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SUMS OF P R O D U C T S OF GENERALIZED 
FIBONACCI A N D LUCAS N U M B E R S 

Abstract. In this paper we obtain explicit formulae for sums of products of a fixed 
number of consecutive generalized Fibonacci and Lucas numbers. These formulae are 
related to the recent work of Belbachir and Bencherif. We eliminate all restrictions about 
the initial values and the form of the recurrence relation. In fact, we consider six different 
groups of three sums that include alternating sums and sums in which terms are multiplied 
by binomial coefficients and by natural numbers. The proofs are direct and use the formula 
for the sum of the geometric series. 

1. Introduction 
Let p and q^ 0 be complex numbers. The generalized Fibonacci and 

Lucas sequences {[/„} = {Un(p, q)} and {Vn} — {Vn(p, 9)} are defined by 

U0 = 0, Ui = l, Un = pUn-\ — q Un-2 ( n > 2), 

and 
V0 = 2, Vi=p, Vn=pVn-1-qVn-2 (n > 2). 

The numbers Un and Vn have been studied by Lucas [3] (see also [2]). 

2. Sums of products of Fibonacci and Lucas numbers 
We first want to find the formulae for the sums 

n 

= ua+bj(p, q) uc+dj{p, q), 
3=0 

n 
= Ua+bj(p, q) Vc+dj{p, q), 

3=0 
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= XI v<>.+bj(Pi q) vc+dj(p, g), 
3=0 

when n > 0, a > 0, c > 0, b > 0 and d > 0 are integers. 
In [1] Belbachir and Bencherif have found explicit expressions for these 

sums (and for the related alternating sums) only in the special case when 
q = ± 1 and b = d = 2. The main goal in this paper is to completely eliminate 
these assumptions and to treat some other similar sums. In the end, we 
consider altogether eighteen sums that are grouped by three in six classes. 
Once we discovered the formulae for the sums \I>i, and (the first class) 
and much simpler sums and (the second class in which the terms 
are multiplied by binomial coefficients (")), the remarkable feature is that 
in other classes of sums essentially the same formulae hold. 

Since this paper contains more than two hundred claims we can only 
prove a few that can serve the reader as examples in checking the truth of 
the others. We thank the referee for useful comments that improved our 
results and their presentation. 

Let a and f3 be the roots of x2 — p x + q = 0. Then a = and (3 = ^^, 
where A = \fp2 — 4q. Moreover, a — ¡3 = A, a + (3 = p, a/3 = q and the Bi-
net forms of Un and Vn are 

if a ^ (3, and 

an - 0n 

Un = Vn = an + tF, 
a — (3 

Un = nan~\ Vn = 2 an, 

if a = /3. 

L e t E = ab+d, F = ab j3d, G = ad (3b a n d H = (3b+d. L e t e = aa+c, 
f = aa ¡3°, g = ac (3a and h = (3a+c. When E ^ 1, for any integer n > 0, 
let En = 1 . We similarly define Fn, Gn and Hn. On the other 

hand, when ab ± (3b, for any integer n > 0, let bn = and 

K = ^ b ^ ' f l ^ • We similarly define dn and d*n. 

T H E O R E M 1 . ( a ) When A = 0 and E = 1, then 

e ( n + 1) [ 6 a c + 3n(ad + be) + n(2n + l)bd] 
= 6 a 2 

_ e[M a c+iV(a d+bc)+P b d] 
( b ) When A = 0 and E ± 1, then = "^'¡e-i)* > w i t h 

M = ( E - l ) 2 ( E n + 1 - l ) , N = E(E~ 1) [n En+1 - ( n + 1) En + l] , 

P = E [n2 En+2— (2n2+2n—l)En+l+ {n + l)2 En — E — l\ . 
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Proof of (a). Since A = 0 and E = ab+d = 1, we see that the product 
Ùa+bj(p, q) Ùc+dj(p, q) is equal t o 

(a + bj)aa+hj-1 (c + dj)ac+dj~l = A, \ac + j (ad + be) + j2 bd] . 
or 

Rom £ i = o l = " + l, = and E"=o J 2 = " ("+ 1 )
6

( 2"+ 1 ) , 
it follows that "l'i has the above value. • 

Proof of (b). Since A = 0, the product Ua+bj(p, q) Uc+dj(p, q) is 

(a + bj)aa+hj-1(c + dj)ac+dj-1 = \ac + j (ad + be) + j2 bd] . 
or 

From Z]=0Ei = En, ^ J & = and ¿y}=Q j* & = , 
it follows that has the above value. • 

