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SOME RESULTS ON COMMON FIXED POINTS FOR
WEAKLY COMPATIBLE MAPPINGS SATISFYING
ALTMAN INTEGRAL TYPE CONTRACTION

Abstract. In this paper, a common fixed point theorem for two pairs of weakly
compatible mappings satisfying Altman integral type contraction in a metric space is
proved. Our result extends and improves several known results.

1. Introduction

Let A and S be two self-maps of a metric space (X, d). Sessa [14] defined
A and S to be weakly commuting if d(ASz, SAx) < d(Az,Sz),forallz € X.
Jungck [5] defined A and S to be compatible if lim, d(ASz,, SAz,) = 0,
whenever there exists a sequence {z,} in X such that lim, Sz, = lim,, Az,
= t, for some ¢t € X. Pathak et al. [9] defined A and S to be compatible
of type (P) if lim, d(AAx,, SSz,) = 0, whenever there exists a sequence
{zn} in X such that lim, Sz, = lim, Az, = t, for some ¢ € X. On the
other hand, Jungck et al. [7] defined A and S to be compatible of type (A)
if lim, d(ASxn, SSzy,) = lim, d(SAz,, AAz,) = 0, whenever there exists a
sequence {z,p} in X such that lim, Sz, = lim, Az, = ¢, for some t € X.
Clearly, commuting mappings are weakly commuting and weakly commut-
ing mappings are compatible but neither implication is reversible. In 1998,
Jungck [6] defined A and S to be weakly compatible if SAx = ASx whenever
Ax = Sz for some z in X.

There exist examples showing that weakly compatible maps need not be
compatible (compatible of type (P) or compatible of type (A)). However,
Az = Sz, for some z € X with compatibility (compatible of type (P) or
compatible of type (A)) implies that ASz = SSz = SAx = AAz.
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2. Altman condition

In 1975, Altman [1] introduced a generalized contraction. Let (X, d) be
a metric space and f : X — X. Then f is called a generalized contraction
if, for all z,y € X,

(2.1) d(fz, fy) < G(d(z,y))

where G : [0, +00) — R is a nondecreasing function satisfying the following
conditions:

(a) 0 < G(t) < t, for all t > 0, G(0) =0,
(b) g(t) = t——ém is non-increasing on (0, co),
(c) §5 9(t)dt < 400 for each 7 > 0.

Henceforth, we shall denote by R, R, and N the set of real numbers, the set
of nonnegative real numbers and the set of natural numbers, respectively.

After Altman’s theorem on metric spaces, Carbone and Singh [2], Rhoa-
des and Watson [12], Watson, Meade and Norris [16] etc. proved fixed point
theorems for generalized contractions. We shall use more general contraction
condition than the Altman type in our main result.

3. Preliminaries
The following theorem was proved by Sahu and Dewangan [13]. In its
statement, Gy denotes the family of real-valued functions G on the set D =

cl(ran d) which are nondecreasing on D and satisfy (a), and conditions (b),

(c) on D\ {0}, that is,

Go={G:D->R:

G nondecreasing and satisfying (a) and (b), (c) on D\ {0}}.
THEOREM A. Let S and T be self-mappings of a complete metric space
(X,d). Let {A;}ieny and {B;}ien be sequences of self-maps on X satisfying
the following conditions:

(i) Ai(X) CT(X), Bi(X) C 5(X),

(i) d(Aiz, Byy) < G(m(z,y)), for all z,y € X, where G € Gy, the family
of real-valued functions G, and m(x,y) = max{d(Sz,Ty), d(4;z, Sz),
d(Biy, Ty), 3{d(Bsy, Sz) + d(4iz, Ty)l},

(iii) one of A;, Bi, S or T is continuous and

(iv) A; and S and B; and T are compatible of type (A).

Then each A;, B;, S and T have a unique common fized point in X.
Let F be the set of all functions f : R+ — R+ such that

(*) f is isotone, i.e., if t; < to then f(t1) < f(t2), for all t1,t2 € R4,
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(**) f is upper semi-continuous,
(***) f(t) < t, for each t > 0.

In the light of the above notation, the following theorem was proved by
Popa and Pathak [11].

THEOREM B. Let A, B, S and T be self-mappings of a complete metric
space (X, d) satisfying the conditions:

(i) A(X) CcT(X), B(X) C S(X),
(ii) the inequality

[1+pd(Sz,Ty)|d(Az, By)
< pmax{d(Az, Sz)d(By, Ty),d(Az, Ty)d(By, Sz)}

+f (max{d(S:c, Ty),d(Az, Sz),d(By, Ty), %[d(By, Sz) + d(Az, Ty)]}) ,

_holds for all z,y € X, where p >0 and f € F,
(iii) one of A, B, S or T is continuous, and
(iv) pairs (A,S) and (B,T) are compatible of type (A).

