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¿ - P E R F E C T L Y CONTINUOUS FUNCTIONS 

A b s t r a c t . A new class of functions called '¿-perfectly continuous functions' is intro-
duced and their basic properties are studied. Their place in the hierarchy of other variants 
of continuity that already exist in the literature is elaborated. Further, it is shown that 
if X is sum connected (e.g. connected or locally connected) and Y is Hausdorff, then the 
function space PA{X,Y) of all ¿-perfectly continuous functions from X into Y is closed 
in YX in the topology of pointwise convergence. 

1. Introduction 
Several weak, strong and other variants of continuity occur in the lore of 

mathematical literature and arise in diverse situations in mathematics and 
applications of mathematics. The main purpose of this paper is to intro-
duce a new class of functions called '¿-perfectly continuous function' and to 
elaborate on their basic properties and discuss their interplay and interrela-
tions with other variants of continuity that already exist in the mathemat-
ical literature. It turns out that in general the notion of ¿-perfect continu-
ity is independent of continuity but coincides with perfect continuity [15], 
a significantly strong form of continuity if Y is a semiregular space. The 
class of ¿-perfectly continuous functions properly includes the class of per-
fectly continuous functions defined by Noiri [15] and studied by Kohli, Singh 
and Arya [8] which in turn strictly contains the class of strongly continu-
ous functions introduced by Levine [10]. Moreover, the class of ¿-perfectly 
continuous functions is properly contained in the class of almost perfectly 
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continuous (=regular set connected) functions due to Dontchev, Reilly and 
Vamanamurthy [2] which in turn is strictly contained in the class of almost 
cl-supercontinuous functions (=almost clopen maps) defined and studied by 
Ekici [3] and further investigated by Kohli and Singh [7]. The other vari-
ants of continuity with which we shall be dealing in this paper include al-
most z-supercontinuous functions [9], almost Dj-supercontinuous functions 
[9], almost strongly 0-continuous functions defined by Noiri and Kang [16], 
¿-continuous functions due to Noiri [14] and almost continuous functions 
introduced by Singal and Singal [18]. 

Section 2 is devoted to preliminaries and basic definitions. In Section 3 of 
this paper we introduce the notion of'¿-perfectly continuous function', wherein 
we also elaborate on the interrelations that exist between ¿-perfect continuity 
and other variants of continuity that already exist in the literature. Basic 
properties of ¿-perfectly continuous functions are studied in Section 4. The 
function space P&(X, Y) of all ¿-perfectly continuous functions from X to Y 
with the topology of pointwise convergence is considered in Section 5 and the 
sufficient conditions on X and Y are outlined for it to be closed in Y x . 

2. Preliminaries and basic definitions 

DEFINITIONS 2 . 1 . A function / : X —> Y from a topological space X into 
a topological space Y is said to be 

(a) strongly continuous [10] if f(A) c f(A) for each subset A of X. 
(b) perfectly continuous ([15]) if / _ 1 ( V ) clopen in X for every open set 

F C F . 
(c) almost perfectly continuous (= regular set connected [2]) if f~l(V) is 

clopen for every regular open set V in Y. 
(d) cl-supercontinuous [20] (= clopen continuous [17]) if for each x G X and 

each open set V containing f(x) there is a clopen set U containing x 
such that f(U) C V. 

(e) almost cl-supercontinuous [7] (= almost clopen [3]) if for each x G X 
and for each regular open set V containing f(x) there is a clopen set U 
containing x such that f(U) C V. 

(f) (almost) strongly ^-continuous ([16]) [14] if for each x G X and for 
each (regular) open set V containing f(x), there exists an open set U 
containing x such that f(U) C V. 

(g) supercontinuous [12] if for each x G X and for each open set V containing 
f(x), there exists a regular open set U containing x such that f(U) C V. 

