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QUANTIFIERS ON LATTICES WITH 
A N A N T I T O N E INVOLUTION 

Abstract . Quantifiers on lattices with an antitone involution are considered and it is 
proved that the poset of existential quantifiers is antiisomorphic to the poset of relatively 
complete sublattices. 

So-called monadic algebras are often used as an algebraic axiomatization 
of predicate calculus, see e. g. [1] - [4]. In fact, every one of these predicate 
logics is a lattice with respect to the induced order. Monadic algebras were 
investigated in connection with lattices representing many-valued predicate 
calculus by Rutledge ([4]), MV-algebras (which are the algebraic counterpart 
of many-valued logics) by Di Nola and Grigolia ([2]), basic algebras (which 
are generalizations of MV-algebras) by Chajda and Kolarik ([1]) and resid-
uated lattices by Rachunek and Svrcek ([3]). Existential quantifiers were al-
ready characterized by means of algebraic methods (using closure operators 
and relatively complete subalgebras) for MV-algebras, pseudo MV-algebras 
and a number of other algebras used in the axiomatization of both classical 
and non-classical (in particular many-valued) logics (including basic alge-
bras). Since all these algebras are bounded lattices the natural question 
arises if a general and unified approach can be developed. The aim of the 
present paper is to show that quantifiers may be characterized for all possible 
logics having a bounded lattice as their underlying structure. 

DEFINITION 1. A lattice with an antitone involution is an algebra 
(L, V, A, -i) of type (2,2,1) such that (L, V, A) is a lattice and 
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-i(x V y) = ->x A -<y 
-i(x A y) = ->x V -<y 
-i-ix = x 

holds for all x,y G L. (-> is assumed to bind stronger than V and A.) 

In the following let C — (L, V, A, -•) denote an arbitrary, non-empty but 
fixed lattice with an antitone involution. 

The concept of an existential quantifier on C can be introduced in the 
following way: 

D E F I N I T I O N 2 . We call 3 : L —> L an existential quantifier on C if for all 
x,y G L 

(i) x < 3x, 
(ii) 3(x V y) = 3x V 3y and 

(hi) 3(-.3®) = - a x . 

Let E (£ ) denote the set of all existential quantifiers on C. For all 3i, G 
E(£) we define 3i < 32 if and only if 3\X < 32X for all x G L. 

R E M A R K 3 . ( E ( £ ) , <) is a poset. 

R E M A R K 4 . The first two axioms are motivated by the tautologies 

(i') P(x) -»• 3xP(x) 
(ii') 3x(P(x) V Q{x)) ^ (3xP(x) V 3xQ(x)) 

of first order predicate logic. The third axiom is common in classical predi-
cate calculus and hence we will use it here. 

R E M A R K 5 . The axioms (i) - (iii) are independent. This can be seen as 
follows: The constant function with value 0 on ({—1,0,1},<) satisfies all 
axioms except (i). The function on ({—3, —2, —1,.. . , 3}, <) mapping —2 to 
3, 0 to 1 and 2 to 3 and fixing the other elements satisfies all axioms except 
(ii). Finally, the constant function with value 1 on ({ —1,1}, <) satisfies all 
axioms except (iii). In all of these examples the antitone involution is given 
by the mapping x i—> —x. 

R E M A R K 6. A mapping 3 : L —> L satisfying (i), (ii) and 33x = 3x need 
not be an existential quantifier as can be seen by the following example: Let 
C -— ({0, a, b, 1}, V, A, -i) be the four-element Boolean algebra (i. e. ->a = b 
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and —iO = 1) and define 3 : L —> L by 30 := 0, 3a := a and 3a; := 1 
otherwise. Then 3 satisfies (i), (ii) and 33a; = 3x, but 3 ^ E(X) since 
3(->3a) = 3(-ia) = 36 = 1 ^ b = -.a = -,3a. 

R E M A R K 7 . An existential quantifier need not be a lattice endomorphism 
as can be seen by the following example: Let C = ({0, a, 6, 1}, V, A, -.) be the 
four-element Boolean algebra (i. e. -.a = b and -.0 = 1) and define 3 : L —> L 
by 30 := 0 and 3x := 1 otherwise. Then 3 G E(£) but 3 is not a lattice 
endomorphism since 3 (a A b) = 30 = 0 ^ 1 = 1 A 1 = 3a A 36. 

L E M M A 8 . Let 3 G E ( £ ) . Then for all x,y G L it holds: 

(i) x < 3y if and only if 3x <3y. 
(ii) x < y implies 3x < 3y. 

(iii) -i3x < 3(->x) 

(iv) 33x = 3x 
(v) 3(z V 3y) = 3xV3y 

(vi) If C is bounded then 30 = 0 and 31 = 1. 

Proof. 

(iv): 33x = 3(-n-n3z) = 3(^3(^3x)) = -.3(-.3x) = -.-.3a; = 3x 

(ii): If x < y then 3x < 3x V 3 y — 3(x My) — 3 y. 

(i): If x < 3y then 3x < 33y = 3y and if 3a; < 3y then x < 3x < 3y. 

(iii): -<3x < ~>x < 3(->x) 

(v) : 3(x V 3y) < 3(3a; V 3y) = 33(x Vj/) = 3(x V y) = 3x V 3y = 3(x V y) < 
3 ( x V 3 y) 

(vi): If C is bounded then 1 < 31 and hence 31 = 1 and 30 = 3(—.1) = 
3(—>31) = —>31 = -,1 = 0 . « 

In classical predicate calculus the universal quantifier can be introduced 
by means of the existential one via the rule 

V : = - .3-1 . 

