

W. M. Mikulski

RIEMANNIAN VECTOR BUNDLES HAVE NO CANONICAL LINEAR CONNECTIONS

Abstract. We prove that Riemannian vector bundles have no canonical linear connections.

Introduction

Given a vector bundle $E \rightarrow M$, a Riemannian structure on $E \rightarrow M$ is a map $G : E \times_M E \rightarrow \mathbf{R}$ such that for any $x \in M$ the restriction $G_x : E_x \times E_x \rightarrow \mathbf{R}$ of G is an inner product on the fiber E_x of $E \rightarrow M$ over x (i.e. it is symmetric bilinear and positive define). For example, if $E = TM \rightarrow M$ is a tangent bundle of a manifold M , then a Riemannian structure on $TM \rightarrow M$ is called a Riemannian structure on M .

Given a vector bundle $E \rightarrow M$, by a linear connection D on $E \rightarrow M$ we mean an \mathbf{R} -bilinear map $D : \mathcal{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)$ such that

- (i) $D_{fX}\sigma = fD_X\sigma$ and
- (ii) $D_Xf\sigma = Xf\sigma + fD_X\sigma$

for any vector field $X \in \mathcal{X}(M)$ on M , any map $f : M \rightarrow \mathbf{R}$ and any section $\sigma \in \Gamma(E)$ of $E \rightarrow M$. For example, if $E = TM \rightarrow M$ is the tangent bundle of a manifold M , then a linear connection on $TM \rightarrow M$ is called a classical linear connection on M .

EXAMPLE 1. Let g be a Riemannian structure on a manifold M . It is well-known that there exist many classical linear connections ∇ on M such that

$$(1) \quad Zg(X, Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y)$$

Key words and phrases: vector bundle, Riemannian vector bundle, classical linear connection, linear connection.

1991 *Mathematics Subject Classification:* 58A20, 58A32.

for any vector fields X, Y, Z on M . However, if ∇ satisfying the above property (1) satisfies also an additional condition (depending canonically on ∇ and g) saying that

$$(2) \quad \nabla_X Y - \nabla_Y X - [X, Y] = 0$$

for any vector fields X, Y on M , then such connection ∇ is unique. This is the well-known Levi-Civita connection of g .

EXAMPLE 2. Let G be a Riemannian structure on a vector bundle $E \rightarrow M$. Similarly as in the Riemannian manifold case, there exist many linear connections D on a $E \rightarrow M$ such that

$$(3) \quad XG(\sigma, \eta) = G(D_X \sigma, \eta) + G(\sigma, D_X \eta)$$

for any vector field $X \in \mathcal{X}(M)$ and any sections $\sigma, \eta \in \Gamma(E)$, see [4].

So, we have the following natural question.

QUESTION 1. Whether there exists a condition

$$(4) \quad C(G, D)$$

(canonically determined by G and D) such that D satisfying (3) and this additional condition (4) is uniquely determined? In other words, whether do Riemannian structures G on a vector bundle have (induce canonically) linear connections (like Levi-Civita one)?

In this note we prove that the answer to the above question is negative. In fact, we prove a more general result that there is no canonical condition

$$(5) \quad C(G, D, \nabla)$$

determined by G , D and an additional classical linear connection ∇ on M such that D satisfying (3) and condition (5) is uniquely determined.

All manifolds and maps are assumed to be smooth (of class C^∞).

1. The main result

To present a mathematical formulation of the main result of the paper we need the following definition being a particular case of a definition of natural operators from [3].

Let $\mathcal{VB}_{m,n}$ be the category of vector bundles with m -dimensional bases and n -dimensional fibres and their (local) vector bundle isomorphisms.

DEFINITION 1. A $\mathcal{VB}_{m,n}$ -gauge natural operator $A : C \times \text{Riem} \rightsquigarrow Q$ is a $\mathcal{VB}_{m,n}$ -invariant family

$$A : \text{Con}_{\text{clas}}(M) \times \text{Riem}(E) \rightarrow \text{Con}(E)$$

of operators for any $\mathcal{VB}_{m,n}$ -object $E \rightarrow M$, where $\text{Con}_{\text{clas}}(M)$ is the set of all classical linear connections on M , $\text{Riem}(E)$ is the set of all Riemannian

structures on $E \rightarrow M$ and $Con(E)$ is the set of all linear connections on $E \rightarrow M$. The invariance means that if $(\nabla_1, G_1) \in Con_{clas}(M_1) \times Riem(E_1)$ and $(\nabla_2, G_2) \in Con_{clas}(M_2) \times Riem(E_2)$ are Φ -related by an $\mathcal{VB}_{m,n}$ -map $\Phi : E_1 \rightarrow E_2$ then so are $A(\nabla_1, G_1)$ and $A(\nabla_2, G_2)$.

Now, a negative answer of Question 1 follows (obviously) from the following theorem (which is the main result of the present note).