Then A, B, S and T have a common fized point z. Further, z is the unique
common fized point of A and S and of B and T'.

Our aim in this paper is to prove a common fixed point theorem for
two pairs of weakly compatible mappings satisfying Altman type contraction
condition and to derive a few known results as corollaries. In our main result,
we have: dropped the completeness of the whole space X in Theorem B, by
choosing the range space of one of the four mappings complete; relaxed the
duality of conditions on mappings in compatibility of type (A) by taking
weakly compatible mappings and dropped the requirement of the continuity
of one of the four mappings.

4. Main results

We now state and prove our main theorem.

THEOREM 4.1. Let A, B, S and T be four self-mappings of a metric space
(X, d) satisfying the following conditions:

(4.1) AX) C T(X), B(X)C S(X),
d(Az,By) d(Sz,Ty)d(Az,By)

(4.2) | w)dt+p | W(t) dt

0 0
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max{d(Az,Sz)d(By,Ty), d(Az,Ty)d(By,Sz)}

<p | B(t) dt
0
max{d(Sz,Ty),d(Az,Sz),d(By,Ty), XA2T01dBy.52)
+6( i v(t)dt),
0

forallz,y € X, wherep > 0, G : [0,+00) — R is nondecreasing and satisfies
the Altman type conditions (a)—(c) and ¢ : Ry — Ry is a nonnegative,
Lebesque measurable mapping which is summable on each compact interval,
and such that

€

(4.3) Sw(t) dt >0 for each €>0.
0

Assume also the following hypothesis:

(H1) v is a nonincreasing function.

If one of A(X), B(X), S(X) or T(X) is a complete subspace of X, then
(1) (A4, S) have a coincidence point.

(ii) (B, T) have a coincidence point.

Moreover, if both the pairs (A, S) and (B,T) are weakly compatible then A,

B, S and T have a unique common fized point.

Proof. Pick zp € X, then by (4.1) we can choose a sequence {z,} in X
such that

Zo = Yo, ATon = TZop+1 = Yont+1 and Bxoni1 = STons2 = Yont2,

foralln=0,1,2,....

We now show that the sequence {y,} defined above is a Cauchy sequence
in X. Let us denote d(yn,Yn+1) by dp, for each n = 0,1,2,.... First, we
show that Sg"“ W(t) dt < G(§o~ 4 (t) dt). Now we claim that

' lim d, =0

n—oo

and then show that {y,} is a Cauchy sequence in X. For this, putting x2,
for z and zon 1 for y in (4.2), we obtain

dan+1 dondon+1 ma.x{dgndzn+1, 0}
| vwydt+p | w@®)dt<p | P(t) dt
0 0] 0
maz{dan,dan,dz2n+1,5d(y2n,y2n+2)}
+6( { b(t) dt)

0
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ie.,
d2n41 maz{dzn,dzn,dzn+1,3d(y2n,y2n+2)}
| wde<c( | $(t) dt).
0 0

But, from the triangle inequality for metric d, we have
1 1
5 A2, yon+2) < E[d(yzm Yon+1) + d(Y2n+1, Yon+2)]

1
= §[d2n + don+1] < maz{den, dont1}-

Using this in above, we obtain

don+1 max{dan, d2n+t1}
| vwa<e( | w@d)
0 0
dan don+1
=G(max{ | w()at, | w(t)dt}).
0 0
If we choose Sg""“ ¥(t) dt as “max” in above, then da,+1 > 0 and we have
d2n+1 d2nt1 dant1
[ w@dt< G( | ) dt) < | vd,
0 0 0

a contradiction. Hence,

dont1 dan
(4.4) | wdt< G( R0 dt).
0 0
Similarly, by setting z2n,+2 for  and zgp4 for y in (4.2), we obtain
d2nt2 d2n+1dan+2 maz{d2nt+2d2n+1, 0}
| vwdt+p | w(®)dt<p | p(t) dt
0 0 0
max{dzn+1,d2n+2,d2n+1,34(Y2n+1,92n+3)}
+ G( i »(t) dt),
0
ie.,
d2ny2 max{dzn+1, d2n+2, dont1,5d(Y2n+1,y2n+3)}
| wdt< G( i W(t) dt)
0 0
ie.,
dant2 max{dgn+1,d2n+2}

| w@dt< G( i »(t) dt),

0 0
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whence
don+2 dan+1
(4.5) | w@dt< G( | v dt).
0 0
Unifying (4.4) and (4.5), we obtain
dn+1 dn
| v@d<G( | pwa),
0 0

foralln=0,1,2,....
Next, define a sequence {t,} by th+1 = G(t,), with

do d(yo,y1)
ti={v@yat= | wo@)adt
0 0

It then follows by assumption (a) that, 0 < G(tp) = thy1 <tp <t1, VR 2>1,
if t; > 0. If t; =0, then ¢, = 0, for every n.

