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SOME RESULTS ON COMMON FIXED POINTS FOR 
WEAKLY COMPATIBLE M A P P I N G S SATISFYING 

ALTMAN INTEGRAL T Y P E CONTRACTION 

Abstract. In this paper, a common fixed point theorem for two pairs of weakly 
compatible mappings satisfying Altman integral type contraction in a metric space is 
proved. Our result extends and improves several known results. 

1. Introduction 
Let A and S be two self-maps of a metric space ( X , d). Sessa [14] defined 

A and S to be weakly commuting if d(ASx, SAx) < d(Ax, Sx), for all x £ X. 
Jungck [5] defined A and S to be compatible if limn d(ASxn, SAxn) = 0, 
whenever there exists a sequence {xn} in X such that limn Sxn — linin Axn 

— t, for some t €E X. Pathak et al. [9] defined A and S to be compatible 
of type (P) if lim„ d(AAxn, SSxn) = 0, whenever there exists a sequence 
{xn} in X such that lim„ Sxn = limra Axn = t, for some t G X. On the 
other hand, Jungck et al. [7] defined A and S to be compatible of type (A) 
if limn d(ASxn, SSxn) = lim^ d(SAxn, AAxn) = 0, whenever there exists a 
sequence {xn\ in X such that limn Sxn = lim„ Axn = t, for some t EX. 
Clearly, commuting mappings are weakly commuting and weakly commut-
ing mappings are compatible but neither implication is reversible. In 1998, 
Jungck [6] defined A and S to be weakly compatible if SAx = ASx whenever 
Ax = Sx for some x in X. 

There exist examples showing that weakly compatible maps need not be 
compatible (compatible of type (P) or compatible of type (A)). However, 
Ax = Sx, for some x G X with compatibility (compatible of type (P) or 
compatible of type (A)) implies that ASx = SSx = SAx = A Ax. 
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2. Altman condition 
In 1975, Altman [1] introduced a generalized contraction. Let (X, d) be 

a metric space and f : X X. Then / is called a generalized contraction 
if, for all x,y £ X, 

(2.1) d(fx,fy)<G(d(x,y)) 

where G : [0, +oo) —> R is a nondecreasing function satisfying the following 
conditions: 

(a) 0 < G{t) < t, for all t > 0, G(0) = 0, 
(b) g(t) = t_Q(tj is non-increasing on (0, oo), 
(c) g(t)dt < +oo for each r > 0. 

Henceforth, we shall denote by R, R+ and N the set of real numbers, the set 
of nonnegative real numbers and the set of natural numbers, respectively. 

After Altman's theorem on metric spaces, Carbone and Singh [2], Rhoa-
des and Watson [12], Watson, Meade and Norris [16] etc. proved fixed point 
theorems for generalized contractions. We shall use more general contraction 
condition than the Altman type in our main result. 

3. Preliminaries 
The following theorem was proved by Sahu and Dewangan [13]. In its 

statement, QQ denotes the family of real-valued functions G on the set D = 
cl(rand) which are nondecreasing on D and satisfy (a), and conditions (b), 
(c) on D \ {0}, that is, 

Qo = {G : D -> R : 
G nondecreasing and satisfying (a) and (b), (c) o n D \ {0}}. 

T H E O R E M A . Let S and T be self-mappings of a complete metric space 
(X,d). Let and be seguences of self-maps on X satisfying 
the following conditions: 

(i) M X ) C T{X), Bi(X) C S(X), 
(ii) d(AiX, Biy) < G(m(x,y)), for all x,y £ X, where G € Go, the family 

of real-valued functions G, and m(x,y) = m a x . { d ( S x , T y ) , d ( A i X , Sx), 
d{Biy, Ty), \[d{Biy, Sx) + d(AiX,Ty)}}, 

(iii) one of Ai, Bi, S or T is continuous and 
(iv) Ai and S and Bi and T are compatible of type (A). 

Then each Ai, Bi, S and T have a unique common fixed point in X. 

Let T be the set of all functions / : R+ —> R + such that 

(*) / is isotone, i.e., if ti < ¿2 then / ( t i ) < 7(^2), for all t i , t2 £ R+, 
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(**) / is upper semi-continuous, 
(***) f(t) < t, for each t > 0. 

In the light of the above notation, the following theorem was proved by 
Popa and Pathak [11]. 

T H E O R E M B . Let A, B, S and T be self-mappings of a complete metric 
space (X, d) satisfying the conditions: 

(i) A(X) C T(X), B(X) c S(X), 
(ii) the inequality 

[1 + pd(Sx,Ty)]d(Ax, By) 
< pm&x{d(Ax, Sx)d(By, Ty),d(Ax, Ty)d(By, 

+ / (max{d(Sx, Ty),d(Ax, Sx),d(By, Ty), ^ [d(By, Sx) + d(Ax, Ty)}}^, 

holds for all x, y € X, where p> 0 and f € T, 
(iii) one of A, B, S or T is continuous, and 
(iv) pairs (A,S) and (B,T) are compatible of type (A). 

Then A, B, S and T have a common fixed point z. Further, z is the unique 
common fixed point of A and S and of B and T. 