(h) almost z-supercontinuous [9] if for each x G X and each regular open set 
V containing f(x), there exists a cozero set U containing x such that 
f(U) c V. 
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(i) almost Z^-supercontinuous [9] if for each x G X and each regular open 
set V containing f(x), there exists a regular FCT-set U containing x such 
that f(U) C V. 

(j) ¿-continuous [14] if for each x G X and for each regular open set V 
containing f(x), there exists a regular open set U containing x such that 
f(u) c v. 

(k) almost continuous [18] if for each x G X and for each regular open set 
V containing f(x), there exists an open set U containing x such that 
f(U) C V. 

D E F I N I T I O N 2 . 2 . A set G is said to be ¿-open [24] if for each x G G, there 
exists a regular open set H such that x G H C G, or equivalently, G is 
expressible as an arbitrary union of regular open sets. The complement of a 
¿-open set will be referred to as a ¿-closed set. 

D E F I N I T I O N 2 . 3 . Let X be a topological space and let A c X . A point 
x E X is called a ¿-adherent point [24] (cl-adherent point [20]) of A if every 
regular open set (clopen set) containing x has non-empty intersection with 
A. Let As ([^4]c;) denote the set of all ¿-adherent points (cl-adherent points) 
of A. The set A is ¿-closed (cl-closed) if and only if A = Ag {[A)ci = A). 

D E F I N I T I O N 2 . 4 . A filterbase T is said to ¿-converge[24] (cl-converge [20]) 
to a point x, written as T x {T x) if every regular open (clopen) 
set containing x contains a member of T. 

D E F I N I T I O N 2.5. A net (xx) in X is said to ¿-converge (cl-converge) to a 
point x, written as x\ x (x\ —> x) if it is eventually in every regular 
open (clopen) set containing x. 

D E F I N I T I O N S 2 . 6 . A space X is said to be endowed with a 

(1) partition topology [23] if every open set in X is closed; and 
(2) ¿-partition topology if every ¿-open set in X is closed or equivalently 

every ¿-closed set in X is open. 

Clearly a space endowed with a partition topology is equipped with a 
¿-partition topology. Conversely, a semiregular space with a ¿-partition 
topology has a partition topology. Moreover, an infinite set with cofinite 
topology has a ¿-partition topology which is not a partition topology. 

3. ¿-perfectly continuous functions 
A function / : X —> Y from a topological space X into a topological 

space Y is said to be ¿-perfectly continuous if for each ¿-open set V in Y, 
/ - 1 ( F ) is a clopen set in X . 
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The following diagram well illustrates the interrelations that exist among 
¿-perfectly continuity and other variants of continuity that already exist in 
the literature and have some relevance to the contents of this paper. 

strongly continuous 

I 
. .. , r ,. ,. almost perfectly continuous perfectly continuous —> ¿-perfectly continuous —> , . . ^ J ( = regular set connected) 

\ J. 
. , , , almost clopen map clopen map ( = cl-supercontinuous) a l m Q s t c i _ s u p e r c o n t i n u o u s ) 

I I 
z-supercontinuous —• almost z-supercontinuous 

J. J. 
D^-supercontinuous —• almost Dj-supercontinuous 

4 -I 
strongly ^-continuous —• almost strongly ^-continuous 

I 4 
supercontinuous —• ¿-continuous 

I 4 
continuous —> almost continuous 

It is either well known or simple examples can be given to show that none 
of the above implications is reversible. Nevertheless we narrate the following 
observations / examples. 

3.1. Let X be endowed with a non-discrete partition topology. For example, 
let X denote the set of positive integers with odd even topology [23, p. 43]. 
Then the identity function defined on X is perfectly continuous but not 
strongly continuous. 

3.2. Let X be endowed with a 5-partition topology which is not a partition 
topology. For example, any infinite set with cofinite topology is such a space. 
Then the identity function defined on X is ¿-perfectly continuous but not 
perfectly continuous. 

