

Takashi Noiri, Ahmad Al-Omari, Mohd. Salmi Md. Noorani

WEAK FORMS OF OPEN AND CLOSED FUNCTIONS
VIA b - θ -OPEN SETS

Abstract. In this paper, we introduce and study two new classes of functions called weakly b - θ -open functions and weakly b - θ -closed functions by using the notions of b - θ -open sets and b - θ -closure operator. The connections between these functions and other related functions are investigated.

1. Introduction

In 1996, Andrijević [3] introduced a new class of generalized open sets called b -open sets in a topological space. This class is a subset of the class of β -open sets [1]. Also the class of b -open sets is a superset of the class of semi-open sets [7] and the class of preopen sets [8]. In [4], the authors introduced and investigated θ -preopen functions and θ -preclosed functions by using pre- θ -interior and pre- θ -closure. In [5], weakly semi- θ -open functions and weakly semi- θ -closed functions are similarly investigated. The purpose of this paper is to introduce and investigate the notions of weakly b - θ -open functions and weakly b - θ -closed functions. Weak b - θ -openness (resp. weak b - θ -closedness) is a generalization of both θ -preopenness and weak semi- θ -openness (resp. θ -preclosedness and weak semi- θ -closedness). We investigate some of the fundamental properties of this class of functions. For the benefit of the reader, we recall some basic definitions and known results. Throughout the paper, X and Y (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed unless otherwise stated. Let A be a subset of X . The closure of A and the interior of A will be denoted by $Cl(A)$ and $Int(A)$, respectively.

DEFINITION 1.1. A subset A of a space X is said to be b -open [3] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.

2000 *Mathematics Subject Classification*: 54C05, 54C08, 54C10.

Key words and phrases: b -open set, b - θ -open set, weakly b - θ -open function, weakly- b - θ -closed function.

The complement of a b -open set is said to be b -closed. The intersection of all b -closed sets containing $A \subseteq X$ is called the b -closure of A and shall be denoted by $bCl(A)$. The union of all b -open sets of X contained in A is called the b -interior of A and is denoted by $bInt(A)$. A subset A is said to be b -regular if it is b -open and b -closed. The family of all b -open (resp. b -closed, b -regular) subsets of a space X is denoted by $BO(X)$ (resp. $BC(X)$, $BR(X)$) and the collection of all b -open subsets of X containing a fixed point x is denoted by $BO(X, x)$. The sets $BC(X, x)$ and $BR(X, x)$ are defined analogously.

DEFINITION 1.2. A point $x \in X$ is called a b - θ -cluster [10] (resp. θ -cluster [14]) point of A if $bCl(U) \cap A \neq \emptyset$ (resp. $Cl(U) \cap A \neq \emptyset$) for every b -open (resp. open) set U of X containing x .

The set of all b - θ -cluster (resp. θ -cluster) points of A is called the b - θ -closure (resp. θ -closure) of A and is denoted by $bCl_\theta(A)$ (resp. $Cl_\theta(A)$). A subset A is said to be b - θ -closed (resp. θ -closed) if $bCl_\theta(A) = A$ (resp. $Cl_\theta(A) = A$). The complement of a b - θ -closed (resp. θ -closed) set is said to be b - θ -open (resp. θ -open). The b - θ -interior (resp. θ -interior) of A is defined by the union of all b - θ -open (resp. θ -open) sets contained in A and is denoted by $bInt_\theta(A)$ (resp. $Int_\theta(A)$). The family of all b - θ -open (resp. b - θ -closed) sets of a space X is denoted by $B\theta O(X, \tau)$ (resp. $B\theta C(X, \tau)$).

DEFINITION 1.3. A subset A of a space X is said to be α -open [9] (resp. semi-open [7], preopen [8], β -open [1] or semi-preopen [2]) if $A \subseteq Int(Cl(Int(A)))$ (resp. $A \subseteq Cl(Int(A))$, $A \subseteq Int(Cl(A))$, $A \subseteq Cl(Int(Cl(A)))$).

The following basic properties of the b -closure are useful in the sequel:

LEMMA 1.4. ([3]) For a subset A of a space X , the following properties hold:

- (1) $bInt(A) = sInt(A) \cup pInt(A)$;
- (2) $bCl(A) = sCl(A) \cap pCl(A)$;
- (3) $bCl(X - A) = X - bInt(A)$;
- (4) $x \in bCl(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in BO(X, x)$;
- (5) $A \in BC(X)$ if and only if $A = bCl(A)$;
- (6) $pInt(bCl(A)) = bCl(pInt(A))$.

