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RIEMANNIAN VECTOR BUNDLES
HAVE NO CANONICAL LINEAR CONNECTIONS

Abstract. We prove that Riemannian vector bundles have no canonical linear con-
nections.

Introduction

Given a vector bundle £ — M, a Riemannian structure on £ — M
is amap G : E x)r E — R such that for any z € M the restriction G :
E,.xE; — R of G is an inner product on the fiber E, of E — M over z (i.e. it
is symmetric bilinear and positive define). For example,if E =TM — M isa
tangent bundle of a manifold M, then a Riemannian structure on TM — M
is called a Riemannian structure on M.

Given a vector bundle £ — M, by a linear connection D on £ — M we
mean an R-bilinear map D : X(M) x I'(E) — I'(E) such that

(i) Dfxo = fDxo and
(i) Dxfo=Xfo+ fDxo

for any vector field X € X(M) on M, any map f: M — R and any section
o € T(F) of E - M. For example, if E =TM — M is the tangent bundle
of a manifold M, then a linear connection on TM — M is called a classical
linear connection on M.

EXAMPLE 1. Let g be a Riemannian structure on a manifold M. It is
well-known that there exist many classical linear connections V on M such
that

(1) Zg(X,Y)=g(VzX,Y)+g(X,VzY)
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for any vector fields X,Y,Z on M. However, if V satisfying the above
property (1) satisfies also an additional condition (depending canonically on
V and g) saying that

(2) VxY -VyX - [X,Y]=0

for any vector fields X,Y on M, then such connection V is unique. This is
the well-known Levi-Civita connection of g.

EXAMPLE 2. Let G be a Riemannian structure on a vector bundle

E — M. Similarly as in the Riemannian manifold case, there exist many
linear connections D on a E — M such that

(3) XG(o,n) = G(Dxo,n) + G(o, Dxn)

for any vector field X € X (M) and any sections o,n € I'(E), see [4].
So, we have the following natural question.

QUESTION 1. Whether there exists a condition

(4) C(G,D)

(canonically determined by G and D) such that D satisfying (3) and this
additional condition (4) is uniquely determined? In other words, whether
do Riemannian structures G on a vector bundle have (induce canonically)
linear connections (like Levi-Civita one)?

In this note we prove that the answer to the above question is negative.
In fact, we prove a more general result that there is no canonical condition

(5) C(G,D,V)

determined by GG, D and an additional classical linear connection V on M
such that D satisfying (3) and condition (5) is uniquely determined.
All manifolds and maps are assumed to be smooth (of class C*).

1. The main result

To present a mathematical formulation of the main result of the paper
we need the following definition being a particular case of a definition of
natural operators from [3].

Let VB, » be the category of vector bundles with m-dimensional bases
and n-dimensional fibres and their (local) vector bundle isomorphisms.

DEFINITION 1. A VB, ,-gauge natural operator A : C x Riem ~ @ is a
VB, n-invariant family

A : Conges(M) x Riem(E) — Con(E)
of operators for any VB, n-object E — M, where Congas(M) is the set of
all classical linear connections on M, Riem(FE) is the set of all Riemannian
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structures on £ — M and Con(F) is the set of all linear connections on
E — M. The invariance means that if (V1,G1) € Congas(M1) x Riem(En)
and (Va,G2) € Congas(M2) x Riem(Es) are ®-related by an VB, ,-map
® : Ey — E, then so are A(V1,G1) and A(V3, Ga).

Now, a negative answer of Question 1 follows (obviously) from the fol-
lowing theorem (which is the main result of the present note).

THEOREM 1. There is no VB, »-gauge natural operator A : C x Riem ~ Q
transforming Riemannian structures G : E Xy E — R on vector bundles
E — M and classical linear connections V. on M into linear connections

A(V,G) on E - M.

2. Preparations to the proof of Theorem 1
In the proof of Theorem 2 we will use the following well-known facts.

PROPOSITION 1. ([2]) Let V be a classical linear connection on a connected
manifold N. Then the group Aff(V) of all V-affine isomorphisms is a Lie
group.
PROPOSITION 2. ([4; Proposition 2.116]) Let V be a classical linear con-
nection on a connected manifold N. Let f,g: N — N be V-affine maps. If
jLf = jlg at some point z € N then f = g.

We will also use the following fact.

PROPOSITION 3. ([1], [3]) Let D be a linear connection on a vector bundle
E — M and V be a classical linear connection on M. Then there exists a
unique classical linear connection I' = T'(D, V) on the total space E with the
following property

LyoY? = (VxY)P, Txps” = (Dxs)Y,
rwXP =0, I'yveV =0,
for all vector fields X, Y on M and all sections s,0c of E — M. Here

XD ¢ X(E) denotes the D-horizontal lift of X and s¥ € X(E) means the
vertical lift of 5, sV (e) = [e + ts(x)], e € Ex, z € M.

3. Proof of Theorem 1

Suppose that A : C x Riem ~+ @) is such a VB, ,-gauge natural operator.
Let E = R™ x R®™ — R™ be the trivial vector bundle. Let G° € Riem(FE)
be the trivial Riemannian structure , i.e. G2 =<,>: R" x R® — R for any
z € R™, where <, > is the standard scalar multiple on R™. Let V? be the
usual flat classical linear connection on R™. Then on E we can define a
classical linear connection

© =T(A(V°G°), V),
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where operator I' is defined in Proposition 3. We have a group monomor-
phism (injection) I : C*°(R™,0(n)) — Aut(R™ x R"), I(B) : R™ x R" —
R™ x R™,
1(B)(z,y) = (=, B(z)y) ,

(z,y) € R™ x R®. Given B € C*(R™,0O(n)), I(B) preserves V° and
B°. Then I(B) preserves A(V°,G°) (because of the invariance of A) and
consequently I(B) preserves © (because of the invariance of the construction
I'). Then (in fact) I : C*°(R™,0(n)) — Aff(©) is a group inclusion. This
is a contradiction because Aff(0) is a Lie group (see Proposition 1) and
C*°(R™,0(n)) is not finite dimensional.

4. Another proof of Theorem 1

Suppose that such operator A exists. We use the notations of Section 3.
In particular, © and I be as in Section 3. Consider B,C € C*°(R™,O(n))
such that B(0) = C(0) and B # C. Then I(B) and I(C) are ©-affine
maps such that j(loyo)(I(B)) = j(loyo)(I(C)) and I(B) # I(C). Contradiction
because of Proposition 2. =
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