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POROSITY OF CERTAIN CLASSES OF OPERATORS
IN GENERALIZED METRIC SPACES

Abstract. We study the porosity behavior of non-contractive mappings in a gener-
alized metric space, a concept recently introduced in [1]. We also investigate partially the
porosity position of a certain class of operators whose condition arises from [8].

1. Introduction

In recent years several authors ([6], [11], [12]) have investigated the cat-
egory and more importantly porosity position of contraction or contractive
mappings in relation to the class of non-expansive mappings. As it is well
known that non-expansive mappings in general may not have fixed points,
whereas contractive mappings [10] have unique fixed points, the study in
[12] actually showed that almost all non-expansive mappings (in the sense of
porosity) are contractive [10] and so have unique fixed points. A similar type
of investigation was also carried out in [9] for a different class of operators.

In 2000 Branciari [1] introduced a very interesting generalization of a
metric space called ‘generalized metric space’ by replacing the triangle in-
equality by a more general inequality. As such every metric space is a gener-
alized metric space but the converse is not true (see 1], [5]). However some
very important fixed point theorems namely, Banach’s fixed point theorem,
Ciric’s fixed point theorem and very recently Boyd and Wong'’s fixed point
theorem have been proved in such spaces in (1], [8] and [5] respectively.

Encouraged by observations of [8] and [5], in this paper we try to inves-
tigate in the line of [12] and show that almost all non-expansive mappings
in this more general structure are also contractive [5] under certain general
conditions. As in [9] we also investigate the porosity problem for a class of
operators whose condition arises from the idea of quasi-contraction [8]. As
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in [1], [8] or [5], due to the absence of triangle inequality, the methods of
proofs do not appear to be analogous.

2. Preliminaries
Let RT denote the set of all non-negative real numbers and N the set of
positive integers.

DEFINITION 1. (cf. [1]) Let X be a set and d : X2 — R* be a mapping
such that for all z,y € X and for all distinct points 21, 22, ...,2x € X(k > 2)
each of them different from = and y, one has

(i) d(z,y) =0ifand only if z =y,
(ii) d(z,y) = d(y, z),
(i) d(z,y) < d(z, 1) + d(21,22) + -+ - + d(2x, Y)-
Then we will say that (X, d) is a generalized metric space (or shortly g.m.s).

Throughout this section a g.m.s will be denoted by (X, d) (or sometime by
X only).

Any metric space is a g.m.s but the converse is not true ([1]).

In [1] it was claimed that as in a metric space, a topology can be generated
in a g.m.s X with the help of the neighborhood basis given by B = {B(z,r) :
z € X,r € R\ {0}} where B(z,r) = {y € X : d(z,y) < r} is the open ball
with centre z and radius r.

However in [5] it was shown through two examples that the topological
structure of a g.m.s is somewhat different from a metric space. The following
examples were given in [5] which we reproduce here for easy reference.

EXAMPLE 1. Let us define X = {1 : n=1,2,...} U {0},

forz=y
for {z,y} = {0,
for x #y,z,y € X \ {0}

Note that (X,d) satisfies axioms of a generalized metric space, i.e. for all
r,ye X

d: X xX — Rt dz,y) =

_= 3= O

(i) d(z,y) = 0 if and only if z =y,
(i) d(z,y) = d(y,x),
(iii) d(z,y) < d(z,21)+ d(=1, 22) + d(22,y), for distinct points z,y, 21, 22.
Observe that B(},1) N B(],3) = {0} and hence there is no r > 0 with
B(0,7) C B(3,3) N B(}, 3). Therefore the family {B(z,r) : € X,r > 0}
is not a neighborhood basis for any topology on X.

In view of the above example, it seems more reasonable to construct the
topology in a g.m.s X by taking the collection B as a sub basis. Further it can
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11
be observed from Example 1 that lim d( 3 Z) = 1 whereas d(%, 0) % #1

which shows that d is not continuous in a sense presented in [1].
Consider now the following example

EXAMPLE 2. Let us define Y = {% :n=1,2,..} U{0,2},

forz=y
for z € {0,2}, y =1
forz =1 y€{0,2}

n

di:Y xY = R" di(z,y) =

— 3=3= O

otherwise.

Note that (Y,d;) is a g.m.s in which the points 0 and 2 do not have any
disjoint open balls.

