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CLUSTER SETS A N D RELATED PROPERTIES 
OF MULTIFUNCTIONS 

Abstract. In this paper we present some types of cluster sets of multifunction. 
Using these concepts we relate properties of cluster sets to some generalized continuity 
properties, minimality of mult ifunctions and closedness of its graphs. 

Throughout this work, (X,T) and (Y,T*) denote topological spaces in 
which no separation axioms are assumed unless explicitly stated. For a 
subset A of a topological space we denote by Cl(A) and Int(A) the closure 
and the interior of A, respectively. 

We will use F : ( X , T ) —> (Y,T*) to denote that F is a correspondence 
which assigns to each element x of X a nonempty subset F(x) of Y. Such a 
mapping we will call a multifunction. In this regard, we will keep the nota-
tion / : (X,T) —» (Y,T*) for a single-valued function from (X,R) to (Y,T*). 

A single-valued function / : (X,T) —> (Y,T*) is called a selection for 
F : {X,T) -> (Y, T*) if F(x) G F(x) for every x G X. A multifunction 
H : {X, T) —> (Y , t*) is called a multi-valued selection for F : (X,t) —> 
(Y, T*) if H(x) C F(x) for every x G X. 

The upper and lower inverse images of a set B C Y under F will be 
denoted by F+(B) and F~(B), respectively; that is F+(B) = {x G X : 
F(x) C W} and F~(B) = {x G X : F(x) n l f / 0 } . For A c X its image 
under F is the set F{A) = |J {F(x) <ZY \ x e X } . The graph of F, denoted 
by Gr(F) is the set {(x,y) G X x Y : y G F(x)}. Notice that Gr(H) C 

Gr(F) if and only if H(x) c F(x) for every x G X. In this case we will 
simply write that H C F. 
DEFINITION 1. For a multifunction F : (X, r ) —> (Y,T*) and x G X , we 
define the following types of cluster sets: 
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(a) u .a.CF(x) = {y EY : x E Int(Cl(Int(F+(W)))) for any open set W 
with y E W}; 

(b) u.q.CF(a;) = {y E Y : x E CZ(/ni(F+(H^))) for any open set W with 
y&wy 

(c) u.p.CF(x) = {y eY : x E /n i (C7(F + (W)) ) for any open set W with 
y e W}; 

(d) u .(3.CF{x) = {y eY : X E Cl{Int(Cl(F+(W)))) for any open set W 
with y E W}-, 

(e) u .CF(x) = {y EY : x E Cl(F+{W)) for any open set W with y E W}; 
(f) \.c.CF{x) = {y EY : x E Int(F~(W)) for any open set W with y EW}\ 
(g) 1 .a.CF(x) = {y EY : x E Int{Cl{Int{F~ (W)))) for any open set W 

with y E W}\ 
(h) l . q .C F ( x ) = {y E Y : x E Cl{Int{F~{W))) for any open set W with 

ye W}-, 
(i) l . p .C F ( x ) = {y E Y : x E Int(Cl(F~(W))) for any open set W with 

yewy 
(j) 1 ,/3.Cf(X) = {y eY \ X E Cl(Int(Cl(F-(W)))) for any open set W with 

yewy 
(k) \.CF{x) = {y EY : x E Cl(F~(W)) for any open set W with y E W). 

R E M A R K 2. Hrycay [8, Definition 3.1, Lemma 3.2] introduced the following 
classical type of cluster set: P|{C7(F(i7)) : open U C X with x E U}. It is 
easy to see that this set is equal to l.CF(x). It is well known [8, Theorem 
3.3] that, F has closed graph if and only if F(x) = l.CF(x) for any x E X. 

The following definition was introduced in [9]: 
Let A be a non-empty family of non-empty subset of X. A point y E Y is 

»4-cluster point of multifunction F : (X,r) —> (Y,r * ) at x E X (y E AF(x)) 
if for any open sets U, V with x E U, y E V, there is a set K E A, K C U, 
such that for any x E K we have F{x ) fl V ^ 0. 

It is easy to see that in the case when A is the family of all non-empty 
open sets A C X, then AF(x) = l.q.CF(x). This equality also holds when A 
is the family of all non-empty a-open sets A C X [22] (resp. semi-open sets 
A C X [15]) whose characteristic property is A C Int(Cl(Int(A))) (resp. 
A C Cl(Int(A))). 

If A is the family of all non-empty pre-open sets A C X [19] (resp. (3-
open sets A c X [1]) whose characteristic property is A C Int(Cl(A)) (resp. 
A C Cl(Int(Cl(A)))), then ^ f ( ^ ) = l.(3.CF(x). In this case important is 
that the set A n Int{Cl{Int{A))) (resp. A n Cl(Int(A))) is pre-open (resp. 
/3-open) for every A C X. 

REMARK 3. If a single-valued function / : (X, r ) — ( F , r * ) is given, then 
under the natural interpretation of f(x) as one point set F(x) = {f(x)}, 
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Definition 1. gives the following types of cluster sets for single valued func-
tions: a.Cf(x) = u.a.CF(x) = l.a.CF(x), q.Cf(x) = u.q.CF(x) = l.q.CF(x), 
p.CF(x) = u.p.CF(x) = l.p.CF{x), p.CF{X) = U./3.Cf[X) = l.0.CF(X) and 
Cf(x) = u.CF(x) = l.CF{x). 

Clearly, C/(x) is the cluster set which was investigated in [2] and [37] 
and q.Cf(x) was investigated in [17] and [35]. 

