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-PERFECTLY CONTINUOUS FUNCTIONS

Abstract. A new class of functions called ‘4-perfectly continuous functions’ is intro-
duced and their basic properties are studied. Their place in the hierarchy of other variants
of continuity that already exist in the literature is elaborated. Further, it is shown that
if X is sum connected (e.g. connected or locally connected) and Y is Hausdorff, then the
function space Pa(X,Y) of all §-perfectly continuous functions from X into Y is closed
in Y in the topology of pointwise convergence.

1. Introduction

Several weak, strong and other variants of continuity occur in the lore of
mathematical literature and arise in diverse situations in mathematics and
applications of mathematics. The main purpose of this paper is to intro-
duce a new class of functions called ‘d-perfectly continuous function’ and to
elaborate on their basic properties and discuss their interplay and interrela-
tions with other variants of continuity that already exist in the mathemat-
ical literature. It turns out that in general the notion of §-perfect continu-
ity is independent of continuity but coincides with perfect continuity [15],
a significantly strong form of continuity if Y is a semiregular space. The
class of §-perfectly continuous functions properly includes the class of per-
fectly continuous functions defined by Noiri [15] and studied by Kohli, Singh
and Arya [8] which in turn strictly contains the class of strongly continu-
ous functions introduced by Levine [10]. Moreover, the class of é-perfectly
continuous functions is properly contained in the class of almost perfectly
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continuous (=regular set connected) functions due to Dontchev, Reilly and
Vamanamurthy [2] which in turn is strictly contained in the class of almost
cl-supercontinuous functions (=almost clopen maps) defined and studied by
Ekici [3] and further investigated by Kohli and Singh [7]. The other vari-
ants of continuity with which we shall be dealing in this paper include al-
most z-supercontinuous functions [9], almost Ds-supercontinuous functions
[9], almost strongly 6-continuous functions defined by Noiri and Kang [16],
d-continuous functions due to Noiri [14] and almost continuous functions
introduced by Singal and Singal [18].

Section 2 is devoted to preliminaries and basic definitions. In Section 3 of
this paper we introduce the notion of ‘§-perfectly continuous function’, wherein
we also elaborate on the interrelations that exist between §-perfect continuity
and other variants of continuity that already exist in the literature. Basic
properties of §-perfectly continuous functions are studied in Section 4. The
function space Pa(X,Y) of all é-perfectly continuous functions from X to Y
with the topology of pointwise convergence is considered in Section 5 and the
sufficient conditions on X and Y are outlined for it to be closed in Y'X.

2. Preliminaries and basic definitions

DEFINITIONS 2.1. A function f: X — Y from a topological space X into
a topological space Y is said to be

(a) strongly continuous [10] if f(A) C f(A) for each subset A of X.

(b) perfectly continuous ([15]) if f~!(V) is clopen in X for every open set
Vvcy.

(c) almost perfectly continuous (= regular set connected [2]) if f~1(V) is
clopen for every regular open set V in Y.

(d) cl-supercontinuous [20] (= clopen continuous [17]) if for each z € X and
each open set V containing f(x) there is a clopen set U containing z
such that f(U) C V.

(e) almost cl-supercontinuous [7] (= almost clopen [3]) if for each z € X
and for each regular open set V' containing f(x) there is a clopen set U
containing z such that f(U) C V.

(f) (almost) strongly 6-continuous ([16]) [14] if for each z € X and for
each (regular) open set V containing f(z), there exists an open set U
containing z such that f(U) C V.

(g) supercontinuous [12] if for each z € X and for each open set V' containing
f(z), there exists a regular open set U containing x such that f(U) C V.

(h) almost z-supercontinuous [9] if for each z € X and each regular open set
V containing f(z), there exists a cozero set U containing z such that

flU)cv.
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(i) almost Ds-supercontinuous [9] if for each € X and each regular open
set V containing f(z), there exists a regular F,-set U containing x such
that f(U) C V.

(j) 6-continuous [14] if for each z € X and for each regular open set V
containing f(xz), there exists a regular open set U containing z such that
flU)cv.

(k) almost continuous [18] if for each z € X and for each regular open set
V containing f(z), there exists an open set U containing x such that

flU)cV.

