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SUMS OF PRODUCTS OF GENERALIZED
FIBONACCI AND LUCAS NUMBERS

Abstract. In this paper we obtain explicit formulae for sums of products of a fixed
number of consecutive generalized Fibonacci and Lucas numbers. These formulae are
related to the recent work of Belbachir and Bencherif. We eliminate all restrictions about
the initial values and the form of the recurrence relation. In fact, we consider six different
groups of three sums that include alternating sums and sums in which terms are multiplied
by binomial coefficients and by natural numbers. The proofs are direct and use the formula
for the sum of the geometric series.

1. Introduction

Let p and g # 0 be complex numbers. The generalized Fibonacci and
Lucas sequences {Up} = {Un(p, ¢)} and {V,,} = {V,.(p, q)} are defined by

Up=0, Ui=1, Up=pUp1-qUp_2 (n >2),

and
Ww=2 Vi=p, Va=pVo1—qVy (n>2).

The numbers U, and V), have been studied by Lucas [3] (see also [2]).

2. Sums of products of Fibonacci and Lucas numbers
We first want to find the formulae for the sums

n
Uy =Y Uassj(pr @) Uoraj(p; 9,
j=0

n
Uy = Z Uatbi(D, @) Vera;(p, @),
=0
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n
U3 = Varb(0, 9) Veraj (ps ),
3=0
whenn >0,a>0,c>0,b>0 and d > 0 are integers.

In [1] Belbachir and Bencherif have found explicit expressions for these
sums (and for the related alternating sums) only in the special case when
g = +1 and b = d = 2. The main goal in this paper is to completely eliminate
these assumptions and to treat some other similar sums. In the end, we
consider altogether eighteen sums that are grouped by three in six classes.
Once we discovered the formulae for the sums ¥, W5 and U3 (the first class)
and much simpler sums ¥4, ¥5 and ¥g (the second class in which the terms
are multiplied by binomial coeflicients (;‘)), the remarkable feature is that
in other classes of sums essentially the same formulae hold.

Since this paper contains more than two hundred claims we can only
prove a few that can serve the reader as examples in checking the truth of
the others. We thank the referee for useful comments that improved our
results and their presentation.

Let o and 8 be theroots of 22 — pz + ¢ = 0. Thena = P";—A and g = %A,
where A = \/p? — 4q. Moreover,a — 3 = A, a+ 8 =p, a = q and the Bi-
net forms of U, and V,, are

Un:a —,87 Voi=0a"+4",
a-p
if a # 3, and
U, =na"" !, Vo =2a",
if @ = 4.

Let E=a" F=0abp8% G=ap" and H = g+, Let e = a%tc,
f=a%8% ¢ = af 3% and h = 3%, When E # 1, for any integer n > 0,
let E, = E?_l_ L We similarly define F,, G, and H,. On the other

b(n b(n
hand, when af # 8, for any integer n > 0, let by = o= ang

b — ab(n+1) _gb(n+1)
nT o (ab-ph)
THEOREM 1. (a) When A =0 and E = 1, then

" e(n+1) [6ac+3n(ad+bc)+n(2n+1)bd]
1= .

6 a?
(b) When A =0 and E # 1, then ¥y = SMactHle Bt PO - qyigp

. We similarly define d,, and d;,.

M=(E-1)*(E"*'~1), N=E(E-1) [nE"'—(n+ 1) E" + 1],
P=F [n® E"?-(2n*+2n—1)E"' +(n+ 1)’ E"-E—1].
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Proof of (a). Since A =0 and E = a®*? = 1, we see that the product

Uarb§(Ps 9) Ucyaj(p, q) is equal to
(a+bj) a1 (c+dj)actdi=t = % [ac+j(ad+bec) +j2bd] )

?

2
it follows that ¥; has the above value. =

Proof of (b). Since A =0, the product Ua+bj(p, q) 0c+dj(p, q) is

From Z?:o 1=n+1, E?:o g = M7 and zg}zo 2= w

. _ FEJ
(a+b7) a7 (c 4 dj)actei~l = ea_2 [ac+j(ad+be)+j52bd].

