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DIVISION POINT IN THE POINCARÉ U P P E R HALF PLANE 

Abstract . In this work, it is shown that the coordinates of the division point can be 
determined by the formula in the Poincaré upper half plane. 

1. Introduction 
The Poincaré upper half plane geometry has been introduced by Henri 

Poincaré. Let's denote this plane by H. The plane His the upper half plane 
of the Euclidean analytical plane R 2 . Although the points in the plane H 
are same as the points in the upper half plane of the Euclidean analytical 
plane R 2 , the lines and the distance function between any two points are 
different. The lines in the plane H are defined by 

aL — G R 2 | x = a, y > 0, a £ R , a constant} half lines 

and 

CLT = { ( x , y ) € R 2 | {x-c)2 + y2 = r 2 , y > 0 , c,r € R , 

c, r constant, r > 0 } half circles 

If A = (xi, yi) and B = (x2,2/2) are any two points in H then the Poincaré 
distance between these points is given by 

In (y2/yi)\, 
'2/2 ( x i - c + rY dH(A,B) = 

In 

if x 1 = x2 

if xi ^ x2 

where 
,2/1 (X2 ~c + r) 

c = (2/2 - Vi + x2 ~ ^ 1 ) / 2 ( x 2 - xi), 

r = \ J ( z i - c ) 2 + 2H = yj(x2 ~ c)2 + y\. 

The geometry of the half plane H is a non-Euclidean, since it fails to 
satisfy the parallel postulate but satisfies all the remaining twelve axioms of 
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the Euclidean plane geometry [2, 3, 4, 5]. In this half plane geometry, the 
lines and the function of distance are different, therefore, it seems interesting 
to study the Poincaré analogues of the topics that include the concept of 
distance in the Euclidean geometry. A few of such topics have been studied 
by some authors [1, 3-8]. In this work, it is shown that the coordinates of 
the division point can be determined by the formula in the Poincaré upper 
half plane. 

2. Main results 
2.1. Internally division point 

T H E O R E M 1 . (Law of Sines [5]) In the hyperbolic triangle ABC let 
denote the angles at A, B, C, and a, b, c, denote the hyperbolic lengths of the 
sides opposite A, B,C, respectively, Then, 

sinh a sinh b sinh c 
T H E O R E M 2 . Let A = ( x i , y\) and B — (X2, 2/2) be any two distinct points 
in the half plane H. If C = (x,y) divides internally the line segment \AB\ in 
the k, then 

Proof. Case I: If C is any point on a half line (x = x\ = X2), then (Fig. 1) 

sin a sin /3 sin 7 

C (x, y) = < 

dH{A,C) 
dH(B,C) ' 

= k, |lny - lnyi | = k • \lny2 - l ny | . 

y A 
aL 

B(X2 ,y2) 

C(x.y) 

A(xi,yi) 

X 

Fig. 1 
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Either y\ < y < 7/2 or j/2 < y < yi- In both cases we obtain 
Iny - Inyi = k • (Iny2 - lny) 

lny - lnyi = fc • (Iny2 - hiy) 
In y + k In y = k In 2/2 + ln 2/1 
lny = (felnj/2 + lnj/i)/ (k + 1) 

= e(fclnW+lni/l)/(fc+l) 

c = (x1,e(fcInW2+lDW1)/(fc+1)) = (x2,e('clny2+ln!,1)/(fc+1)). 

Case II: Let C be any point on a half circle (x\ ^ x ^ x2) (Fig. 2). If 
we apply Theorem 1 to triangles BEC and ACD, then 

sin a _ sin 90 _ sin (90 — ($) 
sinh|£C| = sinh \CB\ = sinh|£5| ' 

sin (3 _ sin 90 _ sin 7 
sinh | AD | = sinh \AC\ = sinh | CD |' 

If these ratios are divided side to side, then 
sin a sinh | AD| _ sinh | AC| _ sin (90 - (3) sinh |CD| 
sin/3sinh \EC\ ~ sinh|CB| ~ sin7sinh \EB\ 
sin a sinh | AD | 
sin¡3sinh ¡SCI = ' 

sin a sinh l n * Vi 
sin (3 sinh l n ^ y 
sinh |lny — lnyi| _ A;sin/? 
sinh |ln?/2 — lny| sin a 
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E i t h e r y i < y < y2 or y2 < y < y i . I n b o t h c a s e s we have 

s i n h ( l n y ) c o s h ( l n y i ) — c o s h ( l n y ) s inh ( l n y i ) 

k s in 13 
= — [sinh (In 2/2) c o s h ( l n y ) — c o s h (In 2/2) s i n h ( l n y ) ] , 

s in c"x 
k s in ¡3 

s i n h (In y) c o s h ( I n y \ ) H c o s h (In 2/2) s inh ( I n y ) 
s in a 

k s in 
c o s h ( I n y ) s i n h ( I n y i ) : s inh ( I n y 2 ) c o s h ( I n y ) = 0 , 

s i n a 

s i n h (In y) 
, „ . ks in/3 , , 

c o s h ( in y\) H : c o s h (In 2/2) 
S i n a 

c o s h (In y) 

K s i n h (In y) — L c o s h (In y) = 0 , 

w h e r e 

. . . . . fcsin/3 . , , 
s inh ( l n y i J H — — s m h ( in 3/2) 

s i n a 
= 0 , 

K — c o s h ( I n y i ) + ^ S ™ ^ c o s h (In2/2), 
s r n a 

• , x fcsin/3 . , ,, , 
L = s i n h ( l n y i ) H ^ — s m h ( m y 2 ) • s i n a 

I f we divide e v e r y t e r m b y L c o s h (In y ) , t h e n 

— t a n h ( l n y ) — 1 = 0 , 
L 

— t a n h ( l n y ) = 1, 
L 

t a n h ( l n y ) = 

l n y = arc t a n h (L/K), 
y _ &arc ta,nh(L/K) 