The following theorem covers for the sum the cases when A / 0. It 
uses Table 1 below that should be read as follows. The symbols • and • 
in column E mean E ^ 1 and E = 1. In column b they mean ab ^ (3b and 
ab = fib. In columns F, G, H and d they have analogous meanings. The 
symbol El is a conditional • . How it works becomes clear from the following 
interpretation of the third subcase or row that should be read as follows: 
When (A ^ 0), E = 1 and ab = (3b, then G = 1 and H = F and for F ± 1 
the product A2 is equal to (n + 1) (e — g) + Fn (h — / ) . 

THEOREM 2. When A / 0 , then Table 1 gives the value of A 2 ^ i . 

Proof of row 1. When A ^ 0, the product Ua+bj(p, q) Uc+dj(p, q) is 

' aa+bj - Pa+bj \ f ac+di - j3c+di \ _ e E^> f Fj g Gj h W 
A J ' V A J ~ "A2 A2 A 2 " + "A2" ' 

From ZjLo = En, we get A2 ^ = e En - f Fn - g Gn + h Hn. , 

Proof of row 2. When A / 0 and E = ab+d = 1, we get 

it ( \tt ( \ e f F j 9 f(3b\\hW 
Ua+bj(P> q) Uc+dj(p, 9 ) = A 2 " A 2 ' - A 2 ^ J + -^T-

From ZU 1 = (« + 1), E"=o Fi = ^ and ( § ) ' = K (for ab ji 

/3b), it follows that A2 ^ = e (n + 1) - / Fn - g bn + h Hn. m 

Proof of row 3. When A ^ 0, E = ab+d = 1 and ab = (3b, then 

G = 0b ad = ab ad = E = 1 

and H = pb/3d = ab/3d = F. Hence, 
e - g (h — f ) F j 

Ua+bj(p, q) Uc+dj(p, q) = + • 
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E F G H b d A 2 ^ i 
1 m m u U En e — Fn f — Gn g + Hn h 
2 • u U U (n + 1) e - Fn f - bn g + Hnh 
3 • u IE F • (n + l)(e-g) + F n ( h - f ) 
4 • • U U (n + 1) e - dn f - Gng + Hnh 
5 • M • G • (n + l)(e- f ) + Gn(h-g) 
6 • • IE (see 5) 
7 • • m (see 3) 
8 • • • (n + l)(e-g) + d n ( h - f ) 
9 • • • (n + l)(e + h)-dnf-d*ng 
10 • • • u Ene- (n + 1) f -Gng + bnh 
11 • • E • En(e-g) + (n + l ) ( h - f ) 
12 • U • • d*ne-(n+l)f-Gng + Hnh 
13 EI • • G • (n + l ) ( e - f ) + Gn(h-g) 
14 • • • d*ne-(n+l)(f + g) + dnh 
15 • • IE (see 11) 
16 • • • d*n(e-g) + (n + l ) ( h - f ) 
17 • • • • b*ne-Fnf-(n + l)g + Hnh 
18 IE • • F • {n+l){e-g) + F n { h - f ) 
19 • • • • Ene- Fnf - (n + l)g + dnh 
20 • E • m • E n ( e - f ) + (n + l)(h-g) 
21 • • • IE b*n(e-f) + (n+l)(h-g) 
22 • • • • Ene-b*nf-Gng + (n + l)h 
23 • m E • • En(e-g) + (n + l){h- f ) 
24 • u • • Ene-Fnf-d*ng + (n+l)h 
25 • E H • • E n ( e - f ) + (n + l)(h-g) 

Table 1. The product A 2 when A / 0. 

From Yl]=0 1 = (n + 1) and o = F n (for F / l , of course), it follows 
that the product A2 is equal to (e — g) (n + 1) + (h — f ) Fn. m 

The missing case in the Table 1 after the third row is clearly when E = 1, 
ab — (3b and F — 1. However, it is easy to see that this situation can not 
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happen since A ^ O , b > 0 and d > 0. The similar statement holds for all 
other subcases missing from the Table 1. 

Notice that an = v»+fu« and /3n = v"~2
Ai7" for A ^ 0 and an = f5n = 

= for A = 0. Hence, it is clear that each of the above expressions 
for the sum could be transformed into an expression in Lucas numbers Un 
and Vn (or Un and Vn). In most cases these formulae are more complicated 
then the ones given above. This applies also to other sums that we consider 
in this paper. 