From Y7 o B =E, Y0 B =gl and 37 2B = mhy,
it follows that W¥q has the above value. u

The following theorem covers for the sum ¥; the cases when A # 0. It
uses Table 1 below that should be read as follows. The symbols B and [J
in column E mean E # 1 and E = 1. In column b they mean o’ # £ and
ab = b, In columns F, G, H and d they have analogous meanings. The
symbol X is a conditional (1. How it works becomes clear from the following
interpretation of the third subcase or row that should be read as follows:
When (A #0), E=1and o® =% then G=1and H=F and for F #1
the product A2 ¥ is equal to (n+ 1) (e — g) + Fy, (b — f).

THEOREM 2. When A # 0, then Table 1 gives the value of A2 ¥,
Proof of row 1. When A # 0, the product Uy ;(p, ) Ucrd;(p, q) is
oo thi _ gotdi actdi _ getd; eEl  fFI gGI  hHI
( A )( A )=A2_A2_A2+A2
From 377, Ei=FE, weget A2V, =eE,— fF,—gGr,+hH,. =
Proof of row 2. When A # 0 and E = o™ = 1, we get

e fFI g (B hHI
Uatb;(P, @) Uctaj(p, @) = A2 T AT AT (J R
From 3% o 1=(n+1), 37 o F/ =F, and )}, (%)J = by, (for a® #

(%), it follows that A2Wy =e(n+1)— fF, —gby, +hHy,. =

Proof of row 3. When A #0, E = b4 =1 and a® = 3°, then
G=Ra=abe?=E=1

and H = B° 8% = a® 3% = F. Hence,

e—g  (h— f)F
Uatbj(Ps @) Uctaj(p, @) = A2 +( A2) '
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E|\F|G|H|b|d A%,
1 |m|m|m| = Ene—Fnf—Gng+Hnh
2 |0 m nm (n+1)e~Fnf—bag+ Hph
3|O|m|®|F|O (n+1)(e—g) + Fu(h— f)
4|0 "I M| (n+l)e—dnf—Grg+ Hph
5 |0 x| m| G O (n+1)(e-f)+ CGnlh—g)
6 | O X (see 5)
7|0 O X (see 3)
8 | O O B (n+l)e—g)+da(h—f)
9 | O O B| (n+l)e+h)—dnf—dig
I IE m Ene—(n+1)f —Gng+bnh
11| m|O|E 0 En(e—g)+(n+1)(h—f)
12 O|m|m B de—(n+t1)f— Gug+Hnh
B|IX O WG O (n+l)(e—f)+Gn(h—g)
14 o0 B die—(n+1)(f+g)+dnh
15 O O K (see 11)
16 O O B di(e—g)+(n+1)(h-f)
17 SIEIE bie—Fnf—(n+1)g+Hyh
18 m(o|F|O (n+1)(e—g)+ Fn(h—f)
19| m|m| 0 M| Ee Fof—(n+1)g+duh
20 |m|E|O0|X O] Eule—f)+(n+1)h—g)
21 oDlo[m[r|] - f)+mn+)h-g)
2| m RN Ene—0b:f—Gng+(n+1)h
23| m|R|E|DO|O En(e—g)+(n+1)(h—f)
24 | W | m O | Ee Fof-digt(ntl)h
% | m|E|®|O O| Enle—f)+(n+1)h—-g)

Table 1. The product A2 ¥; when A # 0.

From 377 o 1= (n+1)and 377, FJ = F, (for F # 1, of course), it follows
that the product A? ¥, is equal to (e — g) (n + 1) + (h — f) Fy,

The missing case in the Table 1 after the third row is clearly when £ = 1,
a? = % and F = 1. However, it is easy to see that this situation can not
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happen since A #0, b > 0 and d > 0. The similar statement holds for all
other subcases missing from the Table 1.