Proceeding in the same way we also obtain a universal quantifier. The follow-
ing corollary shows that this universal quantifier has many natural properties 
usually accepted in classical predicate calculus. 

C O R O L L A R Y 9 . Let 3 G E ( £ ) and put V : = — < 3 — T h e n for all x,y G L it 
holds: 
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(i) \/x < X 

(ü) V(x A y) = Vz A Vy 

(iii) V(-iVx) = -Nx 
(iv) ^ > Vy if and only if Vx > Vy 

(v) x < y implies Vx < Vy. 

(vi) -iVx > V(-ix) 
(vii) W x = Vx 

(viii) V(x A Vy) = Vx A Vy 
( ix) If C is bounded then V0 = 0 and VI = 1. 

D E F I N I T I O N 1 0 . A sublattice ( M , V, A) of C is called relatively complete if 
for every x G L the poset ({y G M | y > x} , < ) has a smallest element. Let 
R ( £ ) denote the set of all relatively complete sublattices of C. For every 
(M, V, A) G R ( £ ) let 3m denote the mapping from L to L assigning to each 
element x of L the smallest element of ({y G M | y > x}, <). 

R E M A R K 1 1 . The empty sublattice of C is not relatively complete. 
( R ( £ ) , C ) is a poset with greatest element L. If £ is bounded then {0 ,1 } is 
the smallest element of R(£) . 

D E F I N I T I O N 1 2 . A poset (P, < ) is said to satisfy the descending chain 
condition (DDC, for short) if in (P, < ) there does not exist an infinite strictly 
descending sequence a\ > a,2 > <23 > . . . of elements. Let Sub£ denote the 
set of all sublattices of C. 

P R O P O S I T I O N 1 3 . Every sublattice ( M , V, A) of C satisfying the DCC and 
having the property that to every x G L there exists an element y of M with 
y > x is relatively complete. 

Proof. Let M. = (M, V, A) be a sublattice of C satisfying the DCC and 
having the property that to every x G L there exists an element y of M 
with y > x. Assume M. ^ R(£) . Then there exists an a G L such that 
A := {x G M | x > a } does not have a smallest element. By our assumption, 
A 0. Let a\ be an element of A. Since ai is not the smallest element of 
A there exists an element b\ of A with b\ a\. Put <22 := a\ A 61. Since 
a\,b\ G A and M. G Sub£, a^ G A and because of 61 ^ a\ we have a<i < a\. 
Since a2 is not the smallest element of A there exists an element 62 of A 
with 62 It Put as := 02 A 62. Since 02,62 £ A and M. G Sub£, G A 
and because of 62 ^ 02, 03 < 02- Together we have 01,02,03 G M and 
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ai> a2> a 3 . Going on in this way we would obtain an infinite descending 
chain in (M, <) contradicting the DCC. Hence M. G R ( £ ) . • 

D E F I N I T I O N 14. For bounded C let Suboi £ denote the set of all sublattices 
of C containing 0 and 1. 

COROLLARY 15. If C, is bounded and satisfies the DCC then R ( £ ) = 
Suboi C. 

T H E O R E M 16. The mappings 3 H-> 3(L) and M I—> 3 m are mutually inverse 
antiisomorphisms between ( E ( £ ) , < ) and ( R ( £ ) , C ) . 

Proof . Let a,be L. First assume 3 G E ( £ ) . Then 3aV36 = 3(aV&) G 3 (L) 
and - d a = 3 ( - d a ) G 3(L) and hence 3(L) is closed with respect to V and 
-i. According to the de Morgan laws, 3(L) is also closed with respect to A 
and hence a sublattice of C. 3a is the smallest element of {x G 3(L) \x > a) 
since 3b > a implies 36 = 33b > 3a. Therefore 3(L) G R(£) . Moreover, 
since both S ^ ^ a and 3a are the smallest element of {x G 3(L) \ x > a}, 
3g(L)a = 3a, i. e. 3 3 ( L ) = 3. 
Conversely, let M G R ( £ ) . Then 3mo. is the smallest element of {x G 
M\x > a}. Hence a < 3m<i- Obviously, V 6) > 3^fa, and 
therefore 3m{o- V b) > 3j^a V 3Mb- On the other hand, 3ma V 3Mb > a V b 
and therefore 3mQ< V 3Mb > 3m(a V b). This shows 3 ^ ( a V b) = 3 ^ a V 3Mb-
Since 3mcl G M G Sub£, ->3mcl G M and hence 3Af(->3ji/a) = ->3mO" 
Together we obtain 3M G E (£ ) . Obviously, 3 M(L) CM. If a G M then a = 
3 M a G 3 m ( L ) , i.e.MC 3M(L). This shows M = 3M(L). If 31 ; 32 G E(£) 
and 3j < then 3 < 3i32a < 3232a = 32a and hence 32 = 3i32 which 
implies 32{L) = 3X32(L) C 3i(L). Finally, if MUM2 G R ( C ) and Mx C M2 

then 3 Mi <i > 3 m2
 a a r i ( l hence 3 ^ > 3 m2- • 

COROLLARY 17. 3¡_, (which is the identical mapping on L) is the smallest 
element of (E(£) , <) and if C is bounded, 3{0,i} (which maps 0 to 0 and 
L \ {0} to 1) is the greatest element of (E(£) , <) . 
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