Furthermore, by induction, we show that Sg" P(t) dt < tpy1, for every
n € N. If n =1, then by putting zo for  and z; for y in (4.2), we have

d(y1,y2) d(yo,y1)d(y1,y2) maz{d(yo,y1)d(y1,y2), 0}
I wyat+p | P(t)dt <p | p(t) di
0 0 0
maz{d(yo,y1),d(v1,¥2), 5d(y2,30)}
+6( i wi)dt),
0
whence
dy d(y1.y2)
{eydt= | o(t)dt
0 0
max{d(yo,y1),d(y1,92),3d(y2,30)}
<G P(t) dt
T T
mal‘{d(yo,yl) d(y1,y2)}
= G( W(t) dt)
y0,y1) do
=G( | ):G(Sw(t)dt) = G(t1) = ta;

0
because if we choose d(yl,yz) as “max", then d(y;,y2) > 0 and it yields
Sgl P(t) dt < G( gl Y(t)dt) < Sgl ¥(t) dt, which is a contradiction.
Thus, for n = 1, we observe that Sgl P(t) dt < to.
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Assume, for some fixed n, that {j"¢(t)dt < t,y1 is true. Then, by
induction; we have, since GG is nondecreasing,

dni1 dn
| vt < G( | w@) dt) < Cltns1) = tuso.
0 0

Thus, it follows that Sg" P(t) dt < tpt1, for all n € N.

Note that, if ¢; = 0, then d, = 0 for every n, so that we consider the
case where t, > 0, for every n.

Now, by conditions (a)—(c) and ¢n,+1 = G(tn), n € N, which shows that
limp oo tn = limy 00 dp = 0, it follows that {y,} is a Cauchy sequence.
Indeed, if m,n € N with m > n, then using that hypothesis (H1) implies

Zk n dk
| wt)at
0
dn dntdni1 dntdnt1+dnia T, di
={y@t)at+ | vy@)dt+ | pt)ydt+---+ | y(t)at
0 dn dntdnt1 Y2y,
dn dn41 dn42 dm_1
<Vy@ydt+ | vwt)ydt+ | v@)de+---+ | y(t)dt
0 0 0 0
m—1dy
=Y [y,
k=n O
we obtain
d(Ym Yn) Ek ldk m— ldk m—1
| wwat< | w@)dt<d [9®)dt< > tin
] 0 k=n 0 k=n
m m tk(tk _ tk+1) m 172
tr = —_—— < t)dt
k§+1 k§+1 b — G(t) kzzn:+1 tk§—1 )
tnt1
< | g(t)dt.
tmt1
Since the sequence {t,} is convergent and [ g(t)dt < +oo for each

T € (0, So Y(t) dt], where rand C [0, K], then the last term tends to zero as
n — oo and, hence, {y,} is a Cauchy sequence in X.
Now, we suppose that the range of one of the four mappings is complete.

Case I. Suppose that T'(X) is a complete subspace of X, then the sub-
sequence {yon+1} = {Txan4+1} is a Cauchy sequence in T(X) and hence
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converges to a limit, say z in X. Since {y,} is Cauchy and its subsequence
{yan+1} is convergent to z, so {y,} also converges to 2. Hence its subse-
quence {yan+2} is also convergent to z. Thus we have
lim Txopt1 = lim Bzroy41 = lim Aze, = lim Sxzo, = 2.
n—0o0 n—00 n—oo n—oo
Let v € T 1z, then Tv = z. We claim that Bv = 2. For this, setting
& = Z2, and y = v in the implicit relation (4.2) we have

d(Az2y,Bv) d(Szan,Tv)d(Az2n,Bv)
| wt)dt+p { P(t) dt
0 0
max{d(Az2n,ST2,)d(Bv,Tv),d(Az2y,,Tv)d(Bv,Sz2,)}
<p | Y(t) dt
0
max{d(Sz2n,Tv), d(Ax2n,ST2n), d(Bv,Tv),%[d(Aa:zn,Tv)+d(Bv,Sa:2n)]}
+ G( i »(t) dt).
0
If we suppose that d(z, Bv) > 0, then we have, for n large enough,
d(Azan,Bv) d(Szan,Tv)d(Azon,Bv)
§ w@dt+p | P(t) dt
0 0
maz{d(Azan,ST2n)d(Bv,Tv),d( Az2n,Tv)d(Bv,Sz2n)} d(Buv,z)
<p ! W(t) dt + G( R0 dt).
0 0

Letting n — oo, it yields
d(z,Bv) d(z,Bv) d(z,Bv)

| wmd< G( | e dt) < | w@at,

0 0 0
which is a contradiction. Thus d(Bv,z) = 0, so that Bv = 2. Hence
z = Bv = Tv, showing that v is a coincidence point of B and T

Further, since B(X) C S(X), Bv = z implies that z € S(X). Let

u € 871z, then Su = z. Now, we claim that Au = z. For this, putting
z =wu and y = v in (4.2), we have

d(Au,z) 0-d(Au,z) maz{0, 0}
| v@wdt+p | wm)dt<p | gt
0 0 0
maz{0, d(Au,z), 0,%d(Au,z)}
+ G( i »(t) dt)

0
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e d(Au,z) d(Au,z) d(Au,z)
| wdt< G( R0 dt) < | wa,
0 0 0

if d(Au, z) > 0, getting a contradiction. Thus Au = z. Hence z = Au = Su,
showing that u is a coincidence point of (A, S).