DEFINITION 2.2. A set G is said to be §-open [24] if for each z € G, there
exists a regular open set H such that x € H C G, or equivalently, G is
expressible as an arbitrary union of regular open sets. The complement of a
é-open set will be referred to as a §-closed set.

DEFINITION 2.3. Let X be a topological space and let A C X. A point
z € X is called a §-adherent point [24] (cl-adherent point [20]) of A if every
regular open set (clopen set) containing z has non-empty intersection with
A. Let As ([A]a) denote the set of all §-adherent points (cl-adherent points)
of A. The set A is d-closed (cl-closed) if and only if A = A5 ([4]g = A).

DEFINITION 2.4. A filterbase F is said to d-converge[24] (cl-converge [20])

to a point z, written as F LI (F 4, z) if every regular open (clopen)
set containing x contains a member of F.

DEFINITION 2.5. A net (z)) in X is said to d-converge (cl-converge) to a

point z, written as x) LI (za -, z) if it is eventually in every regular
open (clopen) set containing z.

DEFINITIONS 2.6. A space X is said to be endowed with a

(1) partition topology [23] if every open set in X is closed; and
(2) d-partition topology if every d-open set in X is closed or equivalently
every d-closed set in X is open.

Clearly a space endowed with a partition topology is equipped with a
d-partition topology. Conversely, a semiregular space with a §-partition
topology has a partition topology. Moreover, an infinite set with cofinite
topology has a d-partition topology which is not a partition topology.

3. i-perfectly continuous functions

A function f : X — Y from a topological space X into a topological
space Y is said to be é-perfectly continuous if for each §-open set V in Y,
f~1(V) is a clopen set in X.
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The following diagram well illustrates the interrelations that exist among
d-perfectly continuity and other variants of continuity that already exist in
the literature and have some relevance to the contents of this paper.

strongly continuous

i

perfectly continuous — §-perfectly continuous almost perfectly continuous

(= regular set connected)

N\ 1

almost clopen map

clopen map (= cl-supercontinuous) — (= almost cl-supercontinuous)

! l
z-supercontinuous —  almost 2-supercontinuous
1 1
Dgs-supercontinuous — almost Dg-supercontinuous
i !
strongly 6-continuous — almost strongly 6-continuous
! !
supercontinuous — §-continuous
! !
continuous — almost continuous

It is either well known or simple examples can be given to show that none
of the above implications is reversible. Nevertheless we narrate the following
observations/examples.

3.1. Let X be endowed with a non-discrete partition topology. For example,

let X denote the set of positive integers with odd even topology (23, p. 43].
Then the identity function defined on X is perfectly continuous but not
strongly continuous.

3.2. Let X be endowed with a é-partition topology which is not a partition
topology. For example, any infinite set with cofinite topology is such a space.
Then the identity function defined on X is é-perfectly continuous but not
perfectly continuous.

3.3. A §-perfectly continuous function need not even be continuous. For
let X denote the real line with indiscrete topology and Y be the real line
with cofinite topology. If f denotes the identity mapping of X onto Y, then
f is é-perfectly continuous but not continuous.

3.4. Let A = KU {a+,a_} be the regular space (hence a semi regular
space) but not a completely regular space due to Hewitt [4]. Then the
identity function defined on A is continuous but not §-perfectly continuous.
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3.5. If X is endowed with a partition topology, then every almost continuous
function f: X — Y is §-perfectly continuous.

3.6. If Y is semiregular, then every é-perfectly continuous function f : X —
Y is perfectly continuous.

3.7. Let X be endowed with a dé-partition topology. If f : X — Y is 4-
continuous, then f is é-perfectly continuous. Further, if f is supercontinuous,
then f is perfectly continuous.

In view of 3.3 and 3.4 it is clear that -perfect continuity and continuity
are independent of each other.

4. Basic properties of i-perfectly continuous functions

THEOREM 4.1. For a function f : X — Y from a topological space X into
a topological space Y, the following statements are equivalent:

(a) f 18 d-perfectly continuous.
) f7YU(F) is clopen in X for every §-closed set F inY.

) f(F )—6—>f( ) for everyﬁlter]—'—d—»z.

) f(zy) 2, f(x) for every net ) <,
) f(Aa) C [f(A)]s for every subset A C X.