All this points out to the fact that a g.m.s (which is not a metric space)
may sometimes be perceived as a much weaker structure than a metric space
due to weakening of the triangle inequality. The results of [1], [5] and [8],
in a sense, prove the existence of fixed points of contraction mappings, con-
tractive mappings or quasi-contraction mappings in more general spaces.

We also reproduce the following Definition and Theorem from [5] for easy
reference.

DEFINITION 2. (cf. [5]) A mapping T : X — X is said to be contractive if
for any two distinct points z,y € X, d(T'z, Ty) < d(z,y).

THEOREM 1. Let X be a complete g.m.s and let T : X — X satisfy

d(Tz,Ty) < ¥(d(z,y))
where 1 : P — [0, 00) is upper semi-continuous from right on P (the closure

of the range of d) and satisfes ¥(t) < t for allt € P\ {0}. Then T has
a unique fized point xg and T™xr — xg for each x € X.

REMARK 1. As in [2] we note that if we take ¥(t) = a(t)t where « is
a decreasing function and a(t) < 1 for t > 0 then we can obtain the Rakotch’s
fixed point theorem [10] for contractive mappings T : X — X satisfying the
condition

d(Tz,Ty) < a(d(z,y))d(z,y) VzyeX

where « is a mapping as defined above.

3. Porosity of non-contractive mappings

In [11] and [12] it was established that the contractive mappings play
a very prominent role in the theory of fixed points in normed linear spaces
where it was shown that the collection of non-contractive mappings is a o-
porous set (and so a set of first category) in the collection of non-expansive
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mappings. This result means that almost all non-expansive maps have
unique fixed points which is a remarkable observation. In order to inves-
tigate the same in our context we need to introduce some more concepts.

So analogous to the idea of a generalized metric space we first introduce
the following notion of a generalized normed linear space.

DEFINITION 3. A generalized normed linear space is a vector space with
a generalized norm defined on it. We define a generalized norm defined on
a real or complex vector space X as a real valued function on X whose value
at an ¢ € X is denoted by ||z|| and which has the following properties

(i) |lz|l > 0 and ||z|| = 0 iff z = 9,
(ii) | Az| = |Al|lz], A is a scalar,
(ili) |l + 21+ 22+ -+ 2 +yll < 2] + [Jz1]l + - + ||z&ll + [[y[| when
mayazla"-azk?ég-

Now if we define a function d : X2 —» Rt as

(4) d(z,y) = [z -yl
then it can be easily verified that this d becomes a generalized metric on X.

Further by a generalized Banach space we mean a generalized normed
space which is complete with respect to the induced generalized metric de-
fined by (A).

Assume that (X, |.||) is a generalized Banach space with the additional
condition
(x) there exists a positive integer ko > 1 such that

lz — 2| < kollz — yll + lly — 2|l
and
|z = z|| < llz — yll + kolly — zll, Vz,9,2€X.

REMARK 2. Clearly every Banach space is a generalized Banach space sat-
isfying the additional condition (%) with kg = 1. Also examples of generalized
metric spaces satisfying the condition (%) can be easily constructed. In fact
the generalized metric space given in [1] is such a space. However we are
unable to construct an example of a generalized Banach space which is not

a Banach space satisfying the above condition and we leave it as an open
problem.

Let K be a bounded closed convex subset of X. Denote by A; the set of
all non-expansive mappings T on K i.e. T : K — K is such that

Tz — Ty|| < ||z —y| forall z,y € K.
Set d(K) = Sup{||lz — y| : z,y € K}.
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We define a function h defined on A; x A; as
h(S,T) = Sup{||Tz — Sz|| : z € K}.

Then A obviously satisfies the following properties

(i) h(S,T) > 0and h(S,T)=0if S=T,

(i) h(S,T) = h(T,S),

(iii) h(S, T) < h(S, Sl) + h(Sl, T1) + h(T], T),
if $1, T are different and also different from S and T" (at all z € X'). However
in the view of the condition (x) it can be shown that
(xx)  h(S,T) < h(S,S1) + koh(S1,T) and h(S,T) < koh(S, S1) + h(S1,T)

where S, 51,T € A;.

Now as in a metric space or a g.m.s open balls can be defined in (A4;, h).
Observe here that because of condition (%), it can be easily proved that
given any two open balls B(S,p) and B(T, s), Ty € B(S,p) N B(T, s) implies
B(Th,t) C B(S,p) n B(T,s) where t = min{p_h(s’?}%{’) s=MT1.D}  Hence as in
a normed space (or a metric space) the open balls form a base of a topology
on (A1, h). We can then introduce the following concepts of porosity (cf.
[13], [15], [16], [17]) on (A1, k) as follows.