Case II. If we assume S(X) to be a complete subspace of X, then anal-
ogous arguments establish the earlier conclusion. Indeed, in this case, the
subsequence {y2nt2} = {STan+2} is a Cauchy sequence in S(X) and hence
converges to a limit, say z in S(X). Similarly to Case I,

lim Txop+1 = lim Bro,41 = lim Aze, = lim Szo, = 2.

n—00 n—od n—0o0 n—oo

Let v € X be such that Sv = z. To prove that Av = z, we take x = v and

Yy = Zan+1 in the implicit relation (4.2), hence, assuming that d(Av, z) > 0,
we get, for n large enough,

d(Av,Bzan41) d(Sv,Tzon41)d(Av,Bzany1)
| w@®dt+p | Y(t) dt
0 0
max{d(Av,2)d(Bzan+1,TT2n+1),d(Av,TT2n+1)d(Bz2nt1,5v)}
<p | ¥(t) dt
0
d(Av,z)
+G( [ v dt),
0
hence, taking the limit as n — oo, we obtain
d(Av,z) d(Av,z) d(Av,z)
| wdt< G( R0 dt) < | w@ad,
0 0 0

which is a contradiction. Hence Av = Sv = z.
On the other hand, since A(X) C T(X), then z = Tu, for some u € X.
To check that Bu = z, we take £ = v and y = v in (4.2), achieving

d(z,Bu) d(Bu,z) d(Bu,z)
| wyde< G( 0 dt) < | @,
0 0 0

if d(Bu, z) > 0, getting a contradiction. This proves that Bu = Tu = z.
The remaining two cases are essentially the same as the previous cases.
Indeed, if A(X) is complete, then by (4.1), z € A(X) C T(X). Similarly, if
B(X) is complete, then z € B(X) C S(X).
Thus pairs (4, S) and (B, T) have coincidence points. Hence in all we
have z = Au = Su = Bv = Tw. This proves our assertions in (i) and (ii).
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Now, the weak compatibility of (A4,S) gives Az = ASu = SAu = Sz;
i.e., Az = Sz. Similarly, the weak compatibility of (B,T) gives Bz = BTv =
TBv =Tz ie., Bz=Txz.

To show that z is a coincidence point of A, B, S and T, we have to check
that Az = Bz. For this, putting x = z and y = z in (4.2), we have
d(Az,Bz) d(82,Tz)d(Az,Bz)

[ wwatr | w@d

0 0

maxz{d(Az,Sz)d(Bz,Tz),d(Az,Tz)d(Bz,Sz)}
<p | P(t)dt
0
max{d(Sz,Tz), d(Az,Sz), d(Bz,Tz), %[d(Az,Tz)-{-d(Bz,S’z)]}
+6( i W(t) dt)
0
ie.,
d(Az,Bz) d(Az,Bz) d(Az,Bz)
| wwas<c( | wmd)< | v
0 0 0
if d(Az, Bz) > 0, which is a contradiction. Thus Az = Bz. Hence Az =
Sz=Bz=Txz.

To show that z is a common fixed point, putting z = z and y = v in

(4.2), we have

d(Az,Bv) d(Sz,Tv)d(Az,Bv)
| w@)dt+p { P(t) dt
0 0
max{d(Az,S2)d(Bv,Tv), d(Az,Tv)d(Bv,Sz)}
<p | B(t) dt
0
ma.x{d(Sz,Tv),d(Az,Sz),d(Bv,Tv),%[d(Az,Tv)+d(Bv,Sz)]}
+ G( i b(t) dt)
0
ie.,
d(Az,z) d(Az,z) d(Az,z)
| w)dt< G( R0 dt) < | w@adt,
0 0 0

if d(Az,z) > 0, getting a contradiction. Thus, we obtain z = Az = Bz =
Sz = T'z. Uniqueness of common fixed point z follows easily by (4.2). This
completes the proof.

We remark that G in Theorem 4.1 must be defined, at least, in
[0, Sé{ ¥(s) ds], where cl(rand) C [0, K].
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If we take ¥ : Ry — R, satisfying (H1), then 9 is measurable summable
on each compact interval, and condition (4.3) holds if {j(t)dt is positive
and finite for an ¢ > 0.