Our aim in this paper is to prove a common fixed point theorem for 
two pairs of weakly compatible mappings satisfying Altman type contraction 
condition and to derive a few known results as corollaries. In our main result, 
we have: dropped the completeness of the whole space X in Theorem B, by 
choosing the range space of one of the four mappings complete; relaxed the 
duality of conditions on mappings in compatibility of type (A) by taking 
weakly compatible mappings and dropped the requirement of the continuity 
of one of the four mappings. 

4. Main results 
We now state and prove our main theorem. 

T H E O R E M 4 . 1 . Let A, B, S and T be four self-mappings of a metric space 
(X, d) satisfying the following conditions: 

(4.1) A(X) c T(X), B{X) c S(X), 
d(Ax,By) ,By) d(Sx,Ty)d(Ax,By) 

(4.2) \ rp(t) dt + p \ ip(t)dt 
o o 
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max{d(Ax,Sx)d(By,Ty), d(Ax,Ty)d(By,Sx)} 

< P \ ip(t) dt 
0 

inzx{d{Sx,Ty),d(Ax,Sx),d(By,Ty), d(Ax,Ty)+d{By,Sx) } 

+ g ( \ mdt), 

for all x, y € X, where p > 0, G : [0, +oo) —• R is nondecreasing and satisfies 
the Altman type conditions (a)-(c) and ip : M+ M+ is a nonnegative, 
Lebesgue measurable mapping which is summable on each compact interval, 
and such that 

t 
(4.3) \ ip(t) dt> 0 for each e > 0. 

o 

Assume also the following hypothesis: 

(HI) i[> is a nonincreasing function. 

If one ofA(X), B(X), S(X) orT(X) is a complete subspace of X, then 

(i) (A, S) have a coincidence point. 
(ii) ( B , T ) have a coincidence point. 

Moreover, if both the pairs (A,S) and (B,T) are weakly compatible then A, 
B, S and T have a unique common fixed point. 

Proof. Pick xq G X, then by (4.1) we can choose a sequence {xn} in X 
such that 

x0 = 2/o, Ax2n = Tx2n+\ = and Bx2n+i = Sx2n+2 = V2n+2, 

for all n = 0,1,2, 
We now show that the sequence {yn} defined above is a Cauchy sequence 

in X. Let us denote d(yn, yn+i) by dn, for each n = 0 , 1 , 2 , . . . . First, we 
show that jJn+1 ip(t) dt < ip(t) dt). Now we claim that 

lim dn = 0 
n—too 

and then show that {yn} is a Cauchy sequence in X. For this, putting x2n 

for x and x2n+\ for y in (4.2), we obtain 

(¿2n+l d2nd2n+l max{d2nd2n+l, 0 } 

\ ip(t)dt + p \ ip(t) dt < p \ ip(t)dt 
0 0 0 

max{d2n ,d2n ,d2n+l, f d(y2n 12/2n+2) } 



Common fixed points for weakly compatible mappings 147 

i.e., 
d2n+l max{d2n,d2n,d2n+l,̂ d(y2n,y2n+2)} 

\ ip{t) dt <G( j V(i)di). 
o o 

But, from the triangle inequality for metric d, we have 

^ <%2n, 2/2n+2) < ^[d(y2n, 2/2n+l) + i % 2 n + l , V2n+2)] 

= ^ 2 n + d2n+l] < max{d2n,d2n+l}-

Using this in above, we obtain 
d2 n+1 max{d2n5 

5 i()(t)dt<G( 5 ip(t)dt) 
0 0 

d2n d2n+l 

~ Gy max I \ ip(t) dt, \ ip(t)dt\). 

If we choose Jo2n+1 4>(t) dt as "max" in above, then (¿2n+i > 0 and we have 
¿2n+l ¿2n+l (¿2n+l 

5 ip(t) dt < G( J ^{t)dt\< j ip(t)dt, 
0 0 0 

a contradiction. Hence, 
d2n+l d2n 

(4.4) j ip(t) dt < G( 5 xl>{t)dt\. 
0 0 

Similarly, by setting x2n+2 for x and 2271+1 for y in (4.2), we obtain 
d2n+2 d2n+ld2n+2 max{d2n+2d2n+l, 0 } 

\ ip(t)dt + p \ ij)(t) dt <p \ ip{t)dt 
0 0 0 

max.{d2n+l,d2n+2,d2n+l<^d(y2n+l ,J/2n+3)} 
+ G ( ! m d t ) , 

i.e., 

(¿2n+2 max{d2n+l, d2n+2, «fen+l,|d(j/2n+l,2/2n+3)} 
j IP(t) dt <G( J IP{t)dt\ 
o o 

i.e., 
d2n+2 max{d2n+l,d2n+2} 

J i/>(t)dt<G( \ ip(t) dt\ 
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whence 
d.2n+2 (fen+l 

(4.5) \ xl>{t)dt<G( J ^{t)dt\ 
o o 

Unifying (4.4) and (4.5), we obtain 

dn+1 dn 

5 ip{t)dt < G M il>(t)dt\ 
0 0 

for all n = 0 , 1 , 2 , . . . . 
Next, define a sequence {tn} by tn+1 = G(tn), with 

do <%o,2/i) 
ti = \ tp{t) dt = \ ip(t) dt. 

0 0 

It then follows by assumption (a) that, 0 < G(tn) = tn+\ <tn < t\, Vn > 1, 
if t\ > 0. If t\ = 0, then tn = 0, for every n. 