Proof. Easy. =

(b
(c
(d
(e

DEFINITION 4.2. Let Y be a subspace of a space Z. Then Y is said to be
é-embedded in Z if every é-open set in Y is the restriction of a §-open set
in Z with Y; or equivalently every é-closed set in Y is the restriction of a
é-closed set in Z with Y.

THEOREM 4.3. Let f : X — Y be a d-perfectly continuous function. If
f(X) is §-embedded in Y, then the surjection f : X — f(X) is §-perfectly
continuous.

Proof. Let V be a §-open set in f(X). Then there exists a §-open set Win Y
such that V = WNf(X). It follows that f~}(V) = f~}(W)NX = f"1{(W). »

THEOREM 4.4. If f : X — Y is é-perfectly continuous function and
g Y — Z is a b-continuous function, then g o fis -perfectly continu-
ous. In particular, the composition of two &-perfectly continuous functions
is d-perfectly continuous.

Proof. Let W be a d-open set in Z. Since g is §-continuous, g~ (W) is
5-open in Y (see [14]). In view of é-perfect continuity of f, f~1(g~*(W))
is clopen in X. Since (go f)"Y(W) = f~(g7}(W)), g o f is é-perfectly
continuous. =



226 J. K. Kohli, D. Singh

It is routine to verify that dé-perfect continuity is invariant under the
restriction of domain

THEOREM 4.5. Let f : X — Y be a function and let Q = {X, : o € A}
be a locally finite clopen cover of X. For each a € A, let fo = f| X4 denote
the restriction map. Then f is d-perfectly continuous if and only if each f,
1s d-perfectly continuous.

Proof. Necessity is immediate since §-perfect continuity is invariant under

restriction of domain. To prove sufficiency, let V be a §-open set in Y. Then

V)= U (fIXa) (V) = U (f (V) N X,). Since each f~H(V) N X4
a€A a€A

is clopen in X, and hence in X. Thus f~}(V) is open being the union of

clopen sets. Moreover, since the collection @ is locally finite, the collection
{f7Y(V)N X, : o € A} is a locally finite collection of clopen sets. Since
the union of a locally finite collection of closed sets is closed, f~1(V) is also
closed and hence clopen. =

THEOREM 4.6. If f: X — Y is a d-perfectly continuous surjection which
maps clopen sets to closed sets (open sets). ThenY is endowed with a 6-
partition topology. Further, if in addition f is a bijection which maps é-open
(6-closed) sets to 6-open (6-closed) sets, then X is also equipped with a 6-
partition topology.

Proof. Suppose f maps clopen sets to closed (open) sets. Let V be a §-open
(6-closed) set in Y. Since f is 6-perfectly continuous, f~!(V) is a clopen set
in X. Again, since f is a surjection which maps clopen sets to closed (open)
sets, the set f(f~1(V)) = V is closed (open) in Y and hence clopen. Thus
Y is endowed with a é-partition topology.

To prove the last part of the theorem assume that f is a bijection which
maps d-open (d-closed) sets to d-open (4-closed) sets. To show that X pos-
sesses a d-partition topology, let A be a §-open (d-closed) set in X. Then
f(A) is a §-open (é-closed) set in Y. Since f is a d-perfectly continuous bi-
jection, f~(f(A)) = A is a clopen set in X. This proves that X is endowed
with a é-partition topology. =

THEOREM 4.7. Let f: X — Y be a function and g: X — X XY, defined
by g(z) = (z, f(x)) for each x € X, be the graph function. If g is §-perfectly
continuous, then so is f and the space X possesses a d-partition topology.
Further, if [ is d-perfectly continuous and X is endowed with a d-partition
topology, then g is d-perfectly continuous.

Proof. Guppose that the graph function g : X — X x Y is d-perfectly
continuous. Now, it is easily verified that the projection map p, : X xY — Y
is d-continuous so in view of Theorem 4.4 the function f = pyog is é-perfectly
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continuous. To prove that X is endowed with a d-partition topology, let U
be a §-open set in X. Then U xY is a d-open in X x Y. Since g is d-perfectly
continuous, g~1(U x Y) = U is clopen in X and so the topology of X is a
d-partition topology.