Note that condition (H1) is valid for constant functions v, but it is not
true for functions of the type 9(¢t) = Rt, t > 0, where R > 0.

THEOREM 4.2. In Theorem 4.1, hypothesis (H1) can be replaced by the
following one:

(H2) ¢(t) > 0, V¢ > 0, and G(IE (1) dt) < €@ y(t) dt, ¥z > 0.
Proof. We have to justify that the sequence {y,} defined in the proof of
Theorem 4.1 is a Cauchy sequence. Using that

dn+1

dn
| wdt< G( | v dt),
0

0
foralln=0,1,2,..., and (H2), we get
dnt1 G(dn)
{ vwydt< | w(t)dt
0 0
foralln=0,1,2,..., and dp41 < G(dy), for all n =0,1,2,....

We define a sequence {t,} by t1 = do, th+1 = G(t,), Vn € N. If ¢; =
dp = 0, then d,, = 0 for every n. Consider ¢; > 0, hence t, 11 = G(t,) < tn,
v¥n € N and ¢, — 0. Besides, it can be easily obtained that d, < t,41, for
alln=0,1,2,....

Now, for m, nENwithm>n weget

tn+1

d(Ym, Yn) de < Ztm Z te< | g(t)dt,

k=n+1 tm+1

and the sequence {y,} is a Cauchy sequence, since [j g(t)dt < 400 for each
T>0.

Note that condition G({j%(t)dt) < G(I 'zb(t) dt, vz > 0, is trivially
satisfied if ¥ = 1 and reduces to G(Rz) < RG( ), Yz > 0, if y = R. In fact
such condition can be dropped, as established in the following result.

THEOREM 4.3. In Theorem 4.1, hypothesis (H1) can be replaced by the
following one:

(H3) ¥(t) > 0, for every t > 0.
Proof. In the proof of Theorem 4.1, the following inequality was obtained:

dn+1 dn
S¢(t)dt§G(Sw(t)dt), forallm=0,1,2,....
0 0
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We define a sequence {t,} by t1 = do = d(yo,¥1), and t,41 such that
G(§or () dt) = St"“z/)( t)dt, for every n € N. Note that, for t; > 0,

() dt > G(§5 o(t) dt) = St"“ (t) dt, for every n and, hence, t,11 < tn,
for every n. Then by induction, it can be proved that

dn tnt1
S P(t)dt < §+ Y(t)dt, for every n € N.
0 0
Indeed, if n =1,
dl do t1 to
J wityde < G( J v dt) = G( 10 dt) = [ w(t) dt.
0 0 0 0
If, for some fixed n, Sg" P(t)dt < 83"“ ¥(t) dt is true, then
dn+1 dn, tnt1 tnt2
| vt < G( | wt) dt) < G( [ v dt) = | v)dt
0 0 0 0

Using (H3), we have d, < t,41, for every n € N. By the properties of {t,},

we have that {t,} — L. We claim that L = 0. Indeed, suppose that L > 0,

then Sé" Y(t)dt — S(I)‘ Y(t)dt = P > 0 and §5 9(t)dt > P, for every n € N.

From the properties (a), (b), we deduce that G is subadditive and, hence,
tn L tn

G( (g) B(2) dt) - G( Jo) dt+ § b(2) dt)

0

L tn
< G(Sw(t) dt) +G( }w(t)dt)
0 L
L tn L
- G( i ¢(t)dt) + G( J () dt - Sw(t)dt)
0 0 0
L tn L
< G( Jw) dt) + { () dt — {w(e) dt
0 0 0
This inequality, joint to the property
tn tn+1 L
Jm G(Jvod) =l § v = oo,
produces that
L L L
f w( dt<G(§ at) < [t dt,
0 0

which is a contradiction. Thus L = 0 and {t,} — 0. This also implies that
(yn) — 0 and (d,) — 0.
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Finally, if m,n € N with m > n, we get

m—1 m—1 m tnt1
Ay yn) < D de < D ten= ) < | g(t)dt,
k=n k=n k=n+1 tm+1

therefore {y,} is a Cauchy sequence.

If 4 is nondecreasing, then (H1) is satisfied only for ¢ a constant function.
However, condition (H3) could be fulfilled. Note that if ) = 1 in Theorems
4.1-4.3, then (4.2) is reduced to inequality (ii) in Theorem B (see [11]). On
the other hand, if p = 0, then Theorems 4.1-4.3 reduce to the following
Corollary.