LEMMA 1.5. ([2]) For a subset A of a space X , the following properties are hold:

- (1) $\alpha Int(A) = A \cap Int(Cl(Int(A)))$;
- (2) $sInt(A) = A \cap Cl(Int(A))$;
- (3) $pInt(A) = A \cap Int(Cl(A))$.

PROPOSITION 1.6. ([10]) Let A and A_α ($\alpha \in \Lambda$) be any subsets of a space X . Then the following properties hold:

- (1) if $A_\alpha \in B\theta O(X)$ for each $\alpha \in \Lambda$, then $\cup_{\alpha \in \Lambda} A_\alpha \in B\theta O(X)$;
- (2) if A is b -closed, then $bInt(A) = bInt_\theta(A)$;
- (3) $bCl_\theta(A)$ is b - θ -closed;
- (4) $x \in bCl_\theta(A)$ if and only if $V \cap A \neq \emptyset$ for each $V \in BR(X, x)$;
- (5) A is b - θ -open in X if and only if for each $x \in A$ there exists $V \in BR(X, x)$ such that $x \in V \subseteq A$.

2. Characterizations of weakly b - θ -open functions

DEFINITION 2.1. A functions $f : X \rightarrow Y$ is said to be b - θ -open if for each open set U of X , $f(U)$ is b - θ -open.

DEFINITION 2.2. A functions $f : X \rightarrow Y$ is said to be weakly b - θ -open if $f(U) \subseteq bInt_\theta(f(Cl(U)))$ for each open set U of X .

Clearly, every b - θ -open function is also weakly b - θ -open, but the converse is not generally true.

EXAMPLE 2.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then $BO(X) = (X, \tau)$. Let $f : X \rightarrow X$ be a function defined by $f(a) = c$, $f(b) = b$ and $f(c) = a$. Then f is a weakly b - θ -open function which is not b - θ -open, since for $U = \{a\}$, $f(U)$ is not b - θ -open in X .

THEOREM 2.4. For a function $f : X \rightarrow Y$, the following conditions are equivalent:

- (1) f is weakly b - θ -open;
- (2) $f(Int_\theta(A)) \subseteq bInt_\theta(f(A))$ for every subset A of X ;
- (3) $Int_\theta(f^{-1}(B)) \subseteq f^{-1}(bInt_\theta(B))$ for every subset B of Y ;
- (4) $f^{-1}(bCl_\theta(B)) \subseteq Cl_\theta(f^{-1}(B))$ for every subset B of Y .

Proof. (1) \Rightarrow (2): Let A be any subset of X and $x \in Int_\theta(A)$. Then, there exists an open set U such that $x \in U \subseteq Cl(U) \subseteq A$. Then, $f(x) \in f(U) \subseteq f(Cl(U)) \subseteq f(A)$. Since f is weakly b - θ -open, $f(U) \subseteq bInt_\theta(f(Cl(U))) \subseteq bInt_\theta(f(A))$. This implies that $f(x) \in bInt_\theta(f(A))$. This shows that $x \in f^{-1}(bInt_\theta(f(A)))$. Thus, $Int_\theta(A) \subseteq f^{-1}(bInt_\theta(f(A)))$, and so, $f(Int_\theta(A)) \subseteq bInt_\theta(f(A))$.

(2) \Rightarrow (3): Let B be any subset of Y . Then by (2), $f(Int_\theta(f^{-1}(B))) \subseteq bInt_\theta(f(f^{-1}(B))) \subseteq bInt_\theta(B)$. Therefore, $Int_\theta(f^{-1}(B)) \subseteq f^{-1}(bInt_\theta(B))$.

(3) \Rightarrow (4): Let B be any subset of Y . Using (3), we have

$$\begin{aligned} X - Cl_\theta(f^{-1}(B)) &= Int_\theta(X - f^{-1}(B)) \\ &= Int_\theta(f^{-1}(Y - B)) \\ &\subseteq f^{-1}(bInt_\theta(Y - B)) \\ &= f^{-1}(Y - bCl_\theta(B)) \\ &= X - f^{-1}(bCl_\theta(B)). \end{aligned}$$

Therefore, we obtain $f^{-1}(bCl_\theta(B)) \subseteq Cl_\theta(f^{-1}(B))$.