Conversely, suppose that f is d-perfectly continuous and let X be en-
dowed with a d-partition topology. To show that g is -perfectly continuous
let W be é-open set in X x Y. Suppose W = {U, x V, : U, is regular open
in X and V, is regular open in Y'}. Then p,(W) = |J Vo =V is d-open

a€A
in Y. Since f is §-perfectly continuous, f~!(V) is clopen in X. Now, since

gt (W) = fpy,(W)) = f~YV), g is -perfectly continuous. =

The following example shows that the hypothesis that ‘X is endowed
with a d-partition topolog;”’ in Theorem 4.7 cannot be omitted.

EXAMPLE 4.8. Let X =Y = {a,b,c,d}. Let the topology on X be given
by 7 = {¢, X, {a,b},{d},{a,b,d}} and let Y be equipped with indiscrete
topology. Let f: X — Y be the constant function which takes the value b.
Then f is é-perfectly continuous but the graph function g: X —» X x Y is
not d-perfectly continuous.

DEFINITION 4.9. ([1]) A topological space X is called an Alexandroff space
if any intersection of open sets in X is itself an open set.

In [11] Lorrain calls Alexandroff spaces as saturated spaces.

THEOREM 4.10. For each a € A, let fo : X — X, be a function and
let f: X — [loer Xa be defined by f(z) = (fa(x)) for each x € X. If
f is d-perfectly continuous, then each f, is d-perfectly continuous. Further,
if X is a saturated space and each fo is d-perfectly continuous, then f is
b-perfectly continuous.

Proof. Suppose that f is é-perfectly continuous. Then for each a, f, =
I, o f, where II, denotes the projection map I, : [[ Xq — X4. Since each
projection map II, is d-continuous so in view of Theorem 4.4, each f, is
é-perfectly continuous.

Conversely, suppose that X is a saturated space and each f, is §-perfectly
continuous. To show that the function f is d-perfectly continuous, it is
sufficient to show that f~!(U) is clopen for each 5-open set U in the product
space [[,cp Xa- Since X is a saturated space, it suffices to prove that f —1(9)
is clopen for every subbasic §-open set S in the product space [], .4 Xo. Let
Us % [[oen Xa be a subbasic d-open set in [[,.p Xo where U is a d-open
set in Xg. Then f~}(Ug x [axs Xa) = f‘l(Hgl(Ug)) = fﬂ_l(Ug) is clopen
in X. Hence f is é-perfectly continuous. =
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We may recall that a space X is mildly compact [22] (= clustered space
[21]) if every clopen cover of X has a finite subcover and that a space X is
nearly compact [19] if every regular open cover of X has a finite subcover,
or equivalently every d-open cover of X has a finite subcover.

THEOREM 4.11. Let f : X — Y be &- perfectly continuous and let A C X
be mildly compact. Then f(A) is nearly compact. In particular, §-perfectly
continuous image of a mildly compact space is nearly compact.

Proof. Let {V, : @ € A} be a cover of f(A) by d-open sets in Y. Since f
is -perfectly continuous, {f~1(V,) : @ € A} is a clopen cover of A. Since
A is mlldly compact, there exist ﬁnltely many @j,...,0y in A such that

AcC U (V). Clearly f(A) C U Va; and so f(A) is nearly compact. =

DEFINITIONS 4.12. A topologlcal space X is said to be

(1) 6To-space [7] if for each pair of distinct points = and y in X there exists
a regular open set containing one of the points  and y but not the other.

(2) ultra Hausdorff [22] if for each pair of distinct points z and y in X there
exist disjoint clopen sets U and V containing x and ¥, respectively.

An infinite space with co-finite topology is a T1-space which is not a §Tp-
space. Similarly an uncountable space with cocountable topology is a KC-
space (= compact sets are closed) and hence T; but not a §Tp-space.

THEOREM 4.13. Let f: X — Y be a é-perfectly continuous injection. If Y
is a 0Tp-space, then X is an ultra-Hausdorff space.

Proof. Let z1 and z3 be any two distinct points in X. Then f(z1) # f(z2).
Since Y is a dTy-space, there exists a regular open set V' containing one of
the points f(z1) or f(z2) but not the other. To be precise, assume that
f(z1) € V. Since f is é-perfectly continuous, f~'(V) is a clopen set con-
taining x1 such that 3 ¢ f~1(V). Then f~1(V) and X\ f~1(V) are disjoint
clopen sets containing x; and zs respectively and so X is ultra-Hausdorff. =

THEOREM 4.14. Let f : X — Y be a §-perfectly continuous function into
a 6Ty-space Y. If C is a connected set in X, then f(C) is a singleton. In
particular, every &-perfectly continuous function from a connected space X
into a 6Ty-space is constant and hence strongly continuous.