COROLLARY 4.4. Let A, B, § and T be four self-mappings of a metric
space (X, d) satisfying (4.1) and

d(Az,By)
(4.6) | w@)dt
0
max {d(Sa:,Ty),d(Aa:,S:z:),d(By,Ty),———)—————d(AI’Ty +d(By,5z) }
<6( | b dt),

0

for all x,y € X, where G : [0,+00) — R is nondecreasing and satisfies
the Altman type conditions (a)-(c) and ¥ : Ry — Ry is a nonnegative,
Lebesgue measurable mapping which is summable on each compact interval,
and satisfies (4.3). Assume that one of the hypotheses (H1), (H2) or (H3)
holds. If one of A(X), B(X), S(X) or T(X) is a complete subspace of X,
then

(i) (A,S) have a coincidence point.
(ii) (B,T) have a coincidence point.

Moreover, if both the pairs (A,S) and (B,T) are weakly compatible then
A, B, § and T have a unique common fized point.

REMARK 4.5. If {4;}ien, S and T are self-mappings of a metric space

(X, d) then we have the following Corollary as a generalization of the results
of Popa and Pathak [11].

COROLLARY 4.6. Let {A;}ien, S and T be self-mappings of a metric space
(X,d) such that

(4.7) Ai(X) cT(X), Ain(X)CS(X),
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d(Ai:r,AH_ly) d(SI,Ty)d(AiI,Ai+1y)
(4.8) | v@dt+p | W(t) dt
0 0
max{d(A;z,5z)d(As+19,Ty), d(A:x,Ty)d(Ai+1y,52)}
<p { W(t)dt
0

max{d(Sz,Ty),d(Ax,S),d(As11y,Ty), LT Ai419,52)

+ G( i W(t) dt),
0

for all x,y € X, where p > 0, G : [0,400) — R is nondecreasing and
satisfies the Altman’s conditions (a)-(c) and ¢ : Ry — Ry is a nonnegative,
Lebesgue measurable mapping which is summable on each compact interval,
and such that (4.3) holds. Assume that one of the hypotheses (H1), (H2) or
(H3) holds. If one of Ai(X), S(X) or T(X) is a complete subspace of X,
and if the pairs (A;, S) and (Aiy1,T) are weakly compatible, then {A;}ien,
S and T have a unique common fized point.

REMARK 4.7. If we take sequences {A;}iey and {B;}icy instead of A and
B in Theorem 4.1, then we get the following Corollary as a generalization of
Theorem A [13], in which the completeness of X and compatibility of type
(A) are relaxed by completeness of one subspace and weak compatibility.

COROLLARY 4.8. Let S and T be self-maps of a metric space (X,d). Let
{A;}ien and {B;}ien be two sequences of self-mappings of the metric space
(X, d) satisfying the conditions:

d(A;z,B;y) d(Sz,Ty)d(A;z,B;y)
(4.10) | wdt+p | Y(t) dt
0 0
max{d(A;z,Sz)d(B;y,Ty),d(A:x,Ty)d(B:y,Sz)} m(z,y)
<p i p(t)dt+G( | v(dt),
0 0

forallz,y € X, wherep > 0, G : [0, +00) — R is nondecreasing and satisfies
the Altman type conditions (a)—(c), ¢ : R — Ry is a nonnegative, Lebesgue
measurable mapping which is summable on each compact interval, and such
that (4.3) holds, and

m(z,y) = max{d(Sz, Ty),d(A;z, Sz),d(B;y, Ty),
%[d(Ai:c, Ty) + d(B;y, Sz)]}.

Assume that one of the hypotheses (H1), (H2) or (H3) holds. If one of A;(X),
Bi(X), S(X) or T(X) is a complete subspace of X, then
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(i) (A, S) have a coincidence point.
(ii) (B;, T) have a coincidence point.
Moreover, if both the pairs (A;, S) and (B;,T') are weakly compatible then
A;, Bi, S and T have a unique common fized point.

Now we give an example to show the validity of the main results Theorems
4.1-4.3.

EXAMPLE 4.9. Let A, B, S and T be four self-mappings of the metric
space X = [0,1], endowed with the usual metric d. Define the mappings
A B,ST: X — X by:

1
Ar =1, Sz =2zmodl, Bzx=1, and Tx=§(1+w), vV € X.

Let G : [0,00) — R be the nondecreasing function defined by G(t) = £, and
¥(t) = 2t, for all t € Ry. Then we observe that {j g(t) dt = 27 < 400, for
every T > 0, and:

(i) AX) = {1} € T(X) = [}, 1] and B(X) = {1} < S(X) = [0, 1
Condition (4.2) is trivially satisfied since d(Az,By) = 0, for every

z,y € [0,1].