D E F I N I T I O N 4 . A multifunction F : (X,T) —> ( Y , T * ) is said to be 

(a) upper semi continuous (briefly u.s.c.) (resp. lower semi continuous 
(briefly l.s.c.)) at a point x G X if for each open set V C Y such that x G 
F+(V) (resp. x G F~(V)), x G Int(F+(V)) (resp. x G Int(F~(V))). 
F is said to be u.s.c. (resp. l.s.c.) if it is such at any point [13], [23]; 

(b) upper a-continuous (briefly u.a.c.) (resp. lower a-continuous (briefly 
l.a.c.)) at a point x G X if for each open set V C Y such that 
x G F+(V) (resp. x G F~(V)), x G Int(Cl{Int(F+(V)))) (resp. 
x G Int(Cl(Int(F~(V))))). F is said to be u.cc.c. (resp. l.a.c.) if it 
is such at any point [21]; 

(c) upper pre-continuous (briefly u.p.c.) (resp. lower pre-continuous (briefly 
l.p.c.)) at a point x G X if for each open set V C Y such that x G F + ( F ) 
(resp. x G F~(V)), x G Int(Cl(F+(V))) (resp. x G Int(Cl(F~(V)))). 
F is said to be u.p.c. (resp. l.p.c.) if it is such at any point [24]; 

(d) upper quasi continuous (briefly u.q.c.) (resp. lower quasi continuous 
(briefly l.q.c.)) at a point x G X if for each open set V C Y such 
that x G F+{V) (resp. x G F~(V)) , x G Cl(Int(F+(V))) (resp. x G 
Cl(Int(F~(V)))) . F is said to be u.q.c. (resp. l.q.c.) if it is such at any 
point [25]; 

(e) upper /3-continuous (briefly u./?.c.) (resp. lower /^-continuous (briefly 
1./3.C.)) at a point x G X if for each open set V C Y such that 
x G F+(V) (resp. x G F~(V)), x G Cl(Int(Cl(F+(V)))) (resp. x G 
Cl(Int(Cl(F~(V))))). F is said to be u./3.c. (resp. 1.0.c.) if it is such 
at any point [26]; 

(f) minimal at a point x G X if for each open set V C Y such that x G 
F~(V), x G Cl(Int(F+(V))). F is said to be minimal if it is such at 
any point [14], [20]; 

(g) a-minimal (resp. p-minimal, /3-minimal) at a point x G X if for each 
open set V C Y such that x G F~(V), x G Int{Cl{Int(F+(V)))) (resp. 
x G Int(Cl(F+(V))), x G Cl(Int{Cl(F+(V)))) ). F is said to be a-
minimal (resp. p-minimal, /^-minimal) if it is such at any point [31]; 

(h) Cl-minimal at a point x G X if for each open set V C Y such that 
x G F~(V), x G Cl{F+(V)). 
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REMARK 5. If a single-valued function / : (X, r ) —> (Y, r*) is treated as a 
multifunction F : X —*Y given by F(x) = {f(x)} then, in the above defini-
tion, the conditions in (b) and a-minimality (resp. (c) and p-minimality, (d) 
and minimality, (e) and /3-minimality) are eqivalent to the a-continuity [18] 
(resp. pre-continuity [19], quasi-continuity [15, 12], /3-continuity [1]) of/. 

A multifunction F : (X,T) —> (Y,T*) is said to be quasi-continuous [3], 
[27] (resp. a-continuous [34], [29], pre-continuous [34], [28], /3-continuous 
[34], [30]) at a point x G X if for any open sets W, V C Y such that F(x) c 
W and F(x ) n V + 0 the following holds x G Cl(Int(F+(W) n 
(resp. x € Int(Cl(Int(F+{W) n F~(V)))) , x G Int (Cl(F+(W) D F~(V))) , 
x G Cl(Int(Cl(F+(W) n F " ( F ) ) ) ) ). 

REMARK 6. If a single-valued function / : (X, r ) —> (Y, T*) is treated as a 
multifunction F : (X,T) —> (Y, r*) given by F(x) = {/(x)}, then the quasi-
continuity (resp. a-continuity, pre-continuity, /3-continuity) of F is equivalent 
to the quasi continuity (resp. a-continuity, pre-continuity, /^-continuity) of /. 

In [16, Theorem 1.] it was proved that a multifunction F is minimal if 
and only if any selection f of F is quasi-continuous. We can extend this result 
in the following way: 

T H E O R E M 7 . For a multifunction F : (X,T) —> (Y,T*) and every point 
x G X, the following statements are equivalent: 

(a) F is minimal (resp. a-minimal, p-minimal, (3-minimal) at x; 
(b) any multi-valued, selection H of F is quasi-continuous (resp. a-continuous, 

pre-continuous, (3-continuous) at x; 
(c) any selection h of F is quasi-continuous (resp. a-continuous, pre-conti-

nuous, (3-continuous) at x; 
(d) F(x) C u.q.CH{x) (resp. F(x) C u.a.CH(x), F(x) C u.p.CH{x), F{x) C 

U.(3.CH{X)) for any multivalued selection H of F; 
(e) F(x) C q.Ch{x) (resp. F{x) C a.Ch(x), F(x) C p.Ch(x), F(x) C 

/3.Ch{x)) for any single-valued selection h of F. 

Proof, (a) implies (b): Let H be a multi-valued selection of F, let x G 
X and let V, W be open sets such that H(x) C W and H(x) n V 0. 
Then F(x) fl W D V / 0 and by the minimality (resp. a-minimality, p-
minimality, /3-minimality) of F we have x G Cl(Int(F+(W fl V"))) (resp. x G 
Int(Cl(Int(F+(WnV)))), xeInt{Cl{F+(WnV))), xeCl(Int(Cl(F+(WD 
V)))) ). Since F+(W n V ) c H+(W) n H~(V), then x G Cl(Int(H+(W) n 
H~(V))) (resp. x G Int{Cl{Int{H+{W)^H~ {V)))), x G Int{Cl(H+{W) n 
H~\v))), x G Cl(Int(Cl{H+(W) n H~(V)))) ) and the proof of (b) is 
finished. 

