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R I E M A N N I A N VECTOR B U N D L E S 
HAVE NO CANONICAL LINEAR CONNECTIONS 

Abstract . We prove that Riemannian vector bundles have no canonical linear con-
nections. 

Introduction 
Given a vector bundle E —> M, a Riemannian structure on E —> M 

is a map G : E XM E ^ R such that for any x G M the restriction Gx • 
ExxEx —y R of G is an inner product on the fiber Ex of E —»• M over x (i.e. it 
is symmetric bilinear and positive define). For example, if E = TM —• M is a 
tangent bundle of a manifold M, then a Riemannian structure on TM —> M 
is called a Riemannian structure on M. 

Given a vector bundle E —> M, by a linear connection D on E —> M we 
mean an R-bilinear map D : X(M) x T(E) —• r(£ l) such that 

(i) Dfx<T = fDx<? and 
(ii) D x f a = X f a + f D x a 

for any vector field X 6 X{M) on M, any map / : M —> R and any section 
a e r(E) of E —> M. For example, if E = TM M is the tangent bundle 
of a manifold M, then a linear connection on TM —> M is called a classical 
linear connection on M. 

E X A M P L E 1. Let g be a Riemannian structure on a manifold M. It is 
well-known that there exist many classical linear connections V on M such 
that 

(1) Z g ( X , Y ) = g ( V z X , Y ) + g ( X , V z Y ) 
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for any vector fields X, Y, Z on M. However, if V satisfying the above 
property (1) satisfies also an additional condition (depending canonically on 
V and g) saying that 
(2) VXY - VyX - [X, y] = 0 
for any vector fields X, Y on M, then such connection V is unique. This is 
the well-known Levi-Civita connection of g. 
E X A M P L E 2 . Let G be a Riemannian structure on a vector bundle 
E —> M. Similarly as in the Riemannian manifold case, there exist many 
linear connections D on a E —> M such that 

(3) XG(a, r{) = G(Dx<r, r,) + G(a, Dxr,) 
for any vector field X G X(M) and any sections a,rj E I \ E ) , see [4], 

So, we have the following natural question. 
Q U E S T I O N 1. Whether there exists a condition 
(4) C(G,D) 
(canonically determined by G and D) such that D satisfying (3) and this 
additional condition (4) is uniquely determined? In other words, whether 
do Riemannian structures G on a vector bundle have (induce canonically) 
linear connections (like Levi-Civita one)? 

In this note we prove that the answer to the above question is negative. 
In fact, we prove a more general result that there is no canonical condition 
(5) C(G,D,V) 
determined by G, D and an additional classical linear connection V on M 
such that D satisfying (3) and condition (5) is uniquely determined. 

All manifolds and maps are assumed to be smooth (of class C°°). 

1. The main result 
To present a mathematical formulation of the main result of the paper 

we need the following definition being a particular case of a definition of 
natural operators from [3]. 

Let VBm,n be the category of vector bundles with m-dimensional bases 
and re-dimensional fibres and their (local) vector bundle isomorphisms. 
D E F I N I T I O N 1. A V£Jm>n-gauge natural operator A : C x Riem Q is a 
V<£?m,n-invariant family 

A : Condas{M) x Riem(E) —> Con(E) 
of operators for any V0m,n-object E —> M, where Concias(M) is the set of 
all classical linear connections on M, Riem(E) is the set of all Riemannian 
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structures on E —> M and Con(E) is the set of all linear connections on 
E —> M. The invariance means that if (Vi, G\) G Concias{Mi) x Riem(Ei) 
and (V2, G2) G Concias(M2) x Riem(E2) are ^-related by an VBm>„-map 
$ : Ei -> £2 then so are A(Vi, Gi) and A(V2, G2). 

Now, a negative answer of Question 1 follows (obviously) from the fol-
lowing theorem (which is the main result of the present note). 
T H E O R E M 1 . There is no VBm^n-gauge natural operator A : C x Riem Q 
transforming Riemannian structures G : E XM E —> R on vector bundles 
E —> M and classical linear connections V on M into linear connections 
A{V,G) onE^M. 

2. Preparations to the proof of Theorem 1 
In the proof of Theorem 2 we will use the following well-known facts. 

P R O P O S I T I O N 1. ([2]) Let V be a classical linear connection on a connected 
manifold N. Then the group Aff(V) of all V-affine isomorphisms is a Lie 
group. 
P R O P O S I T I O N 2. ([4; Proposition 2.116]) Let V be a classical linear con-
nection on a connected manifold N. Let f,g : N N be V-affine maps. If 
j].f = j^g at some point x € N then f = g. 

We will also use the following fact. 
P R O P O S I T I O N 3 . ([1], [3]) Let D be a linear connection on a vector bundle 
E —> M and V be a classical linear connection on M. Then there exists a 
unique classical linear connection T = r(D, V) on the total space E with the 
following property 

txDyd = (VXY)D, rxDsv = (Dxs)v , 
rsVxD = 0, rsvaY = 0, 

for all vector fields X,Y on M and all sections s,a of E —> M. Here 
XD € X(E) denotes the D-horizontal lift of X and sv G X(E) means the 
vertical lift of s, sv(e) = [e + is(x)], e £ Ex, x G M. 

3. Proof of Theorem 1 
Suppose that A : C x Riem Q is such a VBm<n-gauge natural operator. 

Let E = R m x R n R m be the trivial vector bundle. Let G° G Riem{E) 
be the trivial Riemannian structure , i.e. G°x = < , > : R n x R n —>• R for any 
x G R m , where < , > is the standard scalar multiple on R " . Let V° be the 
usual flat classical linear connection on R m . Then on E we can define a 
classical linear connection 

@ = r ( ^ ( v ° , G ° ) , v ° ) , 
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where operator T is defined in Proposition 3. We have a group monomor-
phism (injection) I : C°° (Rm , O(n)) -» Aut(Rm x R " ) , 1(B) : R m x R n - » 
R m x R n , 

I{B)(x,y) = (x,B(x)y) , 

(x,y) G R m x R n . Given B e C°° (Rm , 0(n)), 1(B) preserves V° and 
B°. Then 1(B) preserves -A(V°, G°) (because of the invariance of A) and 
consequently 1(B) preserves © (because of the invariance of the construction 
r ) . Then (in fact) I : C°° (Rm , 0(n)) Aff(B) is a group inclusion. This 
is a contradiction because Aff(G) is a Lie group (see Proposition 1) and 
C°° (Rm , O(n)) is not finite dimensional. 

4. Another proof of Theorem 1 
Suppose that such operator A exists. We use the notations of Section 3. 

In particular, 0 and 7 be as in Section 3. Consider B,C G C° ° (R m , 0 (n ) ) 
such that 5(0) = C(0) and B ± C. Then 1(B) and 1(C) are ©-affine 
maps such that j^00^(I(B)) = j^Q0^(I(C)) and 1(B) 1(C). Contradiction 
because of Proposition 2. • 
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