A f 2 

1 Ene + Fnf - Gng - Hnh 
2 (n + 1) e + Fnf -bng - Hnh 
3 (n + l)(e-g) + Fn(f-h) 
4 (n + 1) e + dn f - Gng - Hnh 
5 (n + l)(e + f)-Gn(g + h) 
8 (n + l)(e-g) + d n ( f - h ) 
9 (n + l)(e-h) + dnf -d*ng 
10 En e + (n + 1) f — Gn g — bn h 
11 En(e-g) + (n + l ) ( f - h ) 
12 d*ne + (n + l)f-Gng-Hnh 
13 (n + l)(e + / ) - G „ (g + h) 
14 d*n e + (n + 1)(/ - g) - dn h 
16 d*n(e-g) + (n+l)(f-h) 
17 b*ne + Fnf -{n + l)g-Hnh 
18 (n + l)(e-g) + Fn (/ - h) 
19 Ene + Fn f - (n + 1) g - dnh 
20 En(e + f ) - ( n + l)(g + h) 
21 b*n(e + f ) - ( n + l)(g + h) 
22 Ene + b*nf-Gng-(n + l)h 
23 En(e-g) + (n + l ) ( f - h ) 
24 Ene + Fnf-d*ng-(n + l)h 
25 En(e + f ) - { n + l)(g + h) 

Table 2. The product A <P2 when A ± 0. 
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Next we do the same for the sum Of course, the first is the simpler 
case when A = 0. 

THEOREM 3. (a) When A = 0 and E = 1, then 

e(n + 1) [2a + nb] 
M>2 = . 

a 
(b) When A = 0 and E / 1, then 

2 e = — 
a 

E (n En+1 - (n + l)En + l) b 
E n ( L + 

The following theorem is rather similar to Theorem 2 and covers for the 
sum \&2 the cases when A ^ 0. Its Table 2 above has the same columns 2-7 
as in the Table 1 so that we shall give only the first and the last column with 
rows 6, 7 and 15 omitted. 

T H E O R E M 4. When A ^ 0, then Table 2 gives the value of A ^ -

Somewhat simpler is the third sum that we treat now in much the 
same way. We begin with two cases when A = 0. 

THEOREM 5. (a) When A = 0 and E = 1, then = 4 (n + 1) e. 
(b) When A = 0 and E ± 1, then = AeEn. 

The following theorem considers for the sum the cases when A ^ O . 
Its Table 3 below is again reduced to the first and the last column because 
the other columns and the missing rows agree with those of Table 1. 

T H E O R E M 6. When A ^ 0, then Table 3 gives the value of $3. 

3. Sums with binomial coefficients 
In this section we consider the sums 

= E J (p, q) Uc+dj(p, q), 3=0 

n 

3=0 
= ( n ) Ua+bj{p, q) Vc+dj(p, q), 

= ( . J Va+bj(p, q) Vc+dj(p, q), 
3=0 \ 3 ' 

when n > 0, a > 0, c > 0, 6 > 0 and d > 0 are integers. 
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1 Ene + Fnf + Gng + Hnh 
2 (n + l)e + Fnf + bng + Hnh 
3 (n + l)(e + g) + Fn(f + h) 
4 {n + 1) e+ dnf + Gng + Hnh 
5 (n+l)(e + f ) + Gn(g + h) 
8 (n + l)(e + g) + dn(f + h) 
9 {n + l){e + h) + dnf + d*ng 
10 Ene + (n + l) f + Gng + bnh 
11 En(e + g) + (n+l)(f + h) 
12 d*ne + (n + l)f + Gng + Hnh 
13 (n + l)(e + / ) + G„ (g + h) 
14 d*ne + (n+l)(f + g) + dnh 
16 d*n(e + g) + (n + l)(f + h) 
17 b*ne + Fnf + {n + l)g + Hnh 
18 (n + l)(e + g) + Fn (/ + h) 
19 En e + Fn f + (n + 1) g + dnh 
20 En(e + f ) + (n+l)(g + h) 
21 b*n(e + f ) + (n + l)(g + h) 
22 Ene + b*nf + Gng + (n + l)h 
23 En(e + g) + (n + l)(f + h) 
24 £ n e + F n / + i £ 0 + (n + l ) / i 
25 

Table 3. The sum <P3 when A ^ O . 