The implication (b)=>(c) is an immediate consequence of Remark 6. 
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(c) implies (a): Suppose that F is not minimal (resp. not a-minimal, not 
p-minimal, not /^-minimal) at some x G X. Then x ^ Cl(Int(F+ (V))) (resp. 
x i Int(Cl(Int(F+(V)))), x <£ Int(Cl(F+(V))), x £ Cl(Int(Cl(F+(V))))) 

for some open set V such that F(x) H 7 ^ 0 . Define a selection h (resp. /, 
s, w) of F as follows: 

h{x) G F{x) n V; 

h{p) G F(p) \ V for all p G (X \ F + ( F ) ) n Int(Cl(X \ F+(V)))-

h(p) G F(p) elsewhere; 
(resp. 

f(x) G F(x) n V; 

f{p) € F(p) \ V for all p G (X \ F+(V)) D Cl(Int(Cl(X \ F + ( V ) ) ) ) ; 
f ( p ) G F(p) elsewhere;, 

s{x) G F(x) n V; 
s(p) G F(p ) \ V for all p G (X \ F + ( F ) ) n Cl(Int(X \ F+(V))); 

s(p) G F(p) elsewhere;, 
w(x) G F(x) n V; 

w(p) G F(p ) \ V for all p G (X \ F+(V)) n Int(Cl(Int(X \ F + ( F ) ) ) ) ; 
w(p) G F(p ) elsewhere). 
It is suficient to prove that h is not quasi-continuous (resp. / is not 

a-continuous, s is not pre-continuous, w is not /3-continuous) at x. 
It is obvious that h(x) (resp. f(x), s(x), w(x)) belongs to V. It is 

easy to show, that x <£ Cl(Int{h~l{V))) (resp. x £ Int(Cl(Int(f_1(F)))), 
x i Int(Cl{s~l{V))), x i Cl{Int{Cl(w~l(V))))). Indeed, let us suppose 
the contrary: x G Cl(Int{h~l{V))) (resp. x G /ni (CZ(/ni (/ _ 1 (F) ) ) ) , 
x G Int{Cl(s~l{V))), x G Cl{Int(Cl{w~l(V))))). Then x G 
Cl{Int{h~l{V)))fMnt{Cl{X\F+{V))) (resp. x G /ni (CZ(/ni (/ _ 1 (F ) ) ) ) n 
Cl(Int(Cl(X \ F+(V)))), x G IntiClis-^V))) D Cl(Int{X \ F+(V))), x G 
C l l l n t l c i l w - ^ V ) ) ) ) n Int(Cl(Int(X \ F + ( F ) ) ) ) ) . Then there exists a 
point p such that p G (X \ F + ( V ) ) n Int(Cl(X \ F + ( F ) ) ) and h(p) G V 

(resp. p e (X\ F+(V)) n Cl(Int(Cl(X \ F + ( F ) ) ) ) and f(p) G V, p G 
(X \ F+(V)) n Cl{Int{X \ F+{V))) and s(p) G V, p G (X \ F+(V)) D 
Int(Cl(Int(X \ F+(V)))) and w{p) G V, but it is impossible. 

Assume that (a) is satisfied and let H be a multi-valued selection of 
F, then U.q.CP(x) c u.q.CN(x), U.A.CF(x) C u.A.CN(X), U.P.CF(X) C 

u.p.CN{X), U./3.CF(X) C U.(3.CH(X), SO the minimality (resp. a-minimal i ty , 

p-minimality, /3-minimality) of F at x implies the condition (d). 
The implication (d) => (e) is a consequence of Remark 3. 
Assume that (e) is satisfied and let h be a selection of F. Then h(x) G 

q.Ch{x) (resp. h{x) G a.Ch(x), h(x) G p.Ch(x), h(x) G (3.Ch(x) ) and 
therefore, x G Cl{Int(h'l{V))) (resp. x G Int(Cl(Int(h~\V)))), x G 
Int(Cl(h-^(V))), x G Cl{Int{Cl{h-l{V))))) for each open set containing 
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h(x) that means the quasi-continuity (resp. a-continuity, pre-continuity, 
/3-continuity) of h at x and proves (c). The proof is complete. 

C O R O L L A R Y 8 . A single-valued function f : (X, R) —• (Y, T*) is a-con-
tinuous (resp. quasi-continuous, pre-continuous, f3-continuous) at a point 
x G X if and only if f ( x ) G a.CF(x) (resp. f ( x ) G q.CF(x) [35, Proposition 
2], f(x)ep.Cf(x), f(x)e/3.Cf(x) ). 

T H E O R E M 9 . Let ( Y , T * ) be a Hausdorff topological space and let 
H : (X,T) —> (Y,T*) be a l.p.c. (resp. l.a.c., l.s.c. ) at a point x G X 
multi-valued selection of a minimal (resp. (3-minimal, Cl-minimal) multi-
function F : (X,T) —» (y,T*), then F(x) = H(x). Moreover, if (Y,T*) is 
regular, then F is u.s.c. at x. 