Furthermore, by induction, we show that Iq11 ip(t) dt < i n + i , for every 
n € N. If n = 1, then by putting Xo for x and X\ for y in (4.2), we have 

<¿(2/1,2/2) <%o,2/1)̂ (2/1,2/2) max{d(yo,2/1 )d(y\,2/2), 0} 
\ ip(t) dt + p \ ip(t) dt <p J ij){t) dt 
0 0 0 

max{d(y0 ,yi) ,d(yi ,1/2), § d(y2 ,yo)} 
+ G ( J m d t ) , 

whence 
d\ <¿(2/1,2/2) 
$ ip(t) dt = \ ip(t) dt 
0 0 

max{d(2/o,2/1),¿(2/1,2/2), ̂ <¿(2/2,2/0)} 
<g( 5 xP{t)dt) 

max{d{y0,yi),d{yi,y2)} 
= G ( i m d t ) 

d(2/o,2/i) d0 

= G( $ rP(t)dt) =G(\iP(t)dt) =G(t1) = t2-, 
0 0 

because if we choose <¿(3/1,2/2) as "max" , then d(y\, ^2) > 0 and it yields 
Sq1 ip(t) dt < tp(t) dt) < Jo1 ip(t) dt, which is a contradiction. 

Thus, for n = 1, we observe that Jq1 ip(t) dt < t2-
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Assume, for some fixed n, that ip(t) dt < tn+\ is true. Then, by 
induction; we have, since G is nondecreasing, 

dn+l dn 

\ iP(t) d t < G ( \ dt) < G(tn+1) = tn+2. 
o o 

Thus, it follows that ip(t) dt < tn+1, for all n G N-
Note that, if t\ = 0, then dn = 0 for every n, so that we consider the 

case where tn > 0, for every n. 
Now, by conditions (a)-(c) and tn+\ — G(tn), n € N, which shows that 

lim„ —>oo tn — limn^oo dn — 0, it follows that {yn} is a Cauchy sequence. 
Indeed, if m, n G N with m > n, then using that hypothesis (HI) implies 
E r 1 ^ 

<k=n K 

\ ip(t) dt 
o 
dn tin +dn+1 dn+dn+l+dn+2 EfcLn dk 

= \i>(t)dt+ \ %l:(t)dt+ \ i>(t) dt + • • • + \ ip(t) dt 
o dn dn+dn+1 52T=n dk 

dn dn+1 dn+2 dm-1 
<\4>(t)dt+ J ip(t)dt+ j i(j(t) dt + • • • + j i>(t)dt 

o o o o 
m—1 dk 

= s 1>(t) dt, 
k=n 0 

we obtain 
d{ym,yn) SfcLn dk m-ldk m-1 

5 Mi) dt < 5 tp(t) dt < y^ 5 w ) dt<Y, 1 
0 0 fc=n o k=n 

171 m 4. (+ 4. \ m tk 

= E ' » = E f ^ T T i E s m n 
k=n+1 k=n+1 K V fc=n+l ifc+i 
tn+l 

< S g{t)dt. 
tm+1 

Since the sequence {tn} is convergent and /Q
r g(t)dt < +oo for each 

r G ( 0 i p ( t ) d t ] , where rand C [0, K], then the last term tends to zero as 
n —> oo and, hence, {yn} is a Cauchy sequence in X. 

Now, we suppose that the range of one of the four mappings is complete. 

Case I. Suppose that T(X) is a complete subspace of X, then the sub-
sequence {y2n+1} = {Tx2n+1} is a Cauchy sequence in T(X) and hence 
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converges to a limit, say z in X. Since {yn} is Cauchy and its subsequence 
{?/2n+i} is convergent to z, so {yn} also converges to z. Hence its subse-
quence {j/2n+2} is also convergent to 2. Thus we have 

l i m Tx2n+i = l i m Bx2n+i = l i m Ax2n — l i m Sx^n = 
n—> 00 n—KX n—»00 n—>00 

Let v G T~1z, then Tv = z. We claim that Bv = z. For this, setting 
x = X2n and y — v in the implicit relation (4.2) we have 

d{Ax2n,Bv) d(Sx2n,Tv)d(Ax2n,Bv) 

\ ip(t)dt + p \ ip(t) dt 

0 0 
max{d(Ax2n,Sx2n)d(Bv,Tv),d(Ax2n ,Tv)d(Bv,Sx 2n)} 

< p \ tp(t) dt 

o 
max{d(Sx2n,Tv), d(Ax2n,Sx2 ), d(Bv,Tv),\[d(Ax2n,Tv)+d(Bv,Sx2„)}} 

+ g ( j ^ d t y 

If we suppose that d(z, Bv) > 0, then we have, for n large enough, 

d{Ax2n,Bv) d(Sx2n,Tv)d(Ax2n,Bv) 

\ ip(t) dt + p \ ip(t) dt 

0 0 
max{d(Ax2n,Sx2n)d(Bv,Tv),d(Ax2n,Tv)d(Bv,Sx2n)} d(Bv,z) 

<p J i/>{t)dt + G( j ^{t)dt\. 

o o 
Letting n —> oo, it yields 

d(z,Bv) d(z,Bv) d(z,Bv) 

\ ip(t) dt < g( J ip{t)dt\< j ip(t)dt, 

0 0 0 

which is a contradiction. Thus d(Bv, z) = 0, so that Bv = 2. Hence 
z = Bv = Tv, showing that v is a coincidence point of B and T. 

