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QUANTIFIERS ON LATTICES WITH
AN ANTITONE INVOLUTION

Abstract. Quantifiers on lattices with an antitone involution are considered and it is
proved that the poset of existential quantifiers is antiisomorphic to the poset of relatively
complete sublattices.

So-called monadic algebras are often used as an algebraic axiomatization
of predicate calculus, see e. g. [1] — [4]. In fact, every one of these predicate
logics is a lattice with respect to the induced order. Monadic algebras were
investigated in connection with lattices representing many-valued predicate
calculus by Rutledge ([4]), MV-algebras (which are the algebraic counterpart
of many-valued logics) by Di Nola and Grigolia ([2]), basic algebras (which
are generalizations of MV-algebras) by Chajda and Kolafik ([1]) and resid-
uated lattices by Rachiinek and Svréek ([3]). Existential quantifiers were al-
ready characterized by means of algebraic methods (using closure operators
and relatively complete subalgebras) for MV-algebras, pseudo MV-algebras
and a number of other algebras used in the axiomatization of both classical
and non-classical (in particular many-valued) logics (including basic alge-
bras). Since all these algebras are bounded lattices the natural question
arises if a general and unified approach can be developed. The aim of the
present paper is to show that quantifiers may be characterized for all possible
logics having a bounded lattice as their underlying structure.

DEFINITION 1. A lattice with an antitone involution is an algebra
(L,V, A, ) of type (2,2,1) such that (L,V,A) is a lattice and
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“(zVy)=-z A~y
“(zAy)=-zV-y

T =T
holds for all z,y € L. (- is assumed to bind stronger than V and A.)

In the following let £ = (L, V, A, ) denote an arbitrary, non-empty but
fixed lattice with an antitone involution.

The concept of an existential quantifier on £ can be introduced in the
following way:

DEFINITION 2. We call 3 : L — L an ezxistential quantifier on L if for all
z,yE€L

(i) z < Fx,
(i) Iz Vy) = Iz V Jy and
(iii) I(—3z) = —3z.

Let E(L) denote the set of all existential quantifiers on £. For all 3;,3; €
E(L) we define 3; < 35 if and only if 31z < Joz for all z € L.

REMARK 3. (E(L£), <) is a poset.
REMARK 4. The first two axioms are motivated by the tautologies

(") P(z) — 3zP(x)
(i") Jz(P(z) vV Q(z)) « (JzP(z) v IzQ(x))

of first order predicate logic. The third axiom is common in classical predi-
cate calculus and hence we will use it here.

REMARK 5. The axioms (i) — (iii) are independent. This can be seen as
follows: The constant function with value 0 on ({-1,0,1}, <) satisfies all
axioms except (i). The function on ({-3,-2,-1,...,3}, <) mapping —2 to
3,0 to 1 and 2 to 3 and fixing the other elements satisfies all axioms except
(ii). Finally, the constant function with value 1 on ({—1,1}, <) satisfies all
axioms except (iii). In all of these examples the antitone involution is given
by the mapping z — —z.

REMARK 6. A mapping 3: L — L satisfying (i), (ii) and 33z = 3z need
not be an existential quantifier as can be seen by the following example: Let
L = ({0,a,b,1},V, A, ) be the four-element Boolean algebra (i. e. 7a = b
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and -0 = 1) and define 3 : L — L by 30 := 0, 3a := @ and 3z := 1
otherwise. Then 3 satisfies (i), (ii) and 33z = Fz, but 3 ¢ E(L) since
3(-Ja) = 3I(—a) =3Fb=1# b= -a = —Ja.

REMARK 7. An existential quantifier need not be a lattice endomorphism
as can be seen by the following example: Let £ = ({0,a,b,1},V, A, ) be the
four-element Boolean algebra (i. e. —a = b and -0 = 1) and define 3: L — L
by 30 := 0 and 3z := 1 otherwise. Then 3 € E(L) but 3 is not a lattice
endomorphism since 3(aAb) =F0=0#1=1A1=FaA3b.

LEMMA 8. Let 3 € E(L). Then for all z,y € L it holds:

(i) z < Jy if and only if Iz < Fy.
(ii) z <y implies 3z < Jy.
(iii) —3Jz < I(~z)
(iv) 33z = 3z
(v) Az vIy) =Tz Vv Iy
(vi) If L is bounded then 30 = 0 and 31 = 1.

Proof.

(iv): 33z = I(~-Iz) = I(=3(—3z)) = ~3I(—3z) = ~—Iz = Iz

(ii): If x <y then 3z < Jz VvV Iy =3Iz Vy) = Ty.

(1): If x < Jy then dzr < 33y = Jy and if Fz < Jy then z < Jz < Jy.