P r o o f . Suppose that F(x) <f. H(x), let y G F(x) \ H(x) and let 2 G H(x). 
Since (Y, r*) is Hausdorff, then there exist disjoint open sets V and W such 
that y G V and z G W. Since H is l.p.c. (resp. l.a.c., l.s.c.) at x, we have 
x G Int(Cl(H~{W))) (resp. x G Int(Cl(Int(H~(W)))), x G Int{H~{W))) 
and, by the minimality (resp. /^-minimality, Cl-minimality) of F, x G 
Cl(Int(F+(V))) (resp. x G Cl(Int(Cl(F+{V)))), x G Cl(F+{V))). So, 
by H C F we have x G Cl(Int(H+ (V))) (resp. x G Cl(Int(Cl(H+(V)))), 
x G Cl(H+(V)) ) and consequently Int{Cl{H'(W)))nCl{Int{H+(V))) ^ 0 
(resp. Int(Cl{Int{H~{W)))) n Cl{Int{Cl(H+(V)))) ^ 0, Int(H~{W)) D 
Cl(H+(V)) + 0) which implies H~(W) DH+(V) ± 0 and gives a contradic-
tion. 

For the second part of the proof suppose that F is not u.s.c. at x. Then 
there exists an open set Vo such that F(X) C Vo and x G Cl(X \ F+(VO)). 
Let y* G H(x) and let WQ be an open set such that y* G Wo C CI (Wo) C 
Vo- Since H is l.p.c. (resp. l.a.c., l.s.c.) at a point x, we have x G 
Int(Cl(H~(W0))) (resp. x G Int(Cl(Int(H~(W0)))), x G Int(H~(W0))). 
So there is an p G Int(Cl(H-(W0))) (resp. p G Int(Cl(Int(H~(WQ)))), 
p G Int(H~(W0))) satisfying F(p) £ V0. This gives F(p) n (Y \ Cl(W0)) ^ 
0 and, by the minimality (resp. /3-minimality, Cl-minimality) of F, p G 
Cl(Int(F+(Y\Cl(W0)))) (resp. p G Cl(Int(Cl(F+(Y \ Cl(W0))))), p G 
Cl(F+(Y \ Cl(W0)))). Since H C F, p G Cl(Int(H+(Y \ Cl(W0)))) (resp. 
p G Cl(Int(Cl(H+(Y \ CZ(Wo))))), p G Cl(H+(Y \ CZ(W0)))) and 
consequently, Int(Cl(H~(WQ))) n Cl(Int(H+(Y \ Cl(W0)))) ± 0 (resp. 
Int(Cl(Int(H-(W0))))nCl(Int(Cl(H+(Y\Cl(W0))))) ± 0, Int(H~(W0))r) 
Cl(H+(Y\Cl(W0))) jt 0) which gives H~(W0) f)H+(Y\Cl(W0)) ± 0. This 
is a contradiction and the proof is complete. 

C O R O L L A R Y 1 0 . Let (Y,T*) be a Hausdorff topological space and let f : 
(X,T) —» (Y,T*) be a selection of a multifunction F : (X,r) —> (Y, r*). If 
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one of the following conditions is satisfied, then F(x) = {/(x)}. Moreover, 

if (Y,T*) is regular, then F is continuous at x. 

(a) f is pre-continuous at x and F is minimal; 

(b) f is a-continuous at x and F is (3-minimal; 

(c) / is continuous at x and F is Cl-minimal. 

COROLLARY 11. ([16, Theorem 2.]) Let Y be a Hausdorff topological space. 

If f is a selection of minimal multifunction F and f is continuous at a point 

x G X, then F(x) — {f(x)}. Moreover, if Y is regular, then F is continuous 

at x. 

In [11] and [4] the following sets were used to investigate certain forms of 
lower semicontinuity of multifunctions F from a topological space ( X , r ) 
to a metric space (Y,d ) : Fe(x) = {y G Y : there exists an open set 
U C X containing x such that d(y,F(p)) < e for all p € 17} and FQ(X) = 

n { F £ ( X ) : e > 0 } , where d(y, F(p)) = inf {d(y, z) : z G F(p)}. 

It is easy to show that FO(x) = l.c.Cp(x). 

F is called almost lower semicontinuous at x, if 

Fe{x) + 0 for all e > 0. [6] 

It is easy to see that the property described above is equivalent to the 
following: 

(1) x G | J {lnt(F~(B(y,e))) :y€Y} for all e > 0, 

where B(y, e) denotes the open ball with center at y and radius e. 
The following concept was introduced in [38]: 
A multifunction F : (X, r ) —> (Y, d) is quasi-lower semicontinuous at 

x € X, if for every e > 0 there exist a point y £ F(x) and an open set U 

such that x € U and F(p) n B(y, e) ^ 0 for all peU. 

It is obvious, that this condition is equivalent to the following: 

(2) x G ( J {lnt(F~(B{y,e))) : y € F ( x ) } for all e > 0. 

In [11] it was proved that the conditions (1) and (2) are equivalent. 
However, it is easy to see that the following two conditions are not in 

general equivalent 

(3) x € ( J {lnt(F~(V)) : V G V } for any open covering V of Y, 

(4) x G ( J {lnt(F~ ' (V ) ) : V G V } for any open covering V of F(x), 

In [10], the term "almost lower semicontinuous" was applied to the multi-
functions F : (X,T) —> (Y,T* ) satisfying the condition (4). According to (2), 
we can name this type of continuity by quasi-lower semi continuity (briefly 
Q-l.s.c.). Of course, the conditions (2) and (4) in general are not equivalent. 
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If a single-valued function / : (X,T) —> (Y, T*) is treated as a multi-
function F : (X, T) —> (V, r * ) given by F(x) = {F(x)}, then the condition 
(4) is equivalent to the continuity but the condition (3) is equivalent to the 
Ti-continuity [7] of f at x given by the following property: 

x e ( J { / n i ( / _ 1 ( F ) ) : V G V } for any open covering V of (F, r*) . 