Further, since B(X) C S(X), Bv = z implies that z € S(X). Let 
u £ S~lz, then Su = z. Now, we claim that Au = z. For this, putting 
x = u and y = v in (4.2), we have 

d(Au,z) 0-d(Au,z) max{0, 0} 

\ ip(t)dt + p \ ip(t) dt < p \ ip(t)dt 

0 0 0 

mox{0, d(Au,z), 0,^d(Au,z)} 

+ g ( J if>(t)dt) 
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i.e., 
d(Au,z) d(Au,z) d(Au,z) 

j ip(t) dt < g ( j ip(t)dt)< j il>(t)dt, 

0 0 0 

if d(Au, z) > 0, getting a contradiction. Thus Au = z. Hence 2 = Au = Su, 
showing that u is a coincidence point of (A, S). 

Case II. If we assume S(X) to be a complete subspace of X, then anal-
ogous arguments establish the earlier conclusion. Indeed, in this case, the 
subsequence {1/271+2} = {Sx2n+2} is a Cauchy sequence in S(X) and hence 
converges to a limit, say z in S(X). Similarly to Case I, 

lim Tx2n+i = lim Bx2n+i — lim Ax2n = lim 5 x 2 n = z. 
n—»00 n—»00 n—>00 n—>oo 

Let v G X be such that Sv = z. To prove that Av — z, we take x — v and 
U = %2n+i in the implicit relation (4.2), hence, assuming that d(Av,z) > 0, 
we get, for n large enough, 
d(Av,Bx2n+l) d(Sv,Tx2n+l)d(Av,Bx2n+l) 

\ ip(t)dt + p \ rp(t) dt 
0 0 

m.&x{d(Av,z)d(Bx2n+i,Tx2n+i),d(Av,Tx2n+i)d(Bx2n+i,Sv)} 

< P \ ip(t) dt 

0 
d(Av,z) 

+G( \ m d t ) , 

0 
hence, taking the limit as n —> 00, we obtain 

d{Av,z) d(Av,z) d(Av,z) 

j 4>(t)dt<G( j ^{t)dt\< j ip(t) dt, 

0 0 0 
which is a contradiction. Hence Av — Sv = z. 

On the other hand, since A(X) C T(X), then z = Tu, for some a e l . 
To check that Bu = z, we take x = v and y = u in (4.2), achieving 

d(z,Bu) d(Bu,z) d{Bu,z) 

J 1p(t) dt <G( j 1p(t) dt) < J il>(t)dt, 

0 0 0 
if d(Bu, z) > 0, getting a contradiction. This proves that Bu = Tu = z. 

The remaining two cases are essentially the same as the previous cases. 
Indeed, if A(X) is complete, then by (4.1), 2 6 A(X) C T(X). Similarly, if 
B(X) is complete, then z € B(X) C S(X). 

Thus pairs (A, S) and (B, T) have coincidence points. Hence in all we 
have z = Au = Su = Bv = Tv. This proves our assertions in (i) and (ii). 
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Now, the weak compatibility of (.4, S) gives Az = ASu = SAu — Sz; 
i.e., Az = Sz. Similarly, the weak compatibility of (B, T) gives Bz = BTv = 
TBv = Tz; i.e., Bz = Tz. 

To show that z is a coincidence point of A, B, S and T, we have to check 
that Az = Bz. For this, putting x = z and y = z in (4.2), we have 
d(Az,Bz) d(Sz,Tz)d(Az,Bz) 

\ ip(t) dt + p J ijj(t)dt 
o o 

max{d(Az,Sz)d(Bz,Tz),d(Az,Tz)d(Bz,Sz)} 

< P \ i>(t) dt 
0 

max{d(Sz,Tz), d(Az,Sz), d(Bz,Tz), ±[d(Az,Tz)+d(Bz,Sz)]} 

+ G ( J il>(t)dt) 

i.e., 
d(Az,Bz) d(Az,Bz) d(Az,Bz) 

5 ip(t)dt<G( 5 i>(t)dt)< 5 i>(t)dt, 
0 0 0 

if d(Az, Bz) > 0, which is a contradiction. Thus Az = Bz. Hence Az = 
Sz = Bz = Tz. 

To show that 2 is a common fixed point, putting x = z and y — v in 
(4.2), we have 
d(Az,Bv) d(Sz,Tv)d(Az,Bv) 

J ip(t)dt + p \ 1p(t) dt 
0 0 

m a x { d ( A z , S z ) d ( B v , T v ) , d{Az,Tv)d{Bv,Sz)} 
< p \ tp(t) dt 

0 
max{d{Sz,Tv),d(Az,Sz),d(Bv,Tv),±[d(Az,Tv)+d(Bv,Sz)]} 

+ G ( J t / f ( t ) d t ) 

i.e., 
d(Az,z) d(Az,z) d{Az,z) 

\ ip(t) dt <G( \ ip(t)dt \ < j il>(t)dt, 
0 0 0 

if d(Az, z) > 0, getting a contradiction. Thus, we obtain z = Az = Bz = 
Sz = Tz. Uniqueness of common fixed point 2 follows easily by (4.2). This 
completes the proof. 