(iii): -3z < =z < I(—x)
): HzvIy) <3F(FzvIy)=F(zVy)=3(zVy)=TrVvIy=IHzVy) <
(z Vv 3Iy)

(v
3
(vi): If £ is bounded then 1 < 31 and hence 31 = 1 and 30 = I(~1) =
-y =-I=-1=0.u

In classical predicate calculus the universal quantifier can be introduced
by means of the existential one via the rule

V= —d-.
Proceeding in the same way we also obtain a universal quantifier. The follow-

ing corollary shows that this universal quantifier has many natural properties
usually accepted in classical predicate calculus.

COROLLARY 9. Let 3 € E(L) and put V := —3—. Then for all z,y € L it
holds:
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(i) Ve <=z
(ii) V(z Ay) =V A Vy
(iii) V(=Vz) = —Vz
(iv) = > Vy if and only if Vx > Vy
(v) z <y implies Vx < Vy.
(vi) -Vz > V(~x)
(vii)) Wz =V
(viii) V(z AVy) =Vz AVy
(ix) If £ is bounded then Y0 =0 and V1 = 1.

DEFINITION 10. A sublattice (M, V, A) of L is called relatively complete if
for every « € L the poset ({y € M|y > z}, <) has a smallest element. Let
R(L) denote the set of all relatively complete sublattices of £. For every
(M,V,A) € R(L) let 3pr denote the mapping from L to L assigning to each
element z of L the smallest element of ({y € M |y > z}, <).

REMARK 11. The empty sublattice of £ is not relatively complete.
(R(L), Q) is a poset with greatest element L. If £ is bounded then {0,1} is
the smallest element of R(L).

DEFINITION 12. A poset (P, <) is said to satisfy the descending chain
condition (DDC, for short) if in (P, <) there does not exist an infinite strictly
descending sequence aj > az > ag > ... of elements. Let Subl denote the
set of all sublattices of L.

PROPOSITION 13. Every sublattice (M,V,A) of L satisfying the DCC and
having the property that to every x € L there ezists an element y of M with
y > x is relatively complete.

Proof. Let M = (M,V,A) be a sublattice of L satisfying the DCC and
having the property that to every x € L there exists an element y of M
with y > z. Assume M ¢ R(L). Then there exists an a € L such that
A:={x € M|z > a} does not have a smallest element. By our assumption,
A # 0. Let ay be an element of A. Since a; is not the smallest element of
A there exists an element b; of A with b; ? a;. Put ap := a1 A by. Since
ai,by € Aand M € SubL, a» € A and because of by 2 a1 we have as < a;.
Since as is not the smallest element of A there exists an element by of A
with by 7 ao. Put a3 := az A bs. Since ag,bs € A and M € Subl, a3 € A
and because of ba ? ao, ag < ao. Together we have ay,a2,a3 € M and
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a1 > az > az. Going on in this way we would obtain an infinite descending
chain in (M, <) contradicting the DCC. Hence M € R(L). »

DEFINITION 14. For bounded £ let Subg; £ denote the set of all sublattices
of L containing 0 and 1.

COROLLARY 15. If L is bounded and satisfies the DCC then R(L) =
Subm,C.

THEOREM 16. The mappings 3 — 3(L) and M +— 3Jps are mutually inverse
antiisomorphisms between (E(L), <) and (R(L), C).

Proof. Let a,b € L. First assume 3 € E(£). Then 3aVv3b = 3(aVbd) € 3(L)
and —3a = 3(—3a) € I(L) and hence I(L) is closed with respect to V and
—. According to the de Morgan laws, 3(L) is also closed with respect to A
and hence a sublattice of £. Ja is the smallest element of {x € (L) |z > a}
since 3b > a implies 3b = 33b > Ja. Therefore (L) € R(L). Moreover,
since both 337 ya and Ja are the smallest element of {z € 3(L)|z > a},
33([/)0, = Ela, i. e. 33([/) =4

Conversely, let M € R(L). Then Jpa is the smallest element of {z €
M|z > a}. Hence a < dpa. Obviously, dp(a V b) > Jpa,Imb and
therefore Jps(a VvV b) > Ipra V Iprb. On the other hand, Jpra Vv Iy >a Vb
and therefore Ipra VvV Iprb > Ips(a Vv b). This shows Ipr(a Vv b) = Apra VvV Iprb.
Since dypa € M € SubL, -3pa € M and hence Jp(—Ipra) = —Ipsa.
Together we obtain Jp; € E(L). Obviously, Iy (L) C M. If a € M then a =
Ipra € Ipg(L), i. . M C Ip(L). This shows M = Jp(L). If 31,35 € E(L)
and 37 < dg then Jdoa < F139a < Fodoa = Jea and hence 39 = 3733 which
implies J2(L) = 3132(L) € 31(L). Finally, if My, M2 € R(L) and M; C M,
then Jpr,a > dp,a and hence dpg, > Jpp,. w

COROLLARY 17. Jy (which is the identical mapping on L) is the smallest
element of (E(L),<) and if L is bounded, 3191y (which maps 0 to 0 and
L\ {0} to 1) is the greatest element of (E(L), <).
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