THEOREM 1. *There is no $\mathcal{VB}_{m,n}$ -gauge natural operator $A : C \times Riem \rightsquigarrow Q$ transforming Riemannian structures $G : E \times_M E \rightarrow \mathbf{R}$ on vector bundles $E \rightarrow M$ and classical linear connections ∇ on M into linear connections $A(\nabla, G)$ on $E \rightarrow M$.*

2. Preparations to the proof of Theorem 1

In the proof of Theorem 2 we will use the following well-known facts.

PROPOSITION 1. ([2]) *Let ∇ be a classical linear connection on a connected manifold N . Then the group $Aff(\nabla)$ of all ∇ -affine isomorphisms is a Lie group.*

PROPOSITION 2. ([4; Proposition 2.116]) *Let ∇ be a classical linear connection on a connected manifold N . Let $f, g : N \rightarrow N$ be ∇ -affine maps. If $j_x^1 f = j_x^1 g$ at some point $x \in N$ then $f = g$.*

We will also use the following fact.

PROPOSITION 3. ([1], [3]) *Let D be a linear connection on a vector bundle $E \rightarrow M$ and ∇ be a classical linear connection on M . Then there exists a unique classical linear connection $\Gamma = \Gamma(D, \nabla)$ on the total space E with the following property*

$$\begin{aligned} \Gamma_{X^D} Y^D &= (\nabla_X Y)^D, \quad \Gamma_{X^D} s^V = (D_X s)^V, \\ \Gamma_{s^V} X^D &= 0, \quad \Gamma_{s^V} \sigma^V = 0, \end{aligned}$$

for all vector fields X, Y on M and all sections s, σ of $E \rightarrow M$. Here $X^D \in \mathcal{X}(E)$ denotes the D -horizontal lift of X and $s^V \in \mathcal{X}(E)$ means the vertical lift of s , $s^V(e) = [e + ts(x)]$, $e \in E_x$, $x \in M$.

3. Proof of Theorem 1

Suppose that $A : C \times Riem \rightsquigarrow Q$ is such a $\mathcal{VB}_{m,n}$ -gauge natural operator. Let $E = \mathbf{R}^m \times \mathbf{R}^n \rightarrow \mathbf{R}^m$ be the trivial vector bundle. Let $G^o \in Riem(E)$ be the trivial Riemannian structure, i.e. $G_x^o = \langle \cdot, \cdot \rangle : \mathbf{R}^n \times \mathbf{R}^n \rightarrow \mathbf{R}$ for any $x \in \mathbf{R}^m$, where $\langle \cdot, \cdot \rangle$ is the standard scalar multiple on \mathbf{R}^n . Let ∇^o be the usual flat classical linear connection on \mathbf{R}^m . Then on E we can define a classical linear connection

$$\Theta = \Gamma(A(\nabla^o, G^o), \nabla^o),$$

where operator Γ is defined in Proposition 3. We have a group monomorphism (injection) $I : C^\infty(\mathbf{R}^m, O(n)) \rightarrow \text{Aut}(\mathbf{R}^m \times \mathbf{R}^n)$, $I(B) : \mathbf{R}^m \times \mathbf{R}^n \rightarrow \mathbf{R}^m \times \mathbf{R}^n$,

$$I(B)(x, y) = (x, B(x)y),$$

$(x, y) \in \mathbf{R}^m \times \mathbf{R}^n$. Given $B \in C^\infty(\mathbf{R}^m, O(n))$, $I(B)$ preserves ∇^o and B^o . Then $I(B)$ preserves $A(\nabla^o, G^o)$ (because of the invariance of A) and consequently $I(B)$ preserves Θ (because of the invariance of the construction Γ). Then (in fact) $I : C^\infty(\mathbf{R}^m, O(n)) \rightarrow \text{Aff}(\Theta)$ is a group inclusion. This is a contradiction because $\text{Aff}(\Theta)$ is a Lie group (see Proposition 1) and $C^\infty(\mathbf{R}^m, O(n))$ is not finite dimensional.

4. Another proof of Theorem 1

Suppose that such operator A exists. We use the notations of Section 3. In particular, Θ and I be as in Section 3. Consider $B, C \in C^\infty(\mathbf{R}^m, O(n))$ such that $B(0) = C(0)$ and $B \neq C$. Then $I(B)$ and $I(C)$ are Θ -affine maps such that $j_{(0,0)}^1(I(B)) = j_{(0,0)}^1(I(C))$ and $I(B) \neq I(C)$. Contradiction because of Proposition 2. ■

References

- [1] J. Gancarzewicz, I. Kolář, *Some gauge-natural operators on linear connections*, Monats. Math. 111 (1991), 23–33.
- [2] S. Kobayashi, K. Nomizu, *Foundations of Differential Geometry*, Interscience Publishers, New York, 1963.
- [3] I. Kolář, P. W. Michor, J. Slovák, *Natural Operations in Differential Geometry*, Springer-Verlag, Berlin, 1993.
- [4] W. A. Poor, *Differential Geometric Structures*, McGraw-Hill Book Company, New York, 1981.

INSTITUTE OF MATHEMATICS
 JAGIELLONIAN UNIVERSITY
 Łojasiewicza 4
 KRAKÓW, POLAND
 E-mail: Włodzimierz.Mikulski@im.uj.edu.pl

Received December 17, 2007; revised version March 13, 2008.