We remark that G in Theorem 4.1 must be defined, at least, in 
[0 ,Sf^(s )ds ] , where cl(rand) C [0,X]. 



Common fixed points for weakly compatible mappings 153 

If we take rp : K+ —> R+ satisfying (HI), then ip is measurable, summable 
on each compact interval, and condition (4.3) holds if ip(t) dt is positive 
and finite for an e > 0. 

Note that condition (HI) is valid for constant functions ip, but it is not 
true for functions of the type ip(t) = Rt, t > 0, where R > 0. 

T H E O R E M 4 . 2 . In Theorem, 4 . 1 , hypothesis ( H I ) can be replaced by the 
following one: 

(H2) ip(t) > 0, Vi > 0, and ip{t) dt) < xp{t) dt, Vx > 0. 

Proof. We have to justify that the sequence {yn} defined in the proof of 
Theorem 4.1 is a Cauchy sequence. Using that 

dn+l dn 

J xp(t)dt<G{\ip(t)dt\ 
0 0 

for all n = 0,1, 2 , . . . , and (H2), we get 
dn+l G(dn) 

\ ip(t)dt< \ 1p(t)dt, 
o o 

for all n = 0 , 1 , 2 , . . . , and dn+\ < G(dn), for all n = 0,1,2, 
We define a sequence {tn} by t\ = do, tn+1 = G(tn), Vn € N. If t\ = 

do = 0, then dn = 0 for every n. Consider t\ > 0, hence i n +i = G(tn) < tn, 
Vn G N and tn 0. Besides, it can be easily obtained that dn < tn+1, for 
all n = 0 ,1 ,2 , . . . . 

Now, for m, n € N with m> n, we get 
m—1 m—1 m in+i 

d(ym, Vn) < dk - X I t k + 1 = X tk - \ 9(t)dt, 
k=n k=n k=n+1 tm+1 

and the sequence {yn} is a Cauchy sequence, since JQr g(t)dt < +00 for each 
r > 0. 

Note that condition G($jJ ip(t) dt) < ip(t) dt, Vx > 0, is trivially 
satisfied if ijj = 1 and reduces to G(Rx) < RG(x), Vx > 0, if tp = R. In fact 
such condition can be dropped, as established in the following result. 

T H E O R E M 4 . 3 . In Theorem 4 .1 , hypothesis ( H I ) can be replaced by the 
following one: 

(H3) ip(t) > 0 , for every t > 0 . 

Proof. In the proof of Theorem 4.1, the following inequality was obtained: 
dn+l dn 

\ ip(t)dt<G(\ip(t)dtj, for all n = 0 , 1 , 2 , . . . . 
0 0 



154 H. K. Pathak, R Rodriguez-Lopez 

We define a sequence {£n} by t\ = do = d(yo,yi), and t n + i such that 
G(Jon ip(t) dt) = Jon+1 i>{t)dt, for every n G N. Note that, for ti > 0, 
Jon tp(t) dt > G(f0n ip(t) dt) = f 0 n + 1 ip(t) dt, for every n and, hence, tn+1 < tn, 
for every n. Then, by induction, it can be proved that 

dn tn+1 
\ i>(t) dt < \ ip(t) dt, for every n G N. 
0 0 

Indeed, if n — 1, 
di do ti ¿2 
J if>(t) d t < G ( \ ip(t) dt) = G( J rp{t) dtJ = $ ip(t) dt. 
0 0 0 0 

If, for some fixed n, ip(t) dt < ip(t) dt is true, then 
dn+1 dn tn+1 ¿n+2 

j ij>(t)dt < G ( J ip(t)dt) < G( J ip(t)dt) = J ip(t)dt. 
0 0 0 0 

Using (H3), we have dn < tn+1, for every n G N. By the properties of {tn}, 
we have that { i n } —> L. We claim that L = 0. Indeed, suppose that L > 0, 
then ip(t) dt -> ip{t) dt = P > 0 and ip(t) dt > P, for every n G N. 
From the properties (a), (b), we deduce that G is subadditive and, hence, 

g( f V(t) di) = GQ dt + j ip(t) dt) 

< G ( \ i P ( t ) d t ) + G ( \ i p ( t ) d t ) 

0 L 

= gQ if>(t) dt) + G( f ip(t) dt - \ ip(t) dt) 

OL tn L 
ip(t) dt) + J i j j ( t ) dt - J ip(t) dt. 

o o o 
This inequality, joint to the property in tn+1 L 

lim G[ \ i p ( t ) d t ) = lim \ ip(t) dt = \ip(t) dt, 
n—>+oo \ jj / n—>+oo ^ jj 

produces that 
L L L 
J ip(t) d t < G ( \ 4>(t) dt) < J i>{t) dt, 
0 0 0 

which is a contradiction. Thus L = 0 and {tn} —* 0. This also implies that 
{yn) -> 0 and (dn) 0. 
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Finally, if m, n £ N with m > n, we get 

m—1 771—1 771 in + 1 
d(ym, Vn) tk+1 = tk - S 

fc=n fc=n fc=n+l tm+l 

therefore is a Cauchy sequence. 
If ^ is nondecreasing, then (HI) is satisfied only for ip a constant function. 

However, condition (H3) could be fulfilled. Note that if ip = 1 in Theorems 
4.1-4.3, then (4.2) is reduced to inequality (ii) in Theorem B (see [11]). On 
the other hand, if p = 0, then Theorems 4.1-4.3 reduce to the following 
Corollary. 