T H E O R E M 7 . (a) When A = 0 , then 

i f n — 0, 

i f n = 1, 
e(E+l)n~2[(E+l)2 ac+n E(E+l)(ad+bc)+n E(n E+l)bd] ., 

¿2 > y n ^ 

f ^ . if n = 0, 

= 
e[{E+l)ac+E(ad+bc+bd)] 

* 5 = 2 e ( g + l ) n ~ 1 [ ( g + l ) a + n g 6 ] , if n > 1. 



254 Z. Cerin 

( b ) When A ^ 0 , then 

(E + 1 ) n e - ( F + l)n f - ( G + l ) n g + (H + l ) n h 
* 4 = 

* 5 = 

A2 

(E + 1 )n e + ( F + l ) n / - (G + l ) n 5 - + l ) n /i 

^ F a + h j (p, g) F c + d j (p, q) = Q ( e + / + <7 GJ' + /iW) , 

A 
fcj The sum \&6 is equal to 

{E + 1 )ne + {F + l)n f + (G + l ) n g + (H + l)n h. 

Proof of (c). Since 

c: 
from (") -E-7 = {E + l )n , it follows that indeed has the above 
value. • 

4. The improved alternating sums 
In this section we consider the sums obtained from the sums \I'i-\ii6 by 

multiplication of their terms with the powers of a fixed complex number k. 
When k — — 1 we obtain the familiar alternating sums. More precisely, we 
study the sums 

n 

= ^ Ua+bj(p, q) Uc+dj(p, q), 

j=0 

n 

= h> Ua+bj(p, q) Vc+dj(p, q), 

3=0 
n 

= ^2 & Va+bj(p, q) Vc+dj(p, q), 
j=0 

I'lo = kJ ( n ) Ua+bj(P, l) Uc+dj(P, q), 
3=0 ^ 3 ' 

^n = 5 3 kJ (n)u"+t>3(P' q)Vc+dj(p, q), 
3=0 

' n 
^12 = kJ [ • ) V°+bj(p, q) Vc+dj(p, q), 

3=0 ^ 

when n > 0, a > 0, c > 0, b > 0 and d > 0 are integers. 

Let E = kab+d, F = kab(3d, G = kad(3b and H = kpb+d. When E ± 1, 
for any integer n > 0, let En = 1 . We similarly define Fn, Gn and Hn. 
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In this section we can assume that k ^ 1 and k ^ 0 because the case 
when k — 1 was treated earlier while for k = 0 all sums are equal to zero. 

With this new meaning of the symbols E, F, G and H we have the 
following result. 

T H E O R E M 8 . (a ) The values given in Theorems 1 and 2, 3 and 4, and 5 

and 6 express the sums ^7, ^J/g and respectively. In particular, when 

A then Tables 1, 2 and 3 give the values of A2 A and i ' g . 

( b ) The values given in Theorem 7 for the sums and express 

also the sums ^10, ^11 and ^12. 

Proof of (b) for ^12. Since 

kj ( j ) Va+bj(p, q) Vc+dj(p, q) = ( j ) (e & + f F > +h W ) , 

from YJj=0 ( " ) E j = ( E + 1)") it follows that ^12 indeed has the same ex-
pression as the sum • 

5. Terms multiplied by natural numbers 
In this section we study the sums 

n 

^13 = k° ( j + u"+bj(p> 9 ) Uc+dj(p, q), 

3=0 

n 

= ^ k] ( j + 1) Ua+bj(p, q) Vc+dj(p, q), 

3=0 

n 

$15 = J2 k j ^ + V «) Vc+dj{p, q), 

3=0 

* 16 = ( j + 1) Ua+bj(p, q) Uc+dj(p, q), 

3=0 

= ¿ kj ( j + 1) Ua+bj(p, q) Vc+dj{p, q), 

3=0 

= ¿ kj ( j + 1) Va+bj(p, q) Vc+dj(p, q), 

3=0 ^J' 

when n > 0 , a > 0 , c > 0 , 6 > 0 and d > 0 are integers. 