Denote by B(S,p) the open ball with centre S € A; and radius p > 0.
Let M C A;. Let

v(S,p, M) = Sup{t > 0 : there is a T € B(S,p)

such that B(T,t) C B(S,p) and M N B(T,t) = ¢}.
Note that if M is dense in A; then v(S,p, M) = —co. Let
v(S,p, M)

p(S,M) = lim sup

p—0t

o(S,M) = lim inf 1522
- p—0* p

and if p(S, M) = p(S, M) then we set

p(S, M) = p(S,M) = p(S,M) = 111(1)1 sup
p—

A subset M of A is said to be porous at S € A; if p(S, M) > 0 and
o-porous at S € A; ifit is a countable union of porous subsets in (A1, h).
M is called porous or g-porous in A C A ifitissoat each S € A.

We also introduce the following definitions which will be needed in the
next section. The set M is said to be very porous at S € Aif p(S,M) >0

and very strongly porous at S € A if p(S,M) = 1. Also M is said to be
uniformly very porous in A C A if there is a ¢ > 0 such that for each S € A

v(S,p, M)
P
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we have p(S, M) > c. M is said to be uniformly o-very strongly porous in
AcAiftM= Uno M, and each M, is very strongly porous at each S € A.
We say that a mapping T € A; is contractive (following Rakotch [10]) if
there exists a decreasing function ¢7 : [0,d(K)] — [0,1] such that ¢T(t) < 1
for all t € (0,d(K)] and | Tz — Ty|| < ¢T(||z — y||)||z — y|| for all z,y € K.
Now we prove our main theorem in this section which shows that almost
all non-expansive mappings (in the sense of porosity) have fixed points.

THEOREM 2. There exists a set F' C A; such that A; \ F is o-porous in
(A1,h) and each T € F is contractive.

Proof. For each natural number n denote by M, the set of all T € A; which
have the following property
(P1) there exists ¢ € (0,1) such that [Tz — Ty|| < c||z —y|| for all z,y € K
satisfying ||z — y|| > i(;nﬁ.

Let n > 1 be an integer. We shall show that A; \ M, is porous in (A1, h).

Set
min{d(K), 1}
(1) =— :
8ko*(2n)[d(K) + 1]
Fix 6 € K and let T € Ay and r € (0,1]. Set

) "= a1 T ) + 1

and define
Tye=(1-v)Tz+~v0 and Tsz=(1-96)Tz+d0, foralzekK.
Clearly T, and T € Ay and h(T,,T) < vd(K) and

Q h(T3, T;) = Sup{|6T2 ~ 7Tz +0(y ~ )| : = € K}
= (7= 8)Supf{||Tz - 0|| : z € K}
< (7 — 8)d(K)
< iy

We also note that for all z,y € K

(4) I Tsz — Tsyll < (1= 8)|Tz — Tyl| < (1 —6)]|z - yl|.

Assume that S € A; and

(5) h(S,Ts) < ar.

We will show that S € M,,. Let z,y € K and

© e~y > A5

2n
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Now from (4) and (6)
dd(K)

™ Iz =l = 1Zsz = Tyl 2 ol — ol = =52

Next we consider the following two cases.
Case I. If Sz, Tsz, Ty and Sy are all distinct then

Sz — Syl| < ||Sz — Tsz|| + | Tsx — Tsyll + 1 Tsy — Syl
< 2ar+ ||Tsz — Ty (using (5)).

Case II. If Sz = Tsx or Tsy = Sy then by the condition (x) and using
(5), we have,

1Sz — Syll < | Tsz — Tsyll + kol Tsy — Syl
< koar + || Tsx — Toy||

or
15z — Syll < | Tsz — Tsyll + kol Sz — Tsz||

< koar + | Tsz — Tsy|-
Since kg > 1, combining both the cases, we have,
ISz — Sy|| < koar + ||Tsz — Tsy||.
Now from (7), (2) and (1) it follows that
= ylt = 1Sz — Syl > llz — yll — | Tsx — Tsyll — koar

> 5d2(f) — koar

_ rd(K) ko
deod(K) +1)2n "

T d(K)

~ TR [[d(K) T 12 4’“02"‘]

T d(K) min{d(K), 1}
" 4k [[d(K) +1)2n  4n[d(K) + 1]}

> T dK)

= dkg [d(K) + 1)4n
Thus

rd(K) r

T6kgnfa(K) 7 1] = 1=~ ¥l (1 ~ 16kon[d(K) + 1] >
Since this holds for all z,y € K satisfying (6), we conclude that S € M,.
Thus we have shown that

(8) {S € A h(S, Tg) < ar} C M,.