S i n c e e q u a t i o n o f P o i n c a r é l ine AB 

( x - c ) 2 + y 2 = r 2 , 

w h e r e 

c = ( y | - Vi + x2 ~ xì) / 2 ( X 2 -

yj(xi - c)2 + y\ = yj(x2 - c)2 + y\. 

t h e n 

x = C ± yfr 
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Thus, 

x — c _ ^earctanh(L/K)y2 

c = [ Czb ^/r2 — (eo r c t a n h( i/ ' f0)2 , e<"-ctanh(L/K')^ ^ 

where 
, /, x ksmfi , . 

A = cosh (myi) H cosh (my2j, 
sino; 

• , /, x k sin ¡3 . , ,, . 
L = smh (In yi) ^ sinh (In 7/2 ) • • 

sin a 
2.2. Externally division point 

T H E O R E M 3 . Let A = (xi, yi) and B = (x2, 2/2) be any two distinct points 
in the Poincafe upper half plane. If C = (x, y) divides externally the line 
segment [AB] in the k then, 

' (£1,e(fclna2-ln!'1)/(fc-1)), ifC is on a half line, 
± 2 _ êarctanh(Ai/JV)̂ 2j earctanh(M/N)^j ^ 

C (x,y) = if C is on a half circle, 

(M = sinh(lnyi) — fcsinh(lny2), 
N = cosh(lnyi) — fccosh(lny2)). 

Proof. Case I: If C be any point on a half line (x = x\ = x2) (Fig. 3) 
then, 

dH{A,C) 
= k, 

dH(B,C) 

I In y - lnyi| = k • |lny - lny2|, 

In y 1 
In 

3/2 

= k, 

t k 
) 
.aL 

C(x,y) 
B(x2,y2) 
A(xi,yi) 

Fig. 3 
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i f y > yi, y > yi t h e n , 

| l n y - l n y i | = k • | l n y - l n y 2 | , 

l n y - l n y i = k • ( I n y - lny2), 
k I n y 2 — I n y i = k I n y — I n y , 

l n y = ( f c l n y 2 - l n y i ) / (k - 1 ) , 

C = (x ue(klr,y2~lnyi)/^) = (x2, e(fcln!/2_lnyi)/(fc_1)). 
I f y < y i , y < y 2 , t h e n i t is t h e s a m e as above. 

C a s e I I : L e t C b e a n y p o i n t o n a h a l f c i r c l e ( x i ^ x ^ X2) ( F i g . 4). I f 

we a p p l y T h e o r e m 1 to t r i a n g l e s BE'C a n d A D ' C t h e n , 

s i n ¡3 _ s i n 90 _ s i n a 
s i n h | R E ' | = s i n h \BC\ = s i n h | C £ ? T 

s i n /3 _ s i n 90 _ s i n 7 

s i n h | A D ' | = s i n h \ A C \ = s i n h | C D ' | ' 

Fig. 4 

I f these r a t i o s a r e d i v i d e d s i d e t o s ide, t h e n 

s i n h | A D ' | _ s i n h | A C | _ s i n a s i n h \CD'\ 

s i n h \BE'\ ~ s inh \BC\ ~ s i n 7 s i n h \CE'\' 
s i n h | A D ' | 

s i n h \BE'\ ~ ' 

s i n h I n * y 1 

s i n h I n f 2/2 

s i n h | l n y — l n y i | = A: s i n h | l n y — l n y 2 | . 
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l f y > y i , y > yz, then 

sinh ( I n y ) cosh (In y\) — cosh (In y) sinh (In y\) — k sinh (In y) cosh (In IJ2) 

— k cosh (In y) sinh (In j/2), 

sinh (In y) cosh (In yi ) — k sinh (In y) cosh (In 3/2 ) — cosh (In y) sinh (In y\) 

+ k cosh (In y) sinh (In j/2) = 0, 
sinh (In y) 

cosh (In y) 
[cosh ( I n y i ) — A; cosh (In j/2)] 

cosh (In y) r . , ,, . , . , 0 
+ — . i [—smh (Inj/i) + fcsmh (lnj/2)] = 

cosh (In y) cosh (In y) ' 

t a n h ( l n y ) [cosh (In y i ) — fccosh ( lny2)] = sinh ( I n y i ) — fcsinh(lny2), 

sinh (In yi ) — k sinh (In y2 ) 
t a n h (In y) = 

In y = a r c t a n h 

cosh (In yi) — k cosh (In 7/2) ' (sinh (lnj/i) — A: sinh (In yi ) 

cosh (In yi) — k cosh (In 7/2) J ' 

c = (vi - vi + x2 - x \ ) /2(X 2 - x i ) , 

r = V ( x i - c ) 2 + yl = J ( x 2 - c ) 2 + y\, 

arctan h ( sinh(lnyi)-fcsinh(lnV2n 
y — g cosh(In ŷ  ; —Ac cosh(In y2J / 

Since the equation of Poincaré line AB 
i \2 , 2 2 
(.x - cY + y = r , 

where 

then 

Thus , 

where 
M = sinh ( lnj/i) — A; sinh ( l n y 2 ) , 

N = cosh (Iny\) — k cosh ( I n y 2 ) . 

I f y < y\, y < y2, then it is the same as above. • 

x = c ± \/r2 — y2. 

C= c± 2 _ (earctan^(M/AT)-)2)earctan/i(M/Ar) j ^ 
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