(4) \Rightarrow (1): Let V be any open set of X and $B = Y - f(Cl(V))$. By (4), $f^{-1}(bCl_\theta(Y - f(Cl(V)))) \subseteq Cl_\theta(f^{-1}(Y - f(Cl(V))))$. Therefore, we obtain $f^{-1}(Y - bInt_\theta(f(Cl(V)))) \subseteq Cl_\theta(X - f^{-1}(f(Cl(V)))) \subseteq Cl_\theta(X - Cl(V))$. Hence $V \subseteq Int_\theta(Cl(V)) \subseteq f^{-1}(bInt_\theta(f(Cl(V))))$ and $f(V) \subseteq bInt_\theta(f(Cl(V)))$. This shows that f is weakly b - θ -open. ■

THEOREM 2.5. *For a function $f : X \rightarrow Y$, the following conditions are equivalent:*

- (1) f is weakly b - θ -open;
- (2) For each $x \in X$ and each open subset U of X containing x , there exists a b - θ -open set V containing $f(x)$ such that $V \subseteq f(Cl(U))$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and U be an open set in X with $x \in U$. Since f is weakly b - θ -open, $f(x) \in f(U) \subseteq bInt_\theta(f(Cl(U)))$. Let $V = bInt_\theta(f(Cl(U)))$. Then V is b - θ -open and $f(x) \in V \subseteq f(Cl(U))$.

(2) \Rightarrow (1): Let U be an open set in X and let $y \in f(U)$. It follows from (2) that $V \subseteq f(Cl(U))$ for some b - θ -open set V in Y containing y . Hence, we have $y \in V \subseteq bInt_\theta(f(Cl(U)))$. This shows that $f(U) \subseteq bInt_\theta(f(Cl(U)))$. Thus f is weakly b - θ -open. ■

THEOREM 2.6. *For a bijective function $f : X \rightarrow Y$, the following conditions are equivalent:*

- (1) f is weakly b - θ -open;
- (2) $bCl_\theta(f(Int(F))) \subseteq f(F)$ for each closed set F in X ;
- (3) $bCl_\theta(f(U)) \subseteq f(Cl(U))$ for each open set U in X .

Proof. (1) \Rightarrow (2): Let F be a closed set in X . Then we have $f(X - F) = Y - f(F) \subseteq bInt_\theta(f(Cl(X - F)))$, and so $Y - f(F) \subseteq Y - bCl_\theta(f(Int(F)))$. Hence $bCl_\theta(f(Int(F))) \subseteq f(F)$.

(2) \Rightarrow (3): Let U be an open set in X . Since $Cl(U)$ is a closed set and $U \subseteq Int(Cl(U))$, by (2) we have $bCl_\theta(f(U)) \subseteq bCl_\theta(f(Int(Cl(U)))) \subseteq f(Cl(U))$.

(3) \Rightarrow (1): Let V be an open set of X . Then, we have $Y - bInt_\theta(f(Cl(V))) = bCl_\theta(Y - f(Cl(V))) = bCl_\theta(f(X - Cl(V))) \subseteq f(Cl(X - Cl(V))) =$

$f(X - Int(Cl(V))) \subseteq f(X - V) = Y - f(V)$. Therefore, we have $f(V) \subseteq bInt_\theta(f(Cl(V)))$ and hence f is weakly b - θ -open. ■

The proof of the following theorem is straightforward and thus is omitted.

THEOREM 2.7. *For a function $f : X \rightarrow Y$, the following conditions are equivalent:*

- (1) f is weakly b - θ -open;
- (2) $f(U) \subseteq bInt_\theta(f(Cl(U)))$ for each preopen set U of X ;
- (3) $f(U) \subseteq bInt_\theta(f(Cl(U)))$ for each α -open set U of X ;
- (4) $f(Int(Cl(U))) \subseteq bInt_\theta(f(Cl(U)))$ for each open set U of X ;
- (5) $f(Int(F)) \subseteq bInt_\theta(f(F))$ for each closed set F of X .