(ii) When 0 < z < § and y € [0,1], we have d(Az, By) = 0, d(Sz,Ty) =

|22 — 3(y +1)|, d(Az, Sz) = |1 - 2z], d(By, Ty) = 3|1 — y| = d(Az, Ty) and

d(By, Sz) = |1 — 2z|. Then condition (4.2) yields

9 o max{|1-2z| |1—yl|, §|1-y||1-2z[}
J2tdt+p2ede <p | 2t dt
0 0 0
max{|2z——(y+1)| |1— 22|,2]1 yl, El_ylilll}
+6( J 2 dt),
0
or,

b
0< 21— 20 (1~ 4P + Gl(m(z,u))?),
where
m(z,y) = max{g|dz —y — 1|, |1 - 2z, 3|1 - y|, 5(311 — y[ + |1 - 2z[)} > 0.
Thus condition (4.2) is true for all z € [0,1], y € [0,1], and p > 0.
(ili) When 1 < 2 < 1 and y € [0, 1], we can similarly show, as in (ii), that
condition (4.2) is true for all p > 0.

Further, when 0 < z < 1 and y € [0, 1], we see that m(z,y) = 0 if and
only if

Sz —y—1)=0=[1— 22| = }j1 vl = J([L —y| + 1 2a])
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ie.,

Thus, m(3,1) = 0 and, therefore, G(m(},1)%) = G(0) = 0.

We observe that T'(X) (and also S(X)) are complete subspaces of X.
Further, we have g(t) = 2, so that [ g(t)dt = 21 < +0o0, for every 7 € (0, 1].

We notice that A and S have as coincidence points = € [%, 1], where
ASx = SAz, and B, T have the coincidence point £ = 1, where they
commute. So that (A,S) and (B,T) are weakly compatible. Thus all the
conditions of Theorem 4.1 are satisfied, with the exception of (H1). Note
that (H3) holds. Moreover, the only common fixed point of A, B, S and T
is x = 1. This validates Theorem 4.3.

The following example also shows the validity of our main Theorem 4.3.

EXAMPLE 4.10. Let A, B, S and T be four self-mappings on X = [—2m, 27]
with |-| the usual metric. Suppose that G(t) = 1t, forallt > 0, and G(0) = 0.
Then 0 < G(t) < t, for every ¢t > 0. Besides, g(t) = ﬁ =3, forallt >0,

and so fj g(t)dt = %7’ < +00, where 7 € (0,4x]. Suppose also that p = 0
and ¢(t) = %t, and (H3) holds.

Define the four mappings A, B, S,T : [-2r, 27| — [-2m, 27| by

Az = %sinx, Sz = i:c, Bz = %sin(Q:v), Tz = -;—ac, Vz € [—2m, 27].

Then, we observe that

(i) A(X) = [~3,3] C T(X) = [-m,7] and B(X) = [~,3] C S(X) =
5.3

(ii) Now, d(Sz, Ty) = i|z—2y|, d(Az, By) = %|sinz—sin(2y)|, d(Az, Sz)
— |1sine — Lal, d(By, So) = |4 sin(2y) — Lal, d(By, Ty) = |4sin(2y) - 4ul,
and d(Az, Ty) = |3 sinz — 1y|, forall z,y € X.

Note that the function ¥(e) = {59 (t) dt is a nondecreasing function in
e > 0 and G(?) is also a nondecreasing function in ¢ > 0.

Now, we see that

d(Az,By) 3| sin z—sin(2y)] §le—2y| 1
| wwde= §  emdt< | wt)dt= o2y
0 0 0
%I$—2y| d(Sz,Ty)
=G( i ¢(t)dt)=G< i z/z(t)dt)
0 0
max{d(Sa:,Ty),d(Az,S:c),d(By,Ty),%[d(Az,Ty)+d(By,Sz)]}
<a6( g Y(t)dt).

0
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Thus, condition (4.2) is satisfied for all z,y € X. Further,
m(z,y) = 0 & max{j|z — 2y|, |gsinz — zz|,|gsin(2y) - 3y,
Lltsinz — Ly| + |Lsin(2y) — =[]} =0
&> each of the values 3|z — 2yl,|§sinz — 32|, |} sin(2y) — 1y
and (|3 sinz — 1y| + |§sin(2y) — 1z|] must be zero
separately
Sr=0,y=0,
and G(0) = G(m(0,0)) = 0. We also observe that T(X) and S(X) are
complete subspaces of X.

Thus, all the conditions of Theorem 4.3 are satisfied. The coincidence
point of the pairs (A,S) and that of (B,T) is x = 0. Clearly, z = 0 is
the only common fixed point of A, B,S and T in [—2,2x|. This validates
Theorems 4.1-4.3.

EXAMPLE 4.11. In order to give examples in the context of nonlinear con-
tractions, we analyze the meaning of property (b). If we seek a differentiable
function G, using (a), we deduce that function g is also differentiable and

gt) = t(Gt'ft—();zg)‘,‘—), for every t, hence if we choose G satisfying that

0<G'(t) < %t—) vVt > 0,

then g is a nonincreasing function. On the other hand, if g is a nonincreasing
function, then

to 141
< )
to — G(t2) ~ t1 — G(t1)
and, using property (a), we obtain that
G(t1)
1

Viy >t > 0,

G(tz) < ta, Vio > t1 > 0,

which means that the point (t2,G(t2)) must be in the region which is be-
low all the lines which join (0,0) and each point of the graph of G before
(t2, G(t2)).