15z — Syl < flz —yll -
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Next if T5 # S, Vz and if S € A; satisfying (5), then by (3), (1) and (2),
we have,

h(S,T) < h(T,T,) + h(Ty, Ts) + h(T5, S)
<~vd(K) + = tar

4ko
<t <y
ok 4 16

Also, if Ty = S, for some x then
h(S,T) < h(S,T,) + koh(T},, T) < i + koyd(K) < r.
0

Thus {S € Ay : h(S,T5) < ar} C{S € A; : h(S,T) < r}. When combined
with (8), this inclusion implies that A; \ M, is porous in (A;,h). Set F =
Noey My. Clearly Ay \ F is o-porous in (A;, h). By property (P1) each
T € F is contractive and hence the proof follows.

4. Porosity of a certain class of operators

In this section we investigate a similar type of problem for a different
class of mappings whose condition arises from quasi-contraction maps (see
[8],[3]). Such an investigation has already been done in a metric space by
one of the authors [9]. We do the same here in the more general structure
of a g.m.s where due to the absence of triangle inequality the methods of
proofs do not appear to be analogous.

We consider the following classes of operators. Denote by As the set of
all mappings T : K — K such that

ITz — Ty|| < max{|lz — Tel, |y — Tyll} = mr(z,y) forall z,y € X,

where as before K is a closed bounded convex subset of a generalized Banach
space (X, ||.]|). Now we equip A2 with the same function h as in A;.

Let B be the collection of all those T' € Ay such that ||Tz — Ty| <
c(T)mr(z,y) for all z,y € K where 0 < ¢(T") < 1 and ¢(T') is a constant de-
pending on 7T only. In view of [6] every member d¢f B has a unique fixed point.
As in the previous section we now intend to study the porosity behavior of
Bor Ay \ B in Aj.

We also recall that if (Y,d) is a metric space and A C Y be an Fj-set
in Y then A is uniformly o-very strongly porous in Y \ A (see [13]). Now it
can be easily proved that a similar result also holds in (A2, k).

LEMMA 1. B is an Fy-set in (Ag, h).

Proof. Clearly B = |J,caBr, where A is an enumeration of the set of all
rationals in (0, 1) and

B, ={T € Ay : |Tz — Ty|| < rmp(z,y) forall z,y e K}.
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To prove that B is a F,-set, we have to show that for a fixed r € A, B, is
closed. Let T,, — T as n — oo, where T,, € B, for all n. Now if Tz, Tz,
Tny and Ty are all distinct then

[Tz — Tyl < ITz — Toz|| + [Tz — Tny|| + | Tny — Ty
<\ Tz — Tnzl| + | Tny — Tyl + r-mr,(z,y)
< Iz ~ Tyl + Ty — Tyl
+ r.max{|lz - Tzl + koll Tz — Tuall, Iy — Tyll + kol Ty — Tyll}
< rmr(z,y) + (14 kor)(|ITz — Tzl + [Ty — Tayll)-
Since {T,,} converges to T, then it follows that
Tz — Ty|| < rmp(z,y) ie. T € By.
Also, if Tz = T,z or Ty = T,y we have by the condition (%),
1Tz — Ty|| < [|Tnz — Tnyll + kol Tny — Tyl
or
Tz — Tyl < | Tz — Toyll + kol Tnz — Tz|.

Since {7} converges to T, we have again in this case also ||Tz — Ty| <
r.mr(z,y) i.e. T € B,. This shows that in any case B, is closed and this
completes the proof.

Hence we have the following result.
THEOREM 3. The set B is uniformly o-very strongly porous in Ay \ B.

Now, for § > 0 denote by Bs the collection of all T € A, for which there
exists a constant ¢(T"), 0 < ¢(T") < 1 such that

(B) Tz — Ty|| < c(T).mr(z,y)+ forall z,y € K.

Then B C Bs C As.
As a corollary to the next theorem, we observe that most of the mapping
of Ag are of the form (B).

THEOREM 4. For any § > 0, As \ Bs is uniformly very porous in (Az,h).