3.3. A ¿-perfectly continuous function need not even be continuous. For 
let X denote the real line with indiscrete topology and Y be the real line 
with cofinite topology. If / denotes the identity mapping of X onto Y, then 
/ is ¿-perfectly continuous but not continuous. 

3.4. Let A = K U { a + , a _ } be the regular space (hence a semi regular 
space) but not a completely regular space due to Hewitt [4], Then the 
identity function defined on A is continuous but not ¿-perfectly continuous. 
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3.5. If X is endowed with a partition topology, then every almost continuous 
function / : X —> Y is ¿-perfectly continuous. 

3.6. If Y is semiregular, then every ¿-perfectly continuous function / : X —> 
Y is perfectly continuous. 

3.7. Let X be endowed with a ¿-partition topology. If / : X —> Y is 8-
continuous, then / is ¿-perfectly continuous. Further, if / is supercontinuous, 
then / is perfectly continuous. 

In view of 3.3 and 3.4 it is clear that ¿-perfect continuity and continuity 
are independent of each other. 

4. Basic properties of ¿-perfectly continuous functions 

THEOREM 4.1. For a function f : X Y from a topological space X into 
a topological space Y, the following statements are equivalent: 

(a) / is ¿-perfectly continuous. 
(b) f~1(F) is clopen in X for every S-closed set F in Y. 
(c) / ( J 7 ) f(x) for every filter T x. 
(d) f(x\) f(x) for every net xx x. 
(e) f(Ad) c [f(A)]s for every subset Ac X. 

Proof. Easy. • 

D E F I N I T I O N 4 . 2 . Let Y be a subspace of a space Z. Then Y is said to be 
¿-embedded in Z if every ¿-open set in Y is the restriction of a ¿-open set 
in Z with Y; or equivalently every ¿-closed set in Y is the restriction of a 
¿-closed set in Z with Y. 

T H E O R E M 4 . 3 . Let f : X —» Y be a 5-perfectly continuous function. If 
f ( X ) is 5-embedded in Y, then the surjection f : X —> f ( X ) is 5-perfectly 
continuous. 

Proof. Let V be a ¿-open set in f ( X ) . Then there exists a ¿-open set W in Y 
such that V = Wi)f(X). It follows that f~\V) = f ' ^ W ) n X = f'^W). m 

THEOREM 4.4. If f : X —>• Y is 8-perfectly continuous function and 
g : Y —> Z is a 5-continuous function, then g o f is 8-perfectly continu-
ous. In particular, the composition of two 5-perfectly continuous functions 
is 8-perfectly continuous. 

Proof. Let W be a ¿-open set in Z. Since g is ¿-continuous, g~1(W) is 
¿-open in Y (see [14]). In view of ¿-perfect continuity of / , f~1(g~1(W)) 
is clopen in X. Since (g o f)~1(W) = f~1(g~1(W)), g o f is ¿-perfectly 
continuous. • 
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It is routine to verify that ¿-perfect continuity is invariant under the 
restriction of domain 

T H E O R E M 4 . 5 . Let f : X —> Y be a function and let Q = {Xa : a G A} 
be a locally finite clopen cover of X. For each A G A, let fa = f\Xa denote 
the restriction map. Then f is 5-perfectly continuous if and only if each fa 

is 5-perfectly continuous. 

Proof. Necessity is immediate since ¿-perfect continuity is invariant under 
restriction of domain. To prove sufficiency, let V be a ¿-open set in Y. Then 
f ' H V ) = U = (J U~\V)nXa). Since each / - 1 ( V ) D Xa 

aeA aeA 
is clopen in Xa and hence in X. Thus is open being the union of 
clopen sets. Moreover, since the collection Q is locally finite, the collection 
{ / - 1 ( F ) FL Xa : a G A} is a locally finite collection of clopen sets. Since 
the union of a locally finite collection of closed sets is closed, f~l(V) is also 
closed and hence clopen. • 
T H E O R E M 4 . 6 . If f : X —> Y is a 5-perfectly continuous surjection which 
maps clopen sets to closed sets (open sets). Then Y is endowed with a 5-
partition topology. Further, if in addition f is a bisection which maps 5-open 
(S-closed) sets to 5-open (5-closed) sets, then X is also equipped with a 5-
partition topology. 