So, it is possible to treat the condition (3) as some generalization of 
T\-continuity into the multifunctions. 

A multifunction F : (X, r ) —> (Y, R*) is said to be u-t-cliquish (resp. 
1-t-cliquish) [9] at a point x G X if x G Cl{(J {Int(F+(V)) : V G V } ) ) (resp. 
x G CL{|J {Int(F~(V)) : V G V } ) ) for any open covering V of (Y, T*). 

Such conditions are some generalizations of the concept of Ti-cliquishness 
defined as follows [32]: 

A single-valued function / : (X,T) (Y,T* ) is said to be Ti-cliqiush at 
a point x G X if x G C7(|J {lnt(f~1(V)) : V G V } ) for any open covering V 
of ( ! > * ) . 

The following forms of cliquishness were investigated in [33]: 
A single-valued function / : (X,T) —> ( Y , T * ) is said to be x1-a-cliquish 

(resp. -̂'̂ -s-cliqxaish., pre x1-a-cliquish, pre x1-s-cliquish) at a point x G X 

if x G ( J { I n t { C l { I n t { f ~ l { V ) ) ) ) : V G V } (resp. x G : 
V GV},XE ( J { I n t { C l { R \ V ) ) ) : V G V } , x G U { C l { I n t ( C l { f - \ V ) ) ) ) : 

V G V } ) for any open covering V of (Y, r*) ; (see [33, Definition 2.1., Propo-
sition 2.3. (iii), Diagram 3.13]). 

DEFINITION 12. A multifunction F : {X,T) —> (Y ,T* ) is said to be 

(a) u-t-a-cliquish (resp. u-t-q-cliquish, u-t-p-cliquish, u-t-/3-cliquish) at a 
point x E X if x € \J {Int{Cl{Int(F+{V)))) : V G V } (resp. x G 
U{Cl(Int(F+(V))) : V G V } , x G |J {Int(Cl(F+(V))) : V G V } , x G 
|J {Cl(Intlci(F+(V)))) : V G V } ) for any open covering V of (Y ,T* ) ; 

(b) 1-t-a-cliquish (resp. 1-t-q-cliquish, 1-t-p-cliquish, l-t-/3-cliquish) at 
a point x E X if x E (J {Int(Cl(Int(F~(V)))) : V G V } (resp. x G 
(J {Cl(Int(F~{V))) : V G V } , x G |J {Int{Cl{F-(V))) : V G V } , x G 
U { C l ( I n t ( C l { F ~ ( V ) ) ) ) : V G V } ) for any open covering V of (Y,r* ) . 

PROPOSITION 13. For any multifunction F : (X,T) —> (Y,T*), the follow-

ing hold: 

(a) F is u-t-a-cliquish (resp. u-t-q-cliquish, u-t-p-cliquish, u-t-(3-cliquish) at 

a point x G X if and only if U.OC.CF(X) ^ 0 (resp. u.q.CP{x) ^ 0, 
u.p.CF(x) ^ 0, U.(3.Cf(X) + 0 ) ; 

(b) F is l-t-a-cliquish (resp. l-t-q-cliquish, l-t-p-cliquish, l-t-ft-cliquish, l-

t-continuous) at a point x G X if and only if 1.(X.CF{X) / 0 (resp. 

l.q.CF(x) ± 0, l.p.CF(x) + 0, l.p.CF(x) ± 0, l.c.CF(x) ± 
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Proof, (a). Assume that F is u-t-a-cliquish (resp. u-t-q-cliquish, u-t-p-
cliquish, u-t-/?-cliquish) at a point x G X and let u.a.Cp(x) = 0 (resp. 
u.q.CF(x) = 0, u.p.Cf(x) = 0, U./3.CF(X) = 0). Then for every y G Y there 
exists an open set Vy with y G Vy such that x (fi Int(Cl(Int(F+ (Vy)))) (resp. 
x i Cl(Int(F+(Vy))), x i Int(Cl(F+ (Vy))), x £ Cl(Int(Cl{F+(Vy))))). 

The family V = {Vy : y E Y} forms an open covering of Y such that x ^ 

|J {Int(Cl(Int(F+(V)))) :VeV} (resp. x {Cl(Int(F+(V))) : V G V} , 
x i |J {Int(Cl(F+(V))) : V G V} , x ^ (J {Cl(Int(Cl(F+(V)))) : V G V} ) , 
that gives a contradiction. 

The proof of the case (b) is analogous. 

COROLLARY 14. A single-valued function f : (X, r ) —• (Y, T*) is t-a-

cliquish (resp. t-q-cliquish, t-p-cliquish, t-¡3-cliquish) at a point x G X if and 

only ifa.Cf (x) £ 0 (resp. q.Cf(x) + 0, p.Cf(x) ± 0, 0.Cf(x) ± 0;. 

For a given single-valued function f from a topological space (X, r) to a 
metric space (Y, d) it is consider the following types of cliquishness: 

/ is cliquish [5], [36] (resp. q-cliquish [33, Definition 2.1., Proposition 
2.3. (i)]) at a point x G X if x G C7(U{/ni (/ - 1 (^ ) ) : V G V£ } ) (resp. x G 
U{Cl(Int(f ^(V))) : V G V£ } ) for any e > 0, where Ve = {B(y,e) : y G Y } . 

Since i-g-cliquishness of / : (X, r ) —> (Y, d) implies its q-cliquishness, 
from Corollary 14 we have the following simple result: 

COROLLARY 15. ([35, Proposition 3]) For any single-valued function 

f : (X,T) —> (Y,d), the condition q.CF(x) = 0 implies cliquishness of f at x. 