3. Some properties of weakly b - θ -open functions

THEOREM 3.1. *Let X be a regular space. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is weakly b - θ -open if and only if f is b - θ -open.*

Proof. The sufficiency is clear. For the necessity, let W be a nonempty open subset of X . For each x in W , let U_x be an open set such that $x \in U_x \subseteq Cl(U_x) \subseteq W$. Hence we obtain that $W = \cup\{U_x : x \in W\} = \cup\{Cl(U_x) : x \in W\}$ and $f(W) = \cup\{f(U_x) : x \in W\} \subseteq \cup\{bInt_\theta(f(Cl(U_x))) : x \in W\} \subseteq bInt_\theta(f(\cup\{Cl(U_x) : x \in W\})) = bInt_\theta(f(W))$. Thus f is b - θ -open. ■

Recall that a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be strongly continuous [6] if for every subset A of X , $f(Cl(A)) \subseteq f(A)$.

THEOREM 3.2. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is weakly b - θ -open and strongly continuous, then f is b - θ -open.*

Proof. Let U be an open subset of X . Since f is weakly b - θ -open, $f(U) \subseteq bInt_\theta(f(Cl(U)))$. However, because f is strongly continuous, $f(U) \subseteq bInt_\theta(f(U))$. Therefore $f(U)$ is b - θ -open. ■

A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be contra b - θ -closed if $f(U)$ is a b - θ -open set of Y , for each closed set U in X .

THEOREM 3.3. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a contra b - θ -closed function, then f is weakly b - θ -open.*

Proof. Let U be an open subset of X . Then, we have $f(U) \subseteq f(Cl(U)) = bInt_\theta(f(Cl(U)))$. ■

EXAMPLE 3.4. The converse of Theorem 3.3 does not hold. Example 2.3 shows that a weakly b - θ -open function need not be contra b - θ -closed, since $f(\{b, c\}) = \{a, b\}$ is not b - θ -open in X .

DEFINITION 3.5. ([13]) A space X is said to be hyperconnected if every non-empty open subset of X is dense in X .

THEOREM 3.6. *If X is a hyperconnected space, then a function $f : X \rightarrow Y$ is weakly b - θ -open if and only if $f(X)$ is b - θ -open in Y .*

Proof. The sufficiency is clear. For the necessity observe that for any open subset U of X , $f(U) \subseteq f(X) = bInt_\theta(f(X)) = bInt_\theta(f(Cl(U)))$. Hence f is weakly b -open. ■

DEFINITION 3.7. A function $f : X \rightarrow Y$ is called complementary weakly b - θ -open if for each open set U of X , $f(Fr(U))$ is b - θ -closed in Y , where $Fr(U)$ denotes the frontier of U .

It is clear that if A is closed, then $Int(A) \subseteq sInt(A) = bInt(A) = bInt_\theta(A)$.

THEOREM 3.8. *Let $B\theta O(X, \tau)$ be closed under finite intersection. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is bijective weakly b - θ -open and complementary weakly b - θ -open, then f is b - θ -open.*

Proof. Let U be an open subset in X and $y \in f(U)$. Since f is weakly b - θ -open, by Theorem 2.5, for some $x \in U$ there exists a b - θ -open set V containing $f(x) = y$ such that $V \subseteq f(Cl(U))$. Now $Fr(U) = Cl(U) - U$ and thus $x \notin Fr(U)$. Hence $y \notin f(Fr(U))$ and therefore $y \in V \setminus f(Fr(U))$. Put $V_y = V - f(Fr(U))$. Then V_y is a b - θ -open set since f is complementary weakly b - θ -open. Furthermore, $y \in V_y$ and $V_y = V - f(Fr(U)) \subseteq f(Cl(U)) - f(Fr(U)) = f(Cl(U) - Fr(U)) = f(U)$. Therefore $f(U) = \bigcup\{V_y : V_y \in B\theta O(Y, \sigma), y \in f(U)\}$. Hence by Proposition 1.6, f is b - θ -open. ■

DEFINITION 3.9. ([12]) A function $f : X \rightarrow Y$ is said to be almost open in the sense of Singal and Singal, written as (a.o.S.) if the image of each regular open set U of X is an open set in Y .

DEFINITION 3.10. A function $f : X \rightarrow Y$ is said to be b -closed if for each closed set F of X , $f(F)$ is b -closed set in Y .