C O R O L L A R Y 4 . 4 . Let A, B, S and T be four self-mappings of a metric 
space (X,d) satisfying (4.1) and 

d(Ax,By) 

(4.6) 5 i>(t) dt 
0 

max {d(Sx,Ty),d(Ax,Sx),d(By,Ty), d(Ax,Ty)+d(By,Sx) j 

< g ( j mdt), 
for all x,y £ X, where G : [0, +oo) ^ R is nondecreasing and satisfies 
the Altman type conditions (a)-(c) and ij) : M+ —• R+ is a nonnegative, 
Lebesgue measurable mapping which is summable on each compact interval, 
and satisfies (4.3). Assume that one of the hypotheses (HI), (H2) or (H3) 
holds. If one ofA(X), B(X), S(X) or T(X) is a complete subspace of X, 
then 

(i) {A, S) have a coincidence point. 
(ii) (B , T) have a coincidence point. 

Moreover, if both the pairs (A,S) and (B,T) are weakly compatible then 
A, B, S and T have a unique common fixed point. 

REMARK 4.5 . If S and T are self-mappings of a metric space 
(X, d) then we have the following Corollary as a generalization of the results 
of Popa and Pathak [11]. 

C O R O L L A R Y 4 . 6 . Let {VLI}ieN, S andT be self-mappings of a metric space 
(X, d) such that 

(4.7) MX)CT(X), Ai+1(X) C S(X), 



156 H. K. Pathak, R Rodriguez-Lopez 

d(AiX,Ai+1y) d(Sx,Ty)d(AiX,Ai+1y) 

(4.8) 5 il>(t)dt + p \ ip(t)dt 
0 0 

ma.x{d(AiX,Sx)d{Ai+iy,Ty), d{AiX,Ty)d(Ai+1y,Sx)} 

< P \ ^(i) dt 
0 

max{d(Sx,Ty),d(AiX,Sx),d(Ai+1y,Ty), ^ i ^ H ^ + i ^ * ) } 

+ G ( \ mdt), 

for all x,y € X, where p > 0, G : [0, +oo) —> E is nondecreasing and 
satisfies the Altman's conditions (a)-(c) and if) : M+ —> R+ is a nonnegative, 
Lebesgue measurable mapping which is summable on each compact interval, 
and such that (4.3) holds. Assume that one of the hypotheses (HI), (H2) or 
(H3) holds. If one of Ai(X), S(X) or T(X) is a complete subspace of X, 
and if the pairs (Ai,S) and T) are weakly compatible, then 
S and T have a unique common fixed point. 

R E M A R K 4 . 7 . If we take sequences and instead of A and 
B in Theorem 4.1, then we get the following Corollary as a generalization of 
Theorem A [13], in which the completeness of X and compatibility of type 
(A) are relaxed by completeness of one subspace and weak compatibility. 

C O R O L L A R Y 4 . 8 . Let S and T be self-maps of a metric space (X,d). Let 
and be two sequences of self-mappings of the metric space 

(X, d) satisfying the conditions: 

(4.9) MX) C T(X), Bi{X) C S(X), 
d(AiX,Biy) d(Sx,Ty)d(AiX,Biy) 

(4.10) j 1p{t)dt+p \ 1p(t) dt 
0 0 

iaa.x{d(AiX,Sx)d(Biy,Ty),d(AiX,Ty)d(Biy,Sx)} m(x,y) 

<p \ ip{t)dt + G( J i>{t)dt\ 
o o 

for all x, y € X, where p > 0, G : [0, +oo) —> R is nondecreasing and satisfies 
the Altman type conditions (a)-(c), tjj '• ~̂  is a nonnegative, Lebesgue 
measurable mapping which is summable on each compact interval, and such 
that (4.3) holds, and 

m(x, y) = m&x{d(Sx, Ty),d(AiX, Sx),d(Biy, Ty), 
±[d(Aix,Ty) + d(Biy,Sx)}}. 

Assume that one of the hypotheses (HI), (H2) or (H3) holds. If one ofAi(X), 
Bi(X), S(X) orT(X) is a complete subspace of X, then 
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(i) [A{,S) have a coincidence point. 

(ii) ( B i , T ) have a coincidence point. 

Moreover, if both the pairs (Ai, S) and (B{, T) are weakly compatible then 

Ai, Bi, S and T have a unique common fixed point. 

Now we give an example to show the validity of the main results Theorems 
4.1-4.3. 

EXAMPLE 4.9. Let A, B, S and T be four self-mappings of the metric 
space X = [0,1], endowed with the usual metric d. Define the mappings 
A,B,S,T:X—+X by: 

Ax = 1, Sx = 2xmod 1, Bx = 1, and Tx = ^ (1 + x), Vx G X. 
¿i 

Let G : [0, oo) —> R be the nondecreasing function defined by G(t) — and 
ip(t) = 21, for all t € M+. Then we observe that \lg{t)dt = 2r < +oo, for 
every r > 0, and: 

(i) A(X) = { 1 } C T(X) = [ i , 1] and B(X) = { 1 } C S(X) = [0,1]; 

Condition (4.2) is trivially satisfied since d(Ax,By) = 0, for every 
x,ye [0,1]. 