Proof. Let T € Ay and r € (0,1]. Fix 6 € K and set
T T
~ ko(d(K) + 1)2m and f= 2ko(d(K) + 1)2m

where m is a natural number such that 27™ < g.
Now define T, and T by

Tor=(1-a)Tr+af and Tpz=(1-p3)Tz+ P80 forallze K.

(07




172 P. Das, L. K. Dey

Then Ty,T5 : K — K and for all z,y € K,
[ Taz — Tayll = (1 = )|[|Tz — Tyl| < (1 - a).m7(z,y)
[ Tsz — Tayll = (1 — B)ITz — Tyl < (1 = B).mr(z,y).

But
|z — Tz|| < ||z — Taz|| + || Taz.~ Tpz|| + | Tpz — Tzl

< |lz — Toz|l + (o = B)||ITz — 0| + 8| Tz — 0|
< ||z = Taz|| + ad(K).
Similarly, |ly—Tvy| < |ly—Tay||+ad(K). Therefore, mr(z,y) < mr, (z,y)+
ad(K). Thus
[Taz — Tayll < (1 - a)mr, (z,y) + ol — a)d(K)
< (1 - a)mr,(z,y) + ad(K)

< (1 — —_
< (1= a)mr (,5) + 5

< (1 —-a)mg, (z,y) + g (since ko > 1).

Since 0 <1 —a < 1, T, € Bs. Similarly
1 Tsz — Tyl < (1 = B)ymry(z, y) + B(1 — B)d(K)
< (1= pB)ymry(z,y) + Pd(K)

< (1 - pB)mpy(z,y) + T

0
< (1-B)mry(z,y) + 2 (since ko > 1).
Hence from the relation 0 < 1 — 8 < 1, we conclude that T3 € Bs.
Also, K(T,Ty) < ad(K) < 5= < 5.
Further we choose the positive integer m in such a way that

— 3
27" < gDy

Let S € Ay be such that h(T,,S) < yr where v = (kg +1)27™ < g.
Since for any z € K

|z — Toz| < ||z — Sz| + ko||Sz — Taz|| < ||z — Sz|| + koyr

and
ly — Tayll < |ly — Syll + kol|Sy — Tay| < |ly — Syl + koyr

we have, mr, (z,y) < mg(z,y) + koyr. Hence
15z — Syl <[5z — Taz|| + [ Taz — Tayll + |Tay — Syll

]
< (1- amr, (@,9) + 5 + 297
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)
<(1-a)mg(z,y) + 2vyr + (1 — a)koyr + 3

6 o6 &6
< (1-a)ms(z,y)+ 5 +5+3

8 2
<A -ams(z,y) +96

if Sz, Toxz, Tay, and Sy are not distinct then some easy calculations will
again prove the same result.

This shows that {S € Az : h(Ty,S) < yr} C Bs. Also we have, if S, Ty,
T, and Tj are all distinct at all z € K, then

h(S,T) < h(S,Ts) + h(To,T) + h(13,T)
<ar+ (a - B)d(K) + Bd(K)
<vr+oad(K) <r.

Also if Sz = T,z for some x € K then, we have,
h(S,T) < h(S,Ts) + koh(T3,T)
< (a - B)d(K) + koBd(K)
< ko(a — B)d(K) + koBd(K)
= koad(K) < r.

Therefore {S € Az : h(S,To) < yr} C {S € Az : h(S,T) < r}. This proves
that Ag \ By is uniformly very porous in (Ag, k). This completes the proof
of the theorem.

CONCLUDING REMARK. Since porous sets should be nowhere dense (in
a metric space), we could only use the well known definitions of porosity in a
more general structure of a generalized metric space when it satisfies an ad-
ditional condition (x). We are not sure whether the condition (x) is essential
for introducing the notion of porosity, as it exists in the literature. However
it appears that, as the topology on a generalized metric space (without any
additional property) is often generated by finite intersection of open balls
only (see Example 1), this may cause that the porosity (as defined here in
accordance with the literature) in a g.m.s may not imply nowhere dense in
the induced topology. Under the circumstances the following open questions
seems natural.

PROBLEM 1. Investigate the category position of non-contractive mappings
in a generalized metric space or a normed space without any additional
condition.

PROBLEM 2. Define the notion of porosity as an extension of nowhere dense
sets in a generalized metric space.
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PRrOBLEM 3. Investigate the porosity position of non-contractive mappings
in a generalized metric space without any condition or under some condition
which is weaker than (x).
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