Now, we have the following definition based on the notion of quasi-lower 
semi continuity (property (4)). 

DEFINITION 16. A multifunction F : (X,T) —> (Y, r* ) is said to be 

(a) Q-u-a.cliquish (resp. Q-u-q.cliquish, Q-u-p.cliquish, Q-U-/3.cliquish) at 
a point x G X if x G \J{Int{Cl(Int(F+(V)))) : V G V } (resp. x G 
\J{Cl(Int(F+{V))) : V G V} , x G \J{Int(Cl(F+(V))) : V G V} , x G 
U { C l { I n t ( C l ( F + ( V ) ) ) ) : V G V } ) for any open covering V of F(x); 

(b) Q-l-ct.cliquish (resp. Q-l-q.cliquish, Q-l-p.cliquish, Q-1-/3.cliquish) at a 
point x G X if x G [ J { I n t ( C l ( I n t ( F ~ ( V ) ) ) ) : V G V } (resp. x G 
( J { C l ( I n t ( F ~ ( V ) ) ) : V G V}, x G \J{Int(Cl(F-(V))) : V G V} , x G 
U { C l ( I n t ( C l ( F - { v ) ) ) ) : V G V } ) for any open covering V of F(x). 

PROPOSITION 17. For any multifunction F : (X,T) —> (Y, R*), the follow-
ing hold: 

(a) F is Q-u-a-cliquish (resp. Q-u-q-cliquish, Q-u-p-cliquish, Q-u-(3-cliquish) 
at a point x G X if and only if F(x) fl u.a.Cp(x) ^ 0 (resp. F(x) fl 
u.q.CF(x) ± 0, F(x) f l u.p.CF{x) + 0, F(x) n u.f3.CF(x) ± %); 
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(b) F is Q-l.s.c (resp. Q-l-a-cliquish, Q-l-q-cliquish, Q-l-p-cliquish, Q-1-/3-

cliquish) at a point x G X if and only if F(x) fl l.c.CF(x) ^ 0 (resp. 

F(x) n l.a.CF(x) ^ 0, F(x) n l.q.CF(x) / 0, F(x) n l.p.CF(x) ± 0, 
F(x) n l.0.CF(x) ± 0). 

Proof, (a). Assume that F is Q-u-a-cliquish (resp. Q-u-q-cliquish, Q-u-
p-cliquish, Q-u-/9-cliquish) at a point x G X and let F(x) fl u.a.CF(x) = 0 
(resp. F(x)R\u.q.CF(x) = 0, F(x) ilu.p.CF(x) = 0, F(X)C\U.(3.Cf(X) = 0 ). 
Then for every 2 G F(x) there exists an open set VZ such that z G VZ and x ^ 

Int(Cl(Int(F+(Vz)))) (resp. x Cl(Int(F+(Vz))), x £ Int(Cl{F+(VZ))), 

x i Cl(Int{Cl(F+(Vz))))). The family V = {Vz : z G F ( x ) } is an open 
covering of F(x) satisfying x $ [j{Int(Cl(Int(F+ (V)))) : V G V } (resp. 
x $ ( J { C l ( I n t ( F + ( V ) ) ) : V G V } , x £ = V G V } , 
x i U{Cl(Int(Cl(F+(V)))) : V G V}),that gives a contradition. 

Now, assume that z G u.a.CF(x) (resp. z G u.q.CF(x), z G u.p.CF(x), 

z G u.p.CF(x)) for some z G F(x). Then for any open covering V of F(x) 

there exists an open set V G V such that z G V and consequently, x G 
Int(Cl(Int(F+{V)))) (resp. x G Cl(Int(F+{V))), x G Int(Cl(F+(V))), 

x G Cl\lnt{Cl{F+(V))))). This implies that F is Q-u-a-cliquish (resp. Q-
u-q-cliquish, Q-u-p-cliquish, Q-u-/?-cliquish) at x. 

The proof of the case (b) is analogous. 

REMARK 18. If F is u-t-a-cliquish (resp. u-t-q-cliquish, u-t-p-cliquish, 
u-t-/3-cliquish, l-t-a-cliquish, 1-t-q-cliquish, 1-t-p-cliquish, l-t-/3-cliquish) at 
every point x G X, then by Proposition 13, u.a.CF(x) (resp. u.q.CF(x), 

u.p.CF(x), U./3.Cf(X), l.a.CF(x), l.q.CF(x), l.p.CF(x), u.j3.CF(x), l.CF(x)) 

can be treated as the value of the multifunction x —> u.a.CF(x) (resp. x —> 

u.q.CF(x), x —> u.p.CF(x), x —> U.(3.Cf(X), X —> l.a.CF(x), x —> l.q.CF(x), 

x —• l.p.CF(x), x —> l.(3.CF(x), x —> l.CF(x)) at the point x. 

THEOREM 19. Let F be a multifunction from a topological space (X,T) to 

a regular topological space (Y,T*). Then the following statements hold: 

(a) The multifunction u.q.CF, l.q.CF, u.(3.CF and l.f3.CF are minimal with 

closed graphs. 

(b) The multifunction u.p.CF, l.p.CF, u.a.CF and l.a.CF are a-minimal 

with closed values. 

Proof, (a). Let V be an open subset of Y. At first we will show that 

(5) ( u . q . C F ) ~ ( V ) C Cl(Int(l.p.CF)+(V)). 

Let xE (u.q.CF)~(V) and suppose, on the contrary, x^Cl(Int(l.p.CF)+(V)). 