(ii) When 0 < x < \ and y G [0,1], we have d(Ax,By) = 0, d(Sx,Ty) = 

\2x— \{y + 1)|, d(Ax,Sx) = |1 — 2x\, d(By, Ty) = \\l-y\ = d(Ax,Ty) and 
d(By, Sx) = |1 - 2x\. Then condition (4.2) yields 

0 o m a x { | l - 2 s | i | l - y | , ±\l-y\\l-2x\} 

\2tdt + p\2tdt <p \ 2tdt 

o o o 

m a x { | 2 a ; - ^ ( v + l ) | , | l - 2 x | , l | l - y | , i | 1 " w l + | 1 ~ 2 a | } 

+ \ 2 tdt), 

or, 

0 < — 2x\2 • |1 — y\2 + G((m(x, y))2), 

where 

m(x,y) = max{i|4x - y - 1|, |1 - 2x\, - y\, i ( i | l - y\ + |1 - 2x\)} > 0. 

Thus condition (4.2) is true for all i 6 [0, j/ 6 [0,1], and p > 0. 
(iii) When | < x < 1 and y € [0,1], we can similarly show, as in (ii), that 
condition (4.2) is true for all p > 0. 

Further, when 0 < x < ^ and y £ [0,1], we see that m(x,y) = 0 if and 
only if 

i|4x -y-l\ = 0=\l-2x\ = ±\l-y\ = -y\ + \l- 2x\) 
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i.e., 

x = - , y = 1. 
2 

Thus, m(A, 1) = 0 and, therefore, G(m(±, l ) 2 ) = G(0) = 0. 
We observe that T(X) (and also S(X)) are complete subspaces of X. 

Further, we have g(t) = 2, so that JQr g(t)dt = 2r < +oo, for every r £ (0,1]. 
We notice that A and S have as coincidence points x £ 1], where 

ASx = SAx, and B, T have the coincidence point x = 1, where they 
commute. So that [A, S) and ( B , T ) are weakly compatible. Thus all the 
conditions of Theorem 4.1 are satisfied, with the exception of (HI). Note 
that (H3) holds. Moreover, the only common fixed point of A, B, S and T 
is x = 1. This validates Theorem 4.3. 

The following example also shows the validity of our main Theorem 4.3. 

E X A M P L E 4 . 1 0 . Let A, B, S and T be four self-mappings on X = \-2ir, 2ix] 
with |-| the usual metric. Suppose that G(t) = \t, for all t > 0, and G(0) = 0. 
Then 0 < G(t) < t, for every t > 0. Besides, g(t) — — §, for all t > 0, 
and so f j g(t)dt = |r < +00, where r £ (0,47r]. Suppose also that p = 0 
and i p ( t ) — § t , and (H3) holds. 

Define the four mappings A, B, S,T : [—2ir, 2ir\ —> [—27r, 2iz\ by 

Ax = ^ sinx, Sx = ^-x, Bx — ^ sin(2x), Tx = ^x, Vx £ [—2ir, 27r]. 
8 4 8 2 

Then, we observe that 
(i) A{X) = [ 4 , ± ] C T(X) = [-7T,7T] and B{X) = C S(X) = 

[" 7T 7T1 
i 2 ' 2 J" 

(ii) Now, d(Sx, Ty) = \\x-2y\, d(Ax,By) = ||sinx-sin(2y)|, d(Ax,Sx) 
= 11 sin x - \x\, d(By, Sx) = | | sin(2y) - \x\, d(By, Ty) = 11 sin(2y) - \y\, 
and d(Ax,Ty) = ||sinx — \y\, for all x,y £ X. 

Note that the function i ' (e) = \fQ ip(t) dt is a nondecreasing function in 
e > 0 and G(t) is also a nondecreasing function in t > 0. 

Now, we see that 
d(Ax,By) | sina;—sin(2j/)| \\x-2y\ 

5 xjj(t)dt= \ 1>(t)dt< $ iP(t)dt=-\x-2y\2 

0 0 0 
\\x-2y\ d{Sx,Ty) 

= g ( J i P { t ) d t ) = G ( 5 i p { t ) d V j 

max{d(Sx,Ty),d(Ax,Sx),d(By,Ty),±[d(Ax,Ty)+d(By,Sx)\} 

<G( \ m d t ) . 
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Thus, condition (4.2) is satisfied for all x, y G X. Further, 

m(x,y) = 0 max{±|x - 2y\, ||sinx - \x\, ||sin(2y) - \y\, 

i [ | | s i n a ; - i y | + ||s in(2y) - ix|] } = 0 

each of the values \\x — 2y\, |gsinx — \x\, ||sin(2y) — ^y\ 

and ^[||sinx — \y\ + ||sin(2y) — must be zero 

separately 

& x = 0 , y = 0 , 

and G(0) = G(m(0,0)) = 0. We also observe that T ( X ) and 5 ( X ) are 
complete subspaces of X . 

Thus, all the conditions of Theorem 4.3 are satisfied. The coincidence 
point of the pairs (A,S) and that of ( B , T ) is x = 0. Clearly, x = 0 is 
the only common fixed point of A,B,S and T in [—27t,27t]. This validates 
Theorems 4.1-4.3. 