Let E = k ab+d, F = k ab (3d, G = k ad (3b and H = k (3b+d. Let e = a a + c , 
f = aa(3c, g = ac/3a and h = j3a+c. When E / l , for any integer n > 0, let 
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En = — ( ¿ . l " ^ 2 ^ + + 1 - W e s imi lar ly define Fn, Gn a n d Hn. O n t h e 

o t h e r h a n d , w h e n ab ^ /3b, for a n y i n t e g e r n > 0 , let 

ab(n+2) + + ^(n+2) _ („ + 2)ab (3n+l 

a n d 

bn = 

b* = 

abn(ab - (3b)2 

pb(n+2) + ( n + 1 ) a 6 ( n + 2 ) _ ( „ + 2 ) t f> a n + 1 

pbn(ab _ 2 

W e s i m i l a r l y define dn a n d d * . 

T H E O R E M 9 . ( a ) When A = 0 and E = I, then 

®13 = 
e(n + l)(n + 2) [6ac + 4n(ad + be) + n(3n + l)bd] 

^ 1 4 

12 a 2 

2 e ( n + l ) ( n + 2 ) [ 3 a + 2nb} 
6 a 

and 
9 1 5 = 2 e ( n + l ) ( n + 2 ) . 

( b ) WTien A = 0 and E ± 1, then 

= - o 
a " 

i £ n a c + 
E E 

M (ad + bc) + Nbd 
(E-1)3 v ' ( £ - i ) 4 

where M and N are polynomials n (n + 1) En+2 — 2n (n + 2) En+1+ 
{n + l)(n + 2 ) E n — 2 and n2 (n + 1) En+3 - n(3n2 + 6n - 1) En+2+ 
( n + 2 ) ( 3 n 2 + 3 n - 2 ) E n + 1 - ( n + 2 ) ( n + l ) 2 E n + 4 E + 2, 

2 e 
^ 1 4 = — a 

En a + 
E 

(E-iy 
Mb 

and 
$15 = 4 eEn. 

P r o o f o f ( b ) f o r ^ 1 4 . S i n c e A = 0 , t h e p r o d u c t 

kJ (j +1) ua+bj(p, q) vc+dj(p, q) 

is 

2 kj (j + l)(a + b j) a ^ " 1 ac+di = ^ ^ [a (j + 1) + j (j + 1)6] a 
F r o m U + 1 ) & = E n a n d j ( j + 1 ) E ' = it follows t h a t 

^ 1 4 h a s t h e a b o v e value . • 

T H E O R E M 1 0 . When A ^ O , then Tables 1 , 2 and 3 give the values of 
A 2 ^>13, A ^ 1 4 and $ 1 5 . 
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Proof of row 1 in Table 1 for ^13. When A / 0, we have 

k3 (j + 1) Ua+bj(p, q) Uc+dj(p, q) = 

s f aa+bi - f3a+bi \ ( ac+di - (3c+di + ( — s — ) • [ • — z — 

r + n ( e E i f F j 9 ° j 1 h H j \ 
{ J + j ^ A2 A2 A2 A2 J ' 

FVom Z]=o (j + 1 )E> = En, we get A2 = e En - fFn - g Gn + hHn. , 

For any integer n > 0, let E*n = [n + 1) E + 1, E** = E*(E + l ) " " 1 . 
We define F*, G*n, H*, F**, G*n* and H** similarly. 

T H E O R E M 1 1 . (a) When A = 0, then 

' ^ f , i f n = 0, 
e[(2E+l)ac+2E(ad+bc+bd)] if „ — 1 

¡J2 ) y n — J-; 
e[(£+l)(3 £+l)a c+2 E (3 E+2)(a d+fc c)+4 £(3 £+1)6 ri)] 

a2 ' 

Q2 ' 
where R = n E(n(n + 1 )E2 + 4 n E + 2 ) , 

g i 7 = | 2 e [ ( 2 g + l ) a + 2 g b l ; i / n = 1> 

2 e (.E+l)n~2[ (£+1) E* a+n E (£*+!) 6] ^ i f n > 2 . 

(b) When A ^ 0, then 
E*n*e-F**f-G*n*g + H**h 

^16 = 
i/n = 2, 

if n > 3, 

' 1 6 

= 

A2 

A 
(c) 77ie sum ®18 is egua/ io e + F** f + G*n* g + H** h. 

Proof of (c). Since 

kJ {j + 1) Q Va+bj(p, q) Vc+dj(p, q) = 

(j + 1 ) ( " ) {eE^ + f F j + g G j + h H J } ^ 

from o U + ! ) (") E] = E**, it follows that indeed has the above 
value. • 
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