we describe some canonical infinite cyclic algebras
in AGI.

THEOREM 12. Let b € Z — {0}. Then Qp = (Z X Zy, Dy, —, (0,0),*) is
an abelian group with involution, where —(x,y) = v(—z, —y) and (z,y)* =
(Y, ).
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Proof. The proof of the fact that Q) is an abelian group is analogous to
the proof of Theorem 9.

Moreover (0,0)* = ~;(0,0) (0.0).
The proof that (z,y)** = (z,y) is the same as in Theorem 10. Now we
prove that ((z,y) @ (2,t))* = (z,y)* ®s (2,t)*. Notice that
* Prop. 13
((2,9) @ (2,t)" = W(T(w(z + 2,y +1) =
=wYy+t,z+2)= <y+t+ {mgz} b,(fv+Z)b)

= (L1, (L2),)

Pro& 12

Ww(T (@ + 2,y +1))

Hence Ly — Ry =z + 2z — (z), — (2), = b[§] + b[%] and b|L; — R, so
(L), = (R2), . By Proposition 4 we have

T z () + (2),] _[z+2
(*) [b}+[b]+[ b T ]
S50 R1 = Ll. ]
The reader may verifythe following theorem by analogy with Theorem 11.

THEOREM 13. Let Q = (Q,-,/.\,1) be infinite cyclic entropic quasigroup
with quasi-identity.
If B(Q) = oo then ®(Q) = (Z x Z,+,—,*,(0,0)), where (z,y)* = (y,x).
If B(Q) < oo then ®(Q) = Qsgn(Q)B(Q)-
COROLLARY. Let Qy,Q> be an infinite cyclic entropic quasigroups with
quasiunities. Then Q1 = Qo if and only if B(Qx) = B(Qe) = o0 or
B(Q1) = B(Q2) and sgn(Q1) = sgn(Qa).
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