Then u.q.CF(x) f)V ^ 0 and, by the regularity of Y, there is an open set W 

such that u.q.CF(x)nW + 0 and Cl(W) C V. Thus x G Cl(Int(F+(W)))D 
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Int(Cl(X \ {l.(3.CF)+(V)) and, consequently there exists p G Int{F+(W)) 
such that l.0.CF{p) n (Y \ Cl{W)) ± 0. We have p G Int(F+(W)) D 
Cl(Int(Cl(F~{Y\Cl(W))))) which impies that F+{W)nF~{Y\Cl(W)) ^ 0 
but this is impossible. 

Now we show that 

(6) (l.p.CF)~(V) C Cl(Int(u.q.CF)+(V)). 

If there exists z G (l.0.CF)~(V) \ Cl(Int(u.q.CF)+(V)), then by the 
regularity of Y we have z G Cl(Int(Cl(F~(W*)))) and z € Int{Cl(X \ 
(•u.q.CF)+{V))) for some open set W* such that l.0.CF(z) n W* ^ 0 and 
Cl(W*) C V. Consequently, there exists a point s G Int(Cl(F~(W*))) 
such that u.q.CF(s) n (Y \ Cl(W*)) + 0. So s G Int(Cl(F~(W*))) n 
Cl(Int(F+(Y \ Cl(W*)))) which gives a contradiction. 

It is clear that Cl(Int(l./3.CF)+(V)) C Cl(Int(l.p.CF)~(V)). Thus, 
combining (5) and (6) we have (u.q.CF)~(V) C Cl{Int(u.q.CF)+(V)) which 
means that u.q.CF is minimal. 

Analogously, since Cl(Int(u.q.CF)+(V)) C Cl{Int{u.q.CF)~(V)), then 
(6) and (5) simply (l.0.CF)~(V) C Cl(Int(l.(3.C£(V))) which means that 
l./3.CF is minimal. 

Now we show that 

(7) ( l . q .C F ) - (V ) C Cl(Int(u.f3.CF)+(V)), 

and 

(8) (l.0.CF)~(V) C Cl{Int{l.q.CF)+{V)). 

For this purpose we first assume that there exists w G ( l .q .CF)~(V) \ 
Cl(Int(u.p.CF)+(V)), then by the regularity of Y we have 

w G Cl(Int(F~(V*))) and w G Int(Cl(X \ (u.0.CF)+(V))) 

for some open set V* such that l.q.CF(w) and Cl{V*) C V. Then 
there exists a point a G Int(F~(V*)) such that u.0.CF(a)f](Y\Cl(V*)) ^ 0 
and consequently a G Int{F~(V*)) n Cl{Int(Cl(F+(Y \ Cl(V*))))). Thus 
F~(V*) n F+(Y \ Cl(V*)) + 0 which is impossible, so condition (7) holds. 

In the second part we assume that there exists a point s G (u.0.CF)~ (V)\ 
Cl(Int(l.q.CF)+(V)). By the regularity of Y, there exists an open set G such 
that u.0.CF(s)nG + 0 and Cl(G) C V. Then s G Cl(Int(Cl(F+{G)))) and 
s G Int{Cl(X\l.q.CF)+(V)). Then there exists a point b G Int(Cl{F+(G))) 
such that l.q.CF(b)f](Y\Cl(G)) ^ 0 and, consequently b G Int(Cl(F+(G))) 
n Cl(Int(F~(Y \ Cl(G)))). Thus F+(G) n F~(Y \ Cl(G)) ± 0 which is 
impossible, so condition (8) holds. 

It is clear that Cl(Int(u.0.CF)+(V)) C Cl(Int(u.0.CF)~(V)). So, by (8) 
and (7) we have ( l .q .CF)~{V) C Cl(Int(l.q.CF)+(V)), so l.q.CF is minimal. 
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Since Cl(Int(l.q.CF)+(V)) C Cl(Int(l.q.CF)~ (V)), combining (8) and 
(7) we have (u./3.CF)~(V) C Cl(Int(u.0.CF)+(V)), so u.p.Cp is minimal. 

Now, to prove the second part of (a), let (s,z) G Cl(Gr(u.q.CF)) (resp. 
(s,z) G Cl(Gr(l.q.CF)), (s,z) G Cl{Gr{u.(3.CF)), (s,z) G Cl(Gr(l./3.CF)) ) 
and let (U, V ) be a pair of open subsets such that (s, z) G U xV. Then there 
are x G U and y £ V such that y G u.q.CF(x) (resp. y G l.q.CF(x), y G 
U./3.Cf(X), y G l.(3.CF(X) ) and consequently, { 7 n / n i ( F + ( F ) ) ± 0 (resp. C/n 
Int(F~(V)) / 0, [/ n / n i ( C 7 ( F + ( V ) ) ) ^ 0, [/ n Int(Cl(F~(V))) ± 0). So, 
s G C / ( / n i ( F + ( F ) ) ) (resp. 5 G C Z ( / n i ( F - ( F ) ) ) , s G Cl(Int(Cl(F+(V)))), 
s G Cl(Int{Cl(F {V)))) ). This proves that 2 G u.q.CF(s) (resp. z G 
l.q.CF(s), z G U./3.Cf(S), Z G L(3.Cf(S)) and consequently, that Gr(u.q.CF) 
(resp. Gr(l.q.CF), Gr(u.0.CF), Gr(l.(3.CF) ) is closed, 

(b). Let V be an open subset of Y. We will show that 

(9) (u.p.CF)~(V) C Int(l.q.CF)+{V). 