Proof. Suppose / maps clopen sets to closed (open) sets. Let V be a ¿-open 
(¿-closed) set in Y. Since / is ¿-perfectly continuous, / - 1 ( V ) is a clopen set 
in X. Again, since / is a surjection which maps clopen sets to closed (open) 
sets, the set f{f~l{V)) = V is closed (open) in Y and hence clopen. Thus 
Y is endowed with a ¿-partition topology. 

To prove the last part of the theorem assume that / is a bijection which 
maps ¿-open (¿-closed) sets to ¿-open (¿-closed) sets. To show that X pos-
sesses a ¿-partition topology, let A be a ¿-open (¿-closed) set in X. Then 
f{A) is a ¿-open (¿-closed) set in Y. Since / is a ¿-perfectly continuous bi-
jection, f~1(f(A)) = A is a clopen set in X. This proves that X is endowed 
with a ¿-partition topology. • 

T H E O R E M 4 . 7 . Let f : X —> Y be a function and g : X —> X xY, defined 
by g(x) = (x, f(x)) for each x G X, be the graph function. If g is 5-perfectly 
continuous, then so is f and the space X possesses a 5-partition topology. 
Further, if f is 5-perfectly continuous and X is endowed with a 5-partition 
topology, then g is 5-perfectly continuous. 

Proof. Suppose that the graph function g : X —> X x Y is ¿-perfectly 
continuous. Now, it is easily verified that the projection map py : X xY —> Y 
is ¿-continuous so in view of Theorem 4.4 the function / = pyog is ¿-perfectly 
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continuous. To prove that X is endowed with a ¿-partition topology, let U 
be a ¿-open set in X. Then U x Y is a ¿-open in X x Y. Since g is ¿-perfectly 
continuous, g~l{JJ x Y) = U is clopen in X and so the topology of X is a 
¿-partition topology. 

Conversely, suppose that / is ¿-perfectly continuous and let X be en-
dowed with a ¿-partition topology. To show that g is ¿-perfectly continuous 
let W be ¿-open set in X x Y. Suppose W = {Ua x Va : Ua is regular open 
in X and Va is regular open in Y}. Then py{W) = |J Va = V is ¿-open 

AE A 
in Y. Since / is ¿-perfectly continuous, is clopen in X . Now, since 
g~l(W) — f~1(Py(W)) = / - 1 (V) , g is ¿-perfectly continuous. • 

The following example shows that the hypothesis that lX is endowed 
with a ¿-partition topology' in Theorem 4.7 cannot be omitted. 

E X A M P L E 4 . 8 . Let X = Y = {a,b,c,d}. Let the topology on X be given 
by r = {4>,X,{a,b},{d},{a,b,d}} and let Y be equipped with indiscrete 
topology. Let / : X —> Y be the constant function which takes the value b. 
Then / is ¿-perfectly continuous but the graph function g : X —> X x Y is 
not ¿-perfectly continuous. 

D E F I N I T I O N 4 . 9 . ([1]) A topological space X is called an Alexandroff space 
if any intersection of open sets in X is itself an open set. 

In [11] Lorrain calls Alexandroff spaces as saturated spaces. 

T H E O R E M 4 . 1 0 . For each a G A, let fa '• X —> Xa be a function and 
let f : X RIAEA^A be defined by f(x) = (fa(x)) for each x G X. If 
f is 6-perfectly continuous, then each fa is ¿-perfectly continuous. Further, 
if X is a saturated space and each fa is 6-perfectly continuous, then f is 
6-perfectly continuous. 