THEOREM 3.11. *If $f : (X, \tau) \rightarrow (Y, \sigma)$ is an a.o.S. and b -closed function, then it is a weakly b - θ -open function.*

Proof. Let U be an open set in X . Since f is a.o.S. and $Int(Cl(U))$ is regular open, $f(Int(Cl(U)))$ is open in Y . Since f is b -closed, $f(U) \subseteq f(Int(Cl(U))) \subseteq Int(f(Cl(U))) \subseteq bInt(f(Cl(U))) = bInt_\theta(f(Cl(U)))$. This shows that f is weakly b - θ -open. ■

DEFINITION 3.12. ([1]) A function $f : X \rightarrow Y$ is said to be β -open if the image of each open set U of X is a β -open set.

THEOREM 3.13. *If a function $f : X \rightarrow Y$ is weakly b - θ -open and precontinuous, then f is β -open.*

Proof. Let U be an open subset of X . Then by weak b - θ -openness of f , $f(U) \subseteq bInt_\theta(f(Cl(U)))$. Since f is precontinuous, $f(Cl(U)) \subseteq Cl(f(U))$. Hence we obtain that

$$\begin{aligned} f(U) &\subseteq bInt_\theta(f(Cl(U))) \\ &\subseteq bInt_\theta(Cl(f(U))) \\ &= bInt(Cl(f(U))) \\ &= sInt(Cl(f(U))) \cup pInt(Cl(f(U))) \\ &\subseteq Cl(Int(Cl(f(U)))) \cup Int(Cl(f(U))) \\ &\subseteq Cl(Int(Cl(f(U)))) \end{aligned}$$

which shows that $f(U)$ is a β -open set in Y . Thus f is a β -open function. ■

A topological space X is said to be b - θ -connected if it cannot be written as the union of two nonempty disjoint b - θ -open sets.

THEOREM 3.14. *If $f : X \rightarrow Y$ is a weakly b - θ -open bijective function of a space X onto a b - θ -connected space Y , then X is connected.*

Proof. Suppose that X is not connected. Then there exist non-empty open sets U and V such that $U \cap V = \emptyset$ and $U \cup V = X$. Hence we have $f(U) \cap f(V) = \emptyset$ and $f(U) \cup f(V) = Y$. Since f is weakly b - θ -open, we have $f(U) \subseteq bInt_\theta(f(Cl(U)))$ and $f(V) \subseteq bInt_\theta(f(Cl(V)))$. Moreover U , V are open and also closed. We have $f(U) = bInt_\theta(f(U))$ and $f(V) = bInt_\theta(f(V))$. Hence, $f(U)$ and $f(V)$ are b - θ -open in Y . Thus, Y has been decomposed into two non-empty disjoint b - θ -open sets. This is contrary to the hypothesis that Y is a b - θ -connected space. Thus, X is connected. ■

THEOREM 3.15. *Let X be a regular space. Then for a function $f : X \rightarrow Y$, the following conditions are equivalent:*

- (1) f is weakly b - θ -open;
- (2) For each θ -open set A in X , $f(A)$ is b - θ -open in Y ;
- (3) For any set B of Y and any θ -closed set A in X containing $f^{-1}(B)$, there exists a b - θ -closed set F in Y containing B such that $f^{-1}(F) \subseteq A$.

Proof. (1) \Rightarrow (2): Let A be a θ -open set in X . Since X is regular, by Theorem 3.1, f is b - θ -open and A is open. Therefore $f(A)$ is b - θ -open in Y .

(2) \Rightarrow (3): Let B be any set in Y and A a θ -closed set in X such that $f^{-1}(B) \subseteq A$. Since $X - A$ is θ -open in X , by (2), $f(X - A)$ is b - θ -open in Y . Let $F = Y - f(X - A)$. Then F is b - θ -closed and $B \subseteq F$. Now $f^{-1}(F) = f^{-1}(Y - f(X - A)) = X - f^{-1}(f(X - A)) \subseteq A$.