Notice that " = ¥atpla and g7 = ¥a=pla for A#0 and o = " =

[{{fll = —2ﬂ for A = 0. Hence, it is clear that each of the above expressions
for the sum v, coulc}v be transformed into an expression in Lucas numbers U,
and V, (or U, and V,,). In most cases these formulae are more complicated
then the ones given above. This applies also to other sums that we consider

in this paper.

AT,

1 E,e+ F,f—-Gng—Hph
2 | (n+1)et Fpf—bng— Hph
3 (n+1)(e —g) + Fo(f — h)
4 |(ntDetdnf—Cng— Hnh
5

8

9

(n+1)(e+f)—Gnlg+h)
(n+1)(e—g)+dn(f—h)
(n+ De—h) +duf —dyg
10| Epne+(n+1)f—Gpng—>bnh
11| En(e—g)+ @+ 1)(f-h)
12 |dhe+(n+1)f—Gpg— Hph
13| (n+1)e+f)—Gn(g+h)
14| dre+(n+1)(f—g)—dnh
16 | dile—g)+(n+1)(f—h)
17 | bret Fuf —(n+1)g— Hoh
18] (n+l)(e—g)+F.(f—h)
19| Epe+Fyf—(n+1)g—dph
20| Ep(e+f)—(n+1)(g+h)
21 br(e+f)—(n+1)(g+h)
2| Epe+ b f—Grg—(n+1)h
23| Enp{e—g)+(n+1)(f-h)
% | Ene+ Fnf—dig—(n+1)h
25| En(e+f)—(n+1)(g+h)

Table 2. The product A ¥5 when A # 0.
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Next we do the same for the sum Wo. Of course, the first is the simpler
case when A = 0.

THEOREM 3. (a) When A =0 and E =1, then

e(n+1)[2a+nb]
Wy = 5 .

(b) When A =0 and E # 1, then

E(nE" —(n+1)E"+1) b

_2e
T a (E—1)?

\Ilz Ena+

The following theorem is rather similar to Theorem 2 and covers for the
sum ¥y the cases when A # 0. Its Table 2 above has the same columns 2-7
as in the Table 1 so that we shall give only the first and the last column with
rows 6, 7 and 15 omitted.

THEOREM 4. When A # 0, then Table 2 gives the value of A Vs,

Somewhat simpler is the third sum W3 that we treat now in much the
same way. We begin with two cases when A = 0.

THEOREM 5. (a) When A =0 and E =1, then ¥3=4(n+ 1)e.
(b) When A =0 and E # 1, then ¥3 =4eE,.

The following theorem considers for the sum W3 the cases when A # 0.
Its Table 3 below is again reduced to the first and the last column because
the other columns and the missing rows agree with those of Table 1.

THEOREM 6. When A # 0, then Table 3 gives the value of V3.

3. Sums with binomial coefficients
In this section we consider the sums

", /n
vy = Z (]) Uatb5(P; @) Ueraj(p, 9),

=0

n
n
U=) ( j) Uattj (0, 0) Verd; (> 0),
=0

W

I
NE

n
<j) Vot (D) @) Verai(py @),

™ o

J
whenn>0,a>0,¢c>0,b>0 and d > 0 are integers.
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U3

1 Epe+Fof+Grg+Hph
2 | (n+l)e+Ff+byg+Hph
3 (n+1)(e+g)+ Fo(f + 1)
4 {(n+1)e+dnf+Gng+Hph
5

8

9

(n+1)(e+ f)+ Gn(g+h)
(n+1)(e+g)+dn(f+h)
(n+1)(e+h)+d,f+dig
10| Ene+(n+1)f+Gng+bph
11| En(e+g)+(n+1)(f+h)
12| diet+(n+1)f+Gng+ Hyh
13| (n+l(e+f)+Gn(g+h)
14| diet+(n+1)(f+g)+dnh
16 | dn(e+g)+(n+1)(f+h)
17| e+ Fnf+(n+1)g+Hph
18| (n+l(e+g)+F.(f+h)
19| Epe+ B, f+(n+1)g+dyh
20| Ep(e+f)+(n+1)(g+h)
21| ble+f)+(n+1)(g+h)
22 | Epe+ b, f+Grg+(n+1)h
23| En(e+g)+(n+1)(f+h)
24 | Epne+ Fof+d,g+(n+1)h
25| Ep(e+f)+(n+1)(g+h)

Table 3. The sum V3 when A # 0.