Proof. Suppose that / is ¿-perfectly continuous. Then for each a, fa = 
Ua o /, where IIa denotes the projection map IIa : Xa —> Xa. Since each 
projection map Il a is ¿-continuous so in view of Theorem 4.4, each fa is 
¿-perfectly continuous. 

Conversely, suppose that X is a saturated space and each fa is ¿-perfectly 
continuous. To show that the function / is ¿-perfectly continuous, it is 
sufficient to show that f~l(U) is clopen for each ¿-open set U in the product 
space UaeA ^a- Since X is a saturated space, it suffices to prove that f~l(S) 
is clopen for every subbasic ¿-open set 5 in the product space Xa. Let 
Up x riaeA be a subbasic ¿-open set in IlaeA where Up is a ¿-open 
set in Xp. Then f~\Up x X[a^pXa) = f-\jr0\Up)) = fp\Up) is clopen 
in X . Hence / is ¿-perfectly continuous. • 
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We may recall that a space X is mildly compact [22] (= clustered space 
[21]) if every clopen cover of X has a finite subcover and that a space X is 
nearly compact [19] if every regular open cover of X has a finite subcover, 
or equivalently every ¿-open cover of X has a finite subcover. 

T H E O R E M 4 . 1 1 . Let f : X —> Y be 5- perfectly continuous and let A c X 
be mildly compact. Then f(A) is nearly compact. In particular, 6-perfectly 
continuous image of a mildly compact space is nearly compact. 

Proof . Let {Va : a € A} be a cover of f(A) by ¿-open sets in Y. Since / 
is ¿-perfectly continuous, {/ _ 1(V r

a) : a G A} is a clopen cover of A. Since 
A is mildly compact, there exist finitely many ai,...,an in A such that 

n n 
A C (J /_1(V r

c t i). Clearly f(A) c [J Vai and so f(A) is nearly compact. • 
i=i ¿=1 

D E F I N I T I O N S 4.12. A topological space X is said to be 

(1) ¿To-space [7] if for each pair of distinct points x and y in X there exists 
a regular open set containing one of the points x and y but not the other. 

(2) ultra Hausdorff [22] if for each pair of distinct points x and y in X there 
exist disjoint clopen sets U and V containing x and y, respectively. 

An infinite space with co-finite topology is a Ti-space which is not a STQ-
space. Similarly an uncountable space with cocountable topology is a KC-
space (= compact sets are closed) and hence T i but not a ¿To-space. 

THEOREM 4.13. Let f : X —> Y be a 6-perfectly continuous injection. IfY 
is a 5TQ-space, then X is an ultra-Hausdorff space. 

Proof . Let x\ and #2 be any two distinct points in X. Then f(x\) ^ / (a^)-
Since Y is a ¿To-space, there exists a regular open set V containing one of 
the points f{x\) or f(x2) but not the other. To be precise, assume that 
f(x 1) € V. Since / is ¿-perfectly continuous, / - 1 ( F ) is a clopen set con-
taining xi such that X2 f~l(V). Then / _ 1 ( F ) and X\f~1(V) are disjoint 
clopen sets containing x\ and £2 respectively and so X is ultra-Hausdorff. • 

T H E O R E M 4 . 1 4 . Let f : X —• Y be a 5-perfectly continuous function into 
a STo-space Y. If C is a connected set in X, then f(C) is a singleton. In 
particular, every S-perfectly continuous function from a connected space X 
into a 6To-space is constant and hence strongly continuous. 

Proof . Assume contrapositive and let C be connected subset of X such that 
/ ( C ) is not a singleton. Let f(x), f ( y ) be two distinct points of f(C). Since 
Y is a ¿To-space, there exists a regular open set V containing one of the 
points f ( x ) and f ( y ) but not other. To be precise, let f ( x ) £ V. Since / 
is ¿-perfectly continuous, / - 1 ( V ) n C is a nonempty proper clopen subset 
of C, contradicting connectedness of C. • 
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C O R O L L A R Y 4 . 1 5 . Let f : X —> Y be a S-perfectly continuous function into 
a STQ-space Y. If X is sum connected, then f is constant on each component 
o f X . 