(3) \Rightarrow (1): Let B be any set in Y . Let $A = Cl_\theta(f^{-1}(B))$. Since X is regular, A is a θ -closed set in X and $f^{-1}(B) \subseteq A$. Then there exists a b - θ -closed set F in Y containing B such that $f^{-1}(F) \subseteq A$. Since F is b - θ -closed,

$f^{-1}(bCl_\theta(B)) \subseteq f^{-1}(F) \subseteq A = Cl_\theta(f^{-1}(B))$. Therefore by Theorem 2.4, f is weakly b - θ -open. ■

4. Weakly b - θ -closed functions

DEFINITION 4.1. A functions $f : X \rightarrow Y$ is said to be b - θ -closed if for each closed set F of X , $f(F)$ is b - θ -closed.

Now, we define the generalized form of b - θ -closed functions.

DEFINITION 4.2. A functions $f : X \rightarrow Y$ is said to be weakly b - θ -closed if $bCl_\theta(f(Int(F))) \subseteq f(F)$ for each closed set F of X .

Clearly, every b - θ -closed function is a weakly b - θ -closed function, but the converse is not generally true.

EXAMPLE 4.3. Let $f : X \rightarrow Y$ be the function from Example 2.3. Then it is shown that f is a weakly b - θ -closed function which is not b - θ -closed, since $f(\{c, b\}) = \{a, b\}$ is not b - θ -closed in X .

THEOREM 4.4. For a function $f : X \rightarrow Y$, the following conditions are equivalent:

- (1) f is weakly b - θ -closed;
- (2) $bCl_\theta(f(U)) \subseteq f(Cl(U))$ for each open set U in X .

Proof. (1) \Rightarrow (2): Let U be an open set in X . Since $Cl(U)$ is a closed set and $U \subseteq Int(Cl(U))$, we have $bCl_\theta(f(U)) \subseteq bCl_\theta(f(Int(Cl(U)))) \subseteq f(Cl(U))$.

(2) \Rightarrow (1): Let F be a closed set of X . Then, we have $bCl_\theta(f(Int(F))) \subseteq f(Cl(Int(F))) \subseteq f(Cl(F)) = f(F)$ and hence f is weakly b - θ -closed. ■

COROLLARY 4.5. A bijective function $f : X \rightarrow Y$ is weakly b - θ -open if and only if f is weakly b - θ -closed.

Proof. This is an immediate consequence of Theorems 2.6 and 4.4. ■

The proof of the following theorem is straightforward and thus is omitted.

THEOREM 4.6. For a function $f : X \rightarrow Y$, the following conditions are equivalent:

- (1) f is weakly b - θ -closed;
- (2) $bCl_\theta(f(Int(F))) \subseteq f(F)$ for each preclosed set F in X ;
- (3) $bCl_\theta(f(Int(F))) \subseteq f(F)$ for each α -closed set F in X ;
- (4) $bCl_\theta(f(Int(Cl(U)))) \subseteq f(Cl(U))$ for each subset U in X ;
- (5) $bCl_\theta(f(U)) \subseteq f(Cl(U))$ for each preopen set U in X .

THEOREM 4.7. For a function $f : X \rightarrow Y$, the following conditions are equivalent:

- (1) f is weakly b - θ -closed;
- (2) $bCl_\theta(f(U)) \subseteq f(Cl(U))$ for each regular open set U in X ;
- (3) For each subset F in Y and each open set U in X with $f^{-1}(F) \subseteq U$, there exists a b - θ -open set A in Y with $F \subseteq A$ and $f^{-1}(A) \subseteq Cl(U)$;
- (4) For each point y in Y and each open set U in X with $f^{-1}(y) \subseteq U$, there exists a b - θ -open set A in Y containing y and $f^{-1}(A) \subseteq Cl(U)$.

Proof. (1) \Rightarrow (2): This is clear by Theorem 4.4.

(2) \Rightarrow (3): Let F be a subset of Y and U an open set in X with $f^{-1}(F) \subseteq U$. Then $f^{-1}(F) \cap Cl(X - Cl(U)) = \phi$ and consequently, $F \cap f(Cl(X - Cl(U))) = \phi$. Since $X - Cl(U)$ is regular open, $F \cap bCl_\theta(f(X - Cl(U))) = \phi$. Let $A = Y - bCl_\theta(f(X - Cl(U)))$. Then A is a b - θ -open set with $F \subseteq A$ and we have $f^{-1}(A) \subseteq X - f^{-1}(bCl_\theta(f(X - Cl(U)))) \subseteq X - f^{-1}f(X - Cl(U)) \subseteq Cl(U)$.