THEOREM 7. (a) When A =0, then

e€ac
0t§ 1
ef(E4+1)act+FE(ad+betbd)]
\I’4 == ol ’
e(E+1)"~%[(E+1)? act+n E(E+1)(ad+bc)+n E(n E+1) bd]
Y

a2

2ea .
y an=0,
%—{ “

2e(E+1)""[(E+1)at+n Eb] .
> , fn>1.

ifn=0,
ifn=1,
ifn> 2,
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(b) When A #0, then
_(E+D)e—(F+1)"f—-(G+1)"g+ (H+1)"h
= N ,
(E+1)"e+(F+1)"f—(G+1)"g—(H+1"h
A .

Wy

U5 =

(c) The sum ¥q is equal to
(E+1)"e+(F+1)"f+(G+1)"g+(H+1)"h.
Proof of (c). Since

(?) Vaybi(0 @) Verai(p, @) = (Z) (eE'+ fF! +gG’ + hHY),

from 7%, (;‘) Ei = (E+1)", it follows that Ug indeed has the above
value. =

4. The improved alternating sums

In this section we consider the sums obtained from the sums ¥;-¥g by
multiplication of their terms with the powers of a fixed complex number k.
When k& = —1 we obtain the familiar alternating sums. More precisely, we
study the sums

n
\I,7 = Z K Ua+bj(pa q) Uc+dj(p7 Q)v
7=0

n
Ug = > k Ut (P, ) Vera; (0, 9),
=0

n
\Ilg = Z K’ ‘/tl+bj(p7 q) ‘/c-i-dj(p’ q)7
j=0

n
. /n
Uyp=» K (J) Uatb5(P, @) Ueta; (P, ),
3=0

n
. /n
Uy =) K (J) Uatb (D) ) Verd; (P, ),
§=0

n

(N
=0

whenn >0,a>0,¢c>0,b> 0 and d > 0 are integers.
Let E=ka*™ F=ka®B8% G=ka®Bband H = k3°*%. When E # 1,

for any integer n > 0, let £, = Eg_ll_ L. We similarly define Fy,, G, and H,,.
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In this section we can assume that k # 1 and k # 0 because the case
when k = 1 was treated earlier while for & = 0 all sums are equal to zero.

With this new meaning of the symbols F, F, G and H we have the
following result.

THEOREM 8. (a) The values given in Theorems 1 and 2, 3 and 4, and 5
and 6 express the sums Vg, Wg and Vg, respectively. In particular, when
A #0, then Tables 1, 2 and 3 give the values of A2 ¥, AWg and V.

(b) The values given in Theorem T for the sums ¥4, U5 and Vg express
also the sums Ui, V11 and Yys.

Proof of (b) for ¥;5. Since
k? (]) Vatbi(0s @) Verai(p: @) = <J> (eE + fF +gG’ +hH),

from }77 4 (3’) E7 = (E +1)", it follows that W15 indeed has the same ex-

pression as the sum Ug.

5. Terms multiplied by natural numbers
In this section we study the sums

Y3 = Z kI (] + 1) Ua+bj(p, Q) Uc+dj(p’ q)’
=0

Uy = Z k‘j (] + 1) Ua+bj(p7 Q) V;H-dj(p’ q)’
=0

n
Uis =Y K (5 +1) Vags(p, @) Verai(p, 0,
3=0

n o n
W= 3 8 G+ 1) (1) Unsos(o, ) Uesas 9, 9)
=0

n o n
Uiy = Z K (G+1) (]) Uatb5(p, @) Veraj(ps 0),
=0

n o n
\Il18 = Z k? (.7 + 1) (]) ‘/a-f-bj(p? Q) %+dj(p7 q)7
=0

whenn >0,a>0,¢>0,b>0 and d > 0 are integers.
Let E=ka’* F=kat 3% G =kadB®and H = k 2. Let e = a®*°,
f=a*B° g=a°pB* and h = 3°t¢. When E # 1, for any integer n > 0, let