Suppose, on the contrary that there exists a point x G (u.p.CF)~(V) \ 
Int(l.q.CF)+(V). Then x G Cl{X \ (l.q.CF)+{V)) and, by the regularity of 
Y, there exists an open set W such that u.p.CF(x) H W ^ 0 and Cl(W) C V. 
So x G Cl(X \ (l.q.CF)+(V)) n Int{Cl{F+(W))) and, consequently there 
exists a point p G Int(Cl(F+(W))) such that l.q.CF(p)n(Y\Cl(W)) ± 0. So 
p G Int(Cl(F+(W)))nCl(Int(F-(Y\Cl(W)))) which gives a contradiction. 

Since 
Int(l.q.CF)+(V) C Int(l.q.CF)~(V) 

and 
(u./3.CF)+(V) C ( u . p . C F ) + ( V ) , 

by (7) and (9) we have (u.p.CF)~(V) C Int{Cl(Int(u.p.CF)+(V))), so 
u.p.CF is a-minimal. 

Now we show that 

(10) (u.a.CF)~(V) C Int(l.p.CF)+(V). 

If there exists 2 G (u.a.C'p(V) \ Int{l.fi.CF)+{V), then by the regular-
ity of Y we have z G Int(Cl(Int(F+(V*)))) n Cl(X \ {l.(3.CF)+(V)) for 
some open set V* such that u.a.CF(z) fl V* ^ 0 and Cl(V*) C V. Conse-
quently, there exists a point s G Int(Cl(Int(F+{V*)))) such that l.p.Cp(s)f] 
(Y \ Cl(V*)) ^ 0. Thus s G Int(Cl(Int(F+(V*)))) n Cl(Int(Cl(F~(Y \ 
Cl(V*))))) which gives a contradiction. 

It is clear that Int(l./3.CF)+(V) C Int{l.p.CF)~(V) and ( • u . q . C F ) + { V ) C 
(•u.a.CF)+(V). Thus (10) and (6) imply that 

(u.a.CF)~{V) C Int(Cl(Int(u.a.CF)+{V))), 

so u.a.CF is a-minimal. 
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We will prove finally, that 

(11) (,l.p.CF)~(V) C Int(u.q.CF)+(V) 
and 
(12) (l.a.CF)-(V) C Int(u.ß.CF)+(V). 

In the first case we assume that there exists a point 2 € ( l .p.CF) (V) \ 
Int(u.q.CF)+(V), then by the regularity of Y we have z G Int(Cl(F~(W*))) 
n C l ( X \ ( u . q . C F ) + ( V ) ) for some open set W* such that l.p.CF(z)nW* ^ 0 
and Cl{W*) C V. Then there exists a point a G Int{Cl(F~(W*))) such that 
u.q.CF(a)n(Y\Cl{W*)) ± 0. Thus a G Int(Cl(F-(W*)))nCl(Int{F+(Y\ 
Cl(W*)))) which gives a contradiction. 

In the second part we assume that there exists a point w G (l.a.CF)~(V)\ 
Int(u.(3.CF)+(V). By the regularity of Y, there exists an open set G* such 
that l.a.CF{w)nG* ^ 0 and Cl{G*) C V. Then w € Int(Cl(Int(F~(G*)))) 
fl Cl(X \ (u.p.CF)+(V)) and, consequently there exists a point b E 
Int(Cl(Int(F~(G*)))) such that u.0.CF(b) D (Y \ Cl(G*)) ± 0. Thus 
b e Int(Cl(Int{F-(G*)))) n Cl(In(Cl(F+(Y \ Cl(G*))))) which gives a 
contradiction. 

by (11) and (5) we have (l.p.CF)~(V) C Int(Cl(Int(l.p.CF)+(V))), so 
l.p.CF is «-minimal. 

It is clear that Int(u.p.CF)+(V) C Int{u.(3.CF)~(V) and ( l . q .C F ) + (V) 
C ( l . a .C F ) + (V ) . Thus (12) and (8) imply that ( l . a .C F )~(V) C 
Int(Cl(Int(l.a.CF)+(V))), so l.a.CF is a-minimal. 

To prove the second part of (b) it is enough to see that VC\u.p.CF(x) 0 
(resp. VDl.p.CF(x) / 0, Vf)u.a.CF(x) ^ 0, Vill.a.CF(x) ^ 0 ) implies x G 
Int(Cl(F+(V))) (resp. x G Int(Cl(F~(V))), x G Int(Cl(Int(F+(V)))), 
x G Int(Cl(Int(F~(V)))) ). So the proof of the theorem is complete. 
C O R O L L A R Y 2 0 . Let f be a single-valued function from a topological space 
(X,T) to a regular topological space (Y,T*). Then the following statements 
hold: 

(a) The multifunction q-Cj [16, Theorem 3] and (3.Cf are minimal with 
closed graphs. 

(b) The multifunction p.Cf and a.Cf are a-minimal with closed values. 

C O R O L L A R Y 2 1 . ([16, Theorem 5]) Let (Y, r*) be a regular topological space. 
A multifunction F : (X , r ) —> (Y, r*) is minimal with closed graph if and only 

Since 
Int(u.q.CF)+(V) C Int(u.q.CF)~(V) 

and 
(l.ß.CF)+(V) c (l.p.CF)+(V), 
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if for any single-valued selection h of F the equality F(x) = q.Ch{x) holds 
for each x € X. 

Proof. Let F be minimal with closed graph and let x G X. From Theorem 
7 (e) we have F(x) C q.CH(x) and, since q.CH(x) C CH(x) C I.CF(X), from 
Remark 2, we have F(x) C q.Ch(x). Conversely, if F = q.Ch, then F is 
minimal with closed graph by Corollary 20. 
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