(3) \Rightarrow (4): This is obvious.

(4) \Rightarrow (1): Let F be closed in X and let $y \in Y - f(F)$. Since $f^{-1}(y) \subseteq X - F$, by (4) there exists a b - θ -open set A in Y with $y \in A$ and $f^{-1}(A) \subseteq Cl(X - F) = X - Int(F)$. Therefore $A \cap f(Int(F)) = \phi$, so that $y \notin bCl_\theta(f(Int(F)))$. Thus $bCl_\theta(f(Int(F))) \subseteq f(F)$. Hence f is weakly b - θ -closed. ■

THEOREM 4.8. *If $f : X \rightarrow Y$ is a bijective weakly b - θ -closed function, then for every subset F in Y and every open set U in X with $f^{-1}(F) \subseteq U$, there exists a b - θ -closed set B in Y such that $F \subseteq B$ and $f^{-1}(B) \subseteq Cl(U)$.*

Proof. Let F be a subset of Y and U be an open subset of X with $f^{-1}(F) \subseteq U$. Put $B = bCl_\theta(f(Int(Cl(U))))$. Then B is a b - θ -closed set in Y such that $F \subseteq B$, since $F \subseteq f(U) \subseteq f(Int(Cl(U))) \subseteq bCl_\theta(f(Int(Cl(U)))) = B$. Since f is weakly b - θ -closed, by Theorem 4.6, we have $f^{-1}(B) \subseteq Cl(U)$. ■

Recall that, a set F in a space X is θ -compact [11] if for each cover Ω of F by open sets in X , there is a finite family U_1, \dots, U_n in Ω such that $F \subseteq Int(\cup\{Cl(U_i) : i = 1, \dots, n\})$.

THEOREM 4.9. *If $f : X \rightarrow Y$ is a weakly b - θ -closed function with θ -closed fibers, then $f(F)$ is b - θ -closed for each θ -compact set F in X .*

Proof. Let F be a θ -compact set and $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \phi$ and for each $x \in F$ there is an open set $U_x \subseteq X$ with $x \in U_x$ such that $Cl(U_x) \cap f^{-1}(y) = \phi$. Clearly $\Omega = \{U_x : x \in F\}$ is an open cover of F . Since F is θ -compact, there is a finite family U_{x_1}, \dots, U_{x_n} in Ω such that $F \subseteq Int(A)$, where $A = \cup\{Cl(U_{x_i}) : i = 1, \dots, n\}$. Since f is weakly b - θ -closed, by Theorem 4.7, there exists a b - θ -open $B \subseteq Y$ with $f^{-1}(y) \subseteq f^{-1}(B) \subseteq Cl(X - A) = X - Int(A) \subseteq X - F$. Therefore $y \in B \subseteq Y - f(F)$.

$f(F)$. By Proposition 1.6(1), $Y - f(F)$ is b - θ -open. This shows that $f(F)$ is b - θ -closed. ■

A space (X, τ) is called b - T_2 if for any pair of distinct points x and y in X there exist b -open sets U and V in X containing x and y , respectively, such that $U \cap V = \emptyset$.

THEOREM 4.10. *If $f : X \rightarrow Y$ is a weakly b - θ -closed surjection and all pairs of disjoint fibers are strongly separated, then Y is b - T_2 .*

Proof. Let y and z be two points in Y . Let U and V be open sets in X such that $f^{-1}(y) \in U$ and $f^{-1}(z) \in V$ with $Cl(U) \cap Cl(V) = \emptyset$. Since f is weakly b - θ -closed, by Theorem 4.7, there are b - θ -open sets F and B in Y such that $y \in F$ and $z \in B$, $f^{-1}(F) \subseteq Cl(U)$ and $f^{-1}(B) \subseteq Cl(V)$. Therefore $F \cap B = \emptyset$, because $Cl(U) \cap Cl(V) = \emptyset$ and f is surjective. Since every b - θ -open set is b -open. Then Y is b - T_2 . ■

A subset K of a space X is said to be b -closed relative to X [10] if for every cover $\{V_\alpha : \alpha \in \Lambda\}$ of K by b -open sets of X , there exists a finite subset Λ_0 of Λ such that $K \subseteq \cup\{bCl(V_\alpha) : \alpha \in \Lambda_0\}$.