5. Function spaces and ¿-perfectly continuous functions 
A space X is said to be sum connected [5] if each x G X has a connected 

neighbourhood, or equivalently each component of X is open in X. The cat-
egory of sum connected spaces represents the coreflective hull of the category 
of connected spaces and includes all locally connected spaces as well. The 
disjoint topological sum of two copies of topologist's sine curve [23] is a sum 
connected space which is neither connected nor locally connected. 

In general the set of all continuous functions from a space X into a space 
Y is not closed in Y x in the topology of pointwise convergence. In contrast, 
Naimpally [13] showed that if X is locally connected and Y is Hausdorff, 
then the set S(X, Y) of all strongly continuous functions from X to Y is 
closed in yX 

in the topology of pointwise convergence. In [6] we generalized 
Naimpally's result to show that if X is sum connected and Y is Hausdorff, 
then S(X, Y) = P(X,Y) i.e. the set of all strongly continuous functions 
as well as the set of all perfectly continuous functions from X into Y is 
closed in in the topology of pointwise convergence. In this section we 
improve upon this result to show that if X is sum connected and Y is a 
iTo-space, then all the three classes of functions coincide, i.e. S ( X , Y ) = 
P ( X , Y ) = PA(X, y ) . So in view of results of [6] we conclude that if X is 
sum connected and Y is Hausdorff, then P&(X,Y) the set of all ¿-perfectly 
continuous functions from X into Y is closed in the topology of pointwise 
convergence. 
THEOREM 5.1. Let f : X —> Y be a 5-perfectly continuous function from a 
sum connected space X into a 5To-space Y. Then f is strongly continuous. 
Proof. Let X be a sum connected space. Then every component of X is 
clopen in X. Hence it follows that any union of components of X and the 
complement of this union are complementary clopen sets in X. By Corollary 
4.15 f is constant on each component of X and hence for every subset A of 
Y, f~1(A) and its complement X \ f~1(A) are complementary clopen sets 
in X being the unions of components of X. Thus / is strongly continuous. • 

Next we quote the following result from [6]. 

T H E O R E M 5.2. ([6, Theorem 3.4]) Let f : X Y be a function from a 
sum connected space X into a To-space Y. Then the following statements 
are equivalent. 
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(a) f is strongly continuous. 
(b) f is perfectly continuous. 
(c) / is cl-supercontinuous. 

T H E O R E M 5 . 3 . Let f : X —> Y be a function from a sum connected space 
X into a ÔTo-space Y. Then the following statements are equivalent. 

(a) / is strongly continuous. 
(b) / is perfectly continuous. 
(c) / is cl-supercontinuous. 
(d) f is Ô- perfectly continuous. 

Proof. The implications (a)=>(b)=>(d) are trivial and (d)=>(a) is a conse-
quence of Theorem 5.1. So the result is immediate in view of Theorem 5.2. 

L e t L = L(X, Y ) , P = P ( X , Y ) , S = S { X , Y ) a n d PA = PA(X,Y) 
denote the function spaces of all cl-supercontinuous, perfectly continuous, 
strongly continuous and ¿-perfectly continuous functions from X into Y, 
respectively with the topology of pointwise convergence. • 

T H E O R E M 5 . 4 . Let X be a sum connected space and let Y be a Hausdorff 
space. Then L = P = S = PA is closed in Y x in the topology of pointwise 
convergence. 

Proof. This is immediate in view of Theorem 5.3 and [6, Theorem 3.7]. • 

In view of Theorem 5.4 it follows that if X is sum connected (e.g. con-
nected or locally connected) and Y is Hausdorff, then the pointwise limit of 
a sequence { f n : X —> Y} of ¿-perfectly continuous functions is ¿-perfectly 
continuous. 
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