Proof. Assume contrapositive and let C be connected subset of X such that
f(C) is not a singleton. Let f(x), f(y) be two distinct points of f(C). Since
Y is a §Tp-space, there exists a regular open set V' containing one of the
points f(z) and f(y) but not other. To be precise, let f(z) € V. Since f
is é-perfectly continuous, f~1(V) N C is a nonempty proper clopen subset
of C, contradicting connectedness of C. u
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COROLLARY 4.15. Let f : X — Y be a §-perfectly continuous function into
a 6Ty-space Y. If X is sum connected, then f is constant on each component
of X.

5. Function spaces and é-perfectly continuous functions

A space X is said to be sum connected [5] if each € X has a connected
neighbourhood, or equivalently each component of X is open in X. The cat-
egory of sum connected spaces represents the coreflective hull of the category
of connected spaces and includes all locally connected spaces as well. The
disjoint topological sum of two copies of topologist’s sine curve [23] is a sum
connected space which is neither connected nor locally connected.

In general the set of all continuous functions from a space X into a space
Y is not closed in YX in the topology of pointwise convergence. In contrast,
Naimpally [13] showed that if X is locally connected and Y is Hausdorff,
then the set S(X,Y) of all strongly continuous functions from X to Y is
closed in YX in the topology of pointwise convergence. In [6] we generalized
Naimpally’s result to show that if X is sum connected and Y is Hausdorff,
then S(X,Y) = P(X,Y) i.e. the set of all strongly continuous functions
as well as the set of all perfectly continuous functions from X into Y is
closed in Y¥ in the topology of pointwise convergence. In this section we
improve upon this result to show that if X is sum connected and Y is a
dTy-space, then all the three classes of functions coincide, i.e. S(X,Y) =
P(X,Y) = PA(X,Y). So in view of results of [6] we conclude that if X is
sum connected and Y is Hausdorff, then PA(X,Y) the set of all J-perfectly
continuous functions from X into Y is closed in the topology of pointwise
convergence.

THEOREM 5.1. Let f: X — Y be a d-perfectly continuous function from a
sum connected space X into a §Tp-space Y. Then f is strongly continuous.

Proof. Let X be a sum connected space. Then every component of X is
clopen in X. Hence it follows that any union of components of X and the
complement of this union are complementary clopen sets in X. By Corollary
4.15 f is constant on each component of X and hence for every subset A of
Y, f71(A) and its complement X \ f~1(A) are complementary clopen sets
in X being the unions of components of X. Thus f is strongly continuous. =

Next we quote the following result from [6].

THEOREM 5.2. ([6, Theorem 3.4]) Let f : X — Y be a function from a
sum connected space X into a Ty-space Y. Then the following statements
are equivalent.
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(a) f s strongly continuous.
(b) f is perfectly continuous.
(c) f is cl-supercontinuous.

THEOREM 5.3. Let f: X — Y be a function from a sum connected space
X into a 8Ty-space Y. Then the following statements are equivalent.

(a) f is strongly continuous.
(b) f is perfectly continuous.
(c) f is cl-supercontinuous.

(d) f is - perfectly continuous.

Proof. The implications (a)=(b)=(d) are trivial and (d)=(a) is a conse-
quence of Theorem 5.1. So the result is immediate in view of Theorem 5.2.

Let L = L(X,Y), P = P(X,Y), S = S(X,Y) and Po = PA(X,Y)
denote the function spaces of all cl-supercontinuous, perfectly continuous,
strongly continuous and d-perfectly continuous functions from X into Y,
respectively with the topology of pointwise convergence. m

THEOREM 5.4. Let X be a sum connected space and let Y be a Hausdorff
space. Then L = P = S = Pa is closed in YX in the topology of pointwise
convergence.

Proof. This is immediate in view of Theorem 5.3 and [6, Theorem 3.7]. w

In view of Theorem 5.4 it follows that if X is sum connected (e.g. con-
nected or locally connected) and Y is Hausdorff, then the pointwise limit of
a sequence {f, : X — Y} of é-perfectly continuous functions is é-perfectly
continuous.
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