Our interest is to find an example of nonlinear contraction with G'(0) = 1.
Consider the nondecreasing function G(t) = In(¢t + 1), t > 0, which satisfies
G(0) = 0 and 0 < G(t) < t, for every t > 0. Note that G'(0) = 1 but
G'(t) < 1 for t > 0. Besides, g defined by g(t) = m is nonincreasing
on (0, +00), since the sign of its derivative coincides with the sign of 8(t) =
t— (t+1)In(t + 1), t > 0, which is negative on (0, 4+00).
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On the other hand,

L < +oo
t—In(t+1) ’
for every 7 > 0. Indeed, we check that there exists § > 0 such that

tTlnTtt?-T) < &, forevery t € (0,4), for a certain o > 1. Hence Sg m dt <

+00 and_, by continuity, Sg mlntw_li dt < 400. To prove this inequality, we
check that p(t) = In(t + 1) —t + t®*! < 0, for every t € (0,6) and a
certain @ > 1. We have p(0) = 0 and p'(t) = %;(LE%, Vt, where o(t) =
—t+(a+1)t*(t+1) < 0 for ¢t > 0 small enough. This follows from ¢(0) =0
and 0/(t) = —1 4 (a+ 1)u(t), where u(t) = at®* (¢t +1) +¢* is a continuous
function on [0, +00) with x(0) = 0, and ¢’ is continuous on [0, +00) with
a’(0) = —1 < 0, therefore, for a fixed @ > 1 and ¢ > 0 small enough, we
obtain ¢’(t) < 0, hence (c) is valid.

It is easy to check that conditions in Theorem 4.3 are satisfied for func-
tions defined in Example 4.9 for the following choice of function G

G(t) = In(t + 1), t >0,
and every p > 0.

EXAMPLE 4.12. Consider the functions in Example 4.10, where function
G is taken as G(t) = In(t + 1), t > 0, and p = 0. To check condition (4.2),

we prove that, for every z,y € X = [-27, 27|,
d(Az,By) 3lz—2y| 1 ,
(X] P(t)dt < (S) () dt = 75|z — 2y
$lz—2y| d(Sz,T
<l <1+%) =G(4 (g) w(t)dt) =G( ( (g) y)w(t)dt)
max{d(Sz,Ty),d(Az,Sz),d(By,Ty),}[d(Az,Ty)+d(By,Sz)]}
< G( (S) W(t) dt).

Note that this property is deduced from the inequality
1 1
—2z2<1 — 2
T (1 + 482) , Vz € [0, (6m)“],

since |z — 2y|? < (67)2, for every z,y € [—2m, 27]. Figure 1 shows the graph
of function ¢(2) =In (1 + f52) — 1352, which is nonnegative on [0, (67)2].

REMARK 4.13. Our Theorems 4.1-4.3 remain true if the pairs (A4, .S) and
(B,T) are R-weakly commuting [8] instead of weakly compatible.
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Fig. 1. Graph of function ¢

REMARK 4.14. The main results in this paper can be established equiva-
lently by using the function ¥(t) := S(t) ¥(s)ds, for t > 0, in such a way that
condition (4.2) would be written as

V(d(Az, By)) + p¥(d(Sz, Ty)d(Az, By))
< p¥(max{d(Az, St)d(By,Ty),d(Az,Ty)d(By, Sz)})

+G (\IJ ( max {d(S:c, Ty), d(Az, Sz), d(By, Ty), dda, Ty) ; A0, 52) }))’

for all z,y € X, where p > 0, G : [0,+00) — R is nondecreasing and sat-
isfies the Altman type conditions (a)—(c). The proof is made for functions
¥ of integral type ¥(t) := Sg Y(s)ds, for t > 0, where ¢ : Ry — R, is a
nonnegative, Lebesgue measurable mapping which is summable on each com-
pact interval and satisfies (4.3), assuming one of the hypotheses (H1)-(H3).
Analogous interpretations can be made for conditions (4.6), (4.8) and (4.10).
Note that for the function ¥ of integral type described, we have that ¥ is
continuous. Condition (4.3) on function % produces the property of ¥

¥(t) >0, Vt>0.

On the other hand, hypothesis (H2) of function ¢ provides that ¥ is increas-
ing on (0, +00) and G(¥(z)) < ¥(G(z)), Yz > 0. Obviously, (H3) implies
the increasing character of ¥ on (0, 4+00).

Using this formulation, Theorem B is obtained by choosing ¥ the identity
mapping.
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