256 Z. Cerin
E, = ("+1)En+(25_(71‘;2)En+1+1. We similarly define F,, G,, and H,. On the
other hand, when o # 3°, for any integer n > 0, let
B ab(n+2) + (n + l)ﬂb(n+2) _ (n + 2)ab I@n-}-l
n = abn(ab — 3b)2

and

. Bt 4 (n 4 1)) — (n 4 2)8b ot
b, = Bhn(ab — )2 :
We similarly define d,, and dj,.
THEOREM 9. (a) When A =0 and E =1, then
e(n+1)(n+2)[6ac+4n(ad+bc)+n(3n+1)bd]
12 a2 ’
2e(n+1)(n+2)[3a+2nb]
6 ’

Uiz =

Uy =
and
\1115 = Qe(n -+ 1)(1?, + 2).
(b) When A =0 and E # 1, then

\1/13:% [Enac+ M (ad+bc)+ Nbd],

E E
(E-1)3 (E-1)*
where M and N are polynomials n(n+1)E"? —2n(n+2) B+
(n+D(n+2)E"~2 and n?2(n+1)E"3 —n(3n?2+6n—1)E""2+
n+2)Bn?2+3n—-2)E" —(n+2)(n+1)2E"+4E +2,

E
2% | Bra+ —— Mb],
Wiy - [ a+(E_1)3 ]

and
\If15 =4e En.

Proof of (b) for ¥;4. Since A = 0, the product
k7 (5 + 1) Ugso (P, @) Veras (0, @)
is
. : . 2eEY
2 (j+ D(a+bj) a7 ot = Z—fa(j + 1) +5 (j + ) b].
From Y7 o (j+ 1) B = Epand 375, j (j + 1) B = %5, it follows that
W14 has the above value. =

THEOREM 10. When A # 0, then Tables 1, 2 and 3 give the values of
A2 \1113, A\I’14 and \1115.
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Proof of row 1 in Table 1 for ¥135. When A # 0, we have

k(54 1) Ugss (9, ) Uera; (s ) =

. aa-{-bj_/@a-}—bj ac—}—dj_ﬁc—}—dj
J (3 .
9 (5 ) ()
, eFEl fFI  gG hHI
(]+1)<A2 “ar At A2>'
From Z?:o (j+1)EI =E,, weget A2U;3=cE, — fF, —gGn+hH,. u

For any integer n >0, let Ef = (n+1)E+1, E*=E}(E+ 1)L
We define F}, G, H;, F*, G}* and H;* similarly.

THEOREM 11. (a) When A =0, then

'%1,22, an = 0,
e[(2E+1)ac+(21125(ad+bc+bd)], ifn=1,
V16 = { c[(E+1)(3 B+1)act2 E (3 E+2)(ad+be)+4 B3 E+1)bd)] fn=2
R , ifn=2,
e n—3[ px* 2 *
| (BB (541 actn B EAE @b tRE] e s g
where R=nE(n(n+1)E? + 4nE + 2),
%’ ifn=0,
_ J 2¢[(2E+1)a+2Eb 7N
\1’17_ el{ aa Ja an—]"
26(E+])"—2[(E+121E; a+nE(E,‘;+1)b], ifn > 2.

(b) When A # 0, then
E™e— E* f— G g+ H*h
A? ’
| Efe+Frf-Grg—Hh
= < i
(c) The sum W15 is equal to E}* e+ F}* f+ GXr g+ H}* h.

Proof of (c¢). Since

Vi =

W7

K (G+1) (?) Vatrbi (0, @) Veraj(p, ) =
(G+1) (Z) (eE + fF +gG’ + hHY),

from 377 o (5 +1) (7) B = E*, it follows that ¥1g indeed has the above
value. m
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