THEOREM 4.11. *Let $f : X \rightarrow Y$ be a weakly b - θ -closed surjection with compact point inverses and K b -closed relative to Y , then $f^{-1}(K)$ is quasi H -closed relative to X .*

Proof. Let $\{U_\alpha : \alpha \in \Lambda\}$ be an open cover of $f^{-1}(K)$, where Λ is an index set. For each $y \in K$, $f^{-1}(y)$ is compact and $f^{-1}(y) \subseteq \cup_{\alpha \in \Lambda} U_\alpha$. There exists a finite subset $\Lambda(y)$ of Λ such that $f^{-1}(y) \subseteq \cup_{\alpha \in \Lambda(y)} U_\alpha$. Put $U(y) = \cup_{\alpha \in \Lambda(y)} U_\alpha$. Since f is b - θ -closed, by Theorem 4.7, there exists a b - θ -open set $V(y)$ containing y such that $f^{-1}(V(y)) \subseteq Cl(U(y))$. Since $V(y)$ is b - θ -open, by Proposition 1.6, there exists $V_0(y) \in BR(X, y)$ such that $y \in V_0(y) = bCl(V_0(y)) \subseteq V(y)$. Since the family $\{V_0(y) : y \in K\}$ is a cover of K by b -open sets of Y , there exist a finite number of points, say y_1, y_2, \dots, y_n of K such that $K \subseteq \cup_{i=1}^n bCl(V_0(y_i))$; hence $K \subseteq \cup_{i=1}^n V(y_i)$. Therefore, we obtain $f^{-1}(K) \subseteq \cup_{i=1}^n f^{-1}(V(y_i)) \subseteq \cup_{i=1}^n Cl(U(y_i)) = \cup_{i=1}^n \cup_{\alpha \in \Lambda(y_i)} Cl(U_\alpha)$. This shows that $f^{-1}(K)$ is quasi H -closed relative to X . ■

Acknowledgments. This work is financially supported by the Ministry of Science, Technology and Innovation, Malaysia under science Fund grant no: 06-01-02-SF0177.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1)(1986), 24–32.

- [3] D. Andrijević, *On b-open sets*, Mat. Vesnik 48 (1996), 59–64.
- [4] M. Caldas, S. Jafari, G. Navalagi, T. Noiri, *On pre-θ-sets and two classes of functions*, Bull. Iran. Math. Soc. 32 (1) (2006), 45–63.
- [5] M. Caldas, S. Jafari, G. Navalagi, *Weak forms of open and closed functions via semi-θ-open sets*, Carpathian J. Math. 22 (1-2) (2006), 21–31.
- [6] N. Levine, *Strong continuity in topological spaces*, Amer. Math. Monthly 67 (3) (1960), 269.
- [7] N. Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly 70 (1963), 36–41.
- [8] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, *On precontinuous and weak precontinuous functions*, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [9] O. Njåstad, *On some classes of nearly open sets*, Pacific J. Math. 15 (1965), 961–970.
- [10] J. H. Park, *Strongly θ-b-continuous functions*, Acta Math. Hungar. 110 (4) (2006), 347–359.
- [11] D. A. Rose, D. S. Janković, *Weakly closed functions and Hausdorff spaces*, Math. Nachr. 130 (1987), 105–110.
- [12] M. K. Singal, A. R. Singal, *Almost continuous mappings*, Yokohama Math. J. 16 (1968), 63–73.
- [13] L. A. Steen, J. A. Seebach, Jr., *Counterexamples in Topology*, Holt, Reinhart and Winston, Inc., New York, 1970.
- [14] N. V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. Ser. 2 78 (1968), 103–118.

T. Noiri
 2949-1 SHIOKITA-CHO, HINAGU
 YATSUSHIRO-SHI, KUMAMOTO-KEN
 869-5142 JAPAN
 E-mail: t.noiri@nifty.com

A. Al-Omari, M. S. Md. Noorani
 SCHOOL OF MATHEMATICAL SCIENCES
 FACULTY OF SCIENCE AND TECHNOLOGY
 UNIVERSITI KEBANGSAAN MALAYSIA
 43600 UKM BANGI, SELANGOR, MALAYSIA
 E-mails: omarimutah1@yahoo.com, msn@pkriscc.ck.ukm.my

Received March 18, 2008.