EXAMPLE 4 .11. In order to give examples in the context of nonlinear con-
tractions, we analyze the meaning of property (b). If we seek a differentiable 
function G, using (a), we deduce that function g is also differentiable and 

= t((t-G(i))P ' f° r every t, hence if we choose G satisfying that 

0 < G'(t) < ® , Vi > 0, 

then g is a nonincreasing function. On the other hand, if g is a nonincreasing 
function, then 

^ < — 4 t 7 T T , Vi2 > h > 0, 
t2-G(t2) - h — G(ti)' 

and, using property (a), we obtain that 

G(t2) < ^ ¿ 2 , Vi2 > h > 0, 

which means that the point (t2,G(t2)) must be in the region which is be-
low all the lines which join (0, 0) and each point of the graph of G before 
(t2,G(t2)). 

Our interest is to find an example of nonlinear contraction with G'(0) = 1. 
Consider the nondecreasing function G(t) = ln(£ + 1), t > 0, which satisfies 
G(0) = 0 and 0 < G(t) < t, for every t > 0. Note that G'(0) = 1 but 
G'(t) < 1 for t > 0. Besides, g defined by g{t) = is nonincreasing 
on (0, +oo), since the sign of its derivative coincides with the sign of f3(t) = 
t — (t + 1) ln(i + 1), t > 0, which is negative on (0, +oo). 
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On the other hand, 

\9(t)dt = ]t_ln
t
{t + i)dt<+oc, 

for every r > 0. Indeed, we check that there exists S > 0 such that 
t—ln(t+i) < t^i f° r every t € (0,6), for a certain a > 1. Hence $q t_ l n( f+1) dt < 
+oo and, by continuity, t - ln( t+i ) ^ ^ +oo. To prove this inequality, we 
check that p(t) = ln(i + 1) - t + ta+1 < 0, for every t € (0,6) and a 
certain a > 1. We have p(0) = 0 and p'(t) = j—^-, Vi, where a(t) = 
-t + (a + 1 )ta(t + 1) < 0 for t > 0 small enough. This follows from a(0) = 0 
and a'(t) = — 1 + (a + l)p.(t), where p{t) = a i a _ 1 ( i + 1) + ta is a continuous 
function on [0, +oo) with 0) = 0, and a ' is continuous on [0, +oo) with 
<j'(0) = —1 < 0, therefore, for a fixed a > 1 and t > 0 small enough, we 
obtain cr'(t) < 0, hence (c) is valid. 

It is easy to check that conditions in Theorem 4.3 are satisfied for func-
tions defined in Example 4.9 for the following choice of function G 

G(t) — ln(i + 1), i > 0, 

and every p > 0. 

E X A M P L E 4 . 1 2 . Consider the functions in Example 4.10, where function 
G is taken as G(t) = ln(i + 1), t > 0, and p = 0. To check condition (4.2), 
we prove that, for every x, y € X = [—27r, 27T], 

d(Ax,By) fl*-2j/| 
1 ip(t)dt< \ ^(t)dt = —\x-2y\2 

0 o i y z 

< In 1 + 48 

max{d(Sx,Ty),d(Ax,Sx),d(By,Ty),±[d(Ax,Ty)+d(By,Sx)]} 

! \ ¿l«-2»l d{Sx,Ty) 
-)=<?( 5 ip(t)dt)=G( 5 ^{t)dt\ 

' o o 

Note that this property is deduced from the inequality 

¿ 2 * < l n ( l + Vze[0,(6vr)2], 

since \x — 2y\2 < (67r)2, for every x, y € [—2n, 27t]. Figure 1 shows the graph 
of function (f>(z) = In (l + -^z) — j^z, which is nonnegative on [0, (67t)2]. 

R E M A R K 4 . 1 3 . Our Theorems 4.1-4.3 remain true if the pairs (A, S) and 
(B,T) are R-weakly commuting [8] instead of weakly compatible. 
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Fig. 1. Graph of function <f> 

R E M A R K 4 . 1 4 . The main results in this paper can be established equiva-
lently by using the function \I>(t) := $Q ip(s) ds, for i > 0, in such a way that 
condition (4.2) would be written as 

V{d(Ax, By))+p V(d(Sx, Ty)d{Ax, By)) 

< p (max{d(Ar, Sx)d{By, Ty), d(Ax, Ty)d(By, Sx)}) 

( m a x Ty), d(Ax, Sx), d(By, Ty), d{Ax,Ty)+d(By,Sx)^ 

for all x, y E X, where p > 0, G : [0, +oo) —> R is nondecreasing and sat-
isfies the Altman type conditions (a)-(c). The proof is made for functions 
^ of integral type t) := $Q ip{s)ds, for t > 0, where ip : M+ M+ is a 
nonnegative, Lebesgue measurable mapping which is summable on each com-
pact interval and satisfies (4.3), assuming one of the hypotheses (H1)-(H3). 
Analogous interpretations can be made for conditions (4.6), (4.8) and (4.10). 
Note that for the function of integral type described, we have that ^ is 
continuous. Condition (4.3) on function produces the property of 

V(t) > 0, Vt> 0. 

On the other hand, hypothesis (H2) of function ^ provides that ^ is increas-
ing on (0,+oo) and G(¥(x)) < ®(G(x)), Vx > 0. Obviously, (H3) implies 
the increasing character of on (0, +oo). 

Using this formulation, Theorem B is obtained by choosing $ the identity 
mapping. 
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