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O N T H E M A Z U R - U L A M T H E O R E M IN M E T R I C G R O U P S 

Abstract. Let X, Y be abelian uniquely 2-divisible groups with metrics dx,dy re-
spectively, invariant with respect to the translations and let there exist a constant c > 1 
such that dy (2y, 0) > cdy{y, 0) for y € Y. We prove that each surjective isometry 
U : X —> Y has a form U(x) = a(x) + t/(0) for x 6 X, where a : X —• Y is a homomor-
phism. 

1. Introduction 
S. Mazur and S. M. Ulam proved the following well-known theorem con-

cerning isometries between normed spaces [3], which is a useful tool in prov-
ing many results. 

Theorem (S. Mazur, S. M. Ulam). Let X,Y be real normed spaces and let 
U : X —> Y be a surjective isometry with U(0) = 0. Then U is linear. 

Let X be a linear-metric space. A set A C X is said to be bounded, if for 
each neighbourhood U of zero there is a number a such that A C aU. The 
space X is said to be locally bounded, if it contains a bounded neighbourhood 
of zero. The above theorem has several generalizations. For example, the 
Theorem IX.3.1 in [4] states, that the assertion of the Mazur-Ulam Theorem 
is true, if X,Y are locally bounded spaces with F-norms || • | |x, || • ||y such 
that for all x € X, y E Y the functions t i—> t • ||iy||y are concave 
for positive t. 

It is natural to investigate the form of isometries between metric groups. 
We obtain two results, analogous to that of the Theorem, one when the 
groups admit total families of semimetrics (Def. 2) and another when the 
group F-norms are regular (Def. 3). 

1991 Mathematics Subject Classification: 46B99. 
Key words and phrases: isometry, Mazur-Ulam theorem, metric groups, F-norms. 



124 M. Zoldak 

2. Invariant metrics and F-norms 
We recall that by a semimetic on a fixed set X we mean a function 

d : X —> [0, oo) satisfying for x,y,z G X the following conditions: d(x, x) 
= 0, d(x, y) = d(y, x), d(x, z) < d(x, y) + d(y, z). 
D E F I N I T I O N 1. Let X be an abelian group. A function || • || : X —> [0, oo) 
satisfying for x, y G X: 

(i) ||0|| = 0, 
(ii) II - x | | = ||x||, 

(hi) \\x + y\\ < IMI + NI 
we call the F-seminorm. An F-seminorm satisfying for x G X the condition 

(i') | |x | | = 0 ^ x = 0 

we call the F-norm. 
If (X, +, d) is an abelian group with a semimetric [a metric] d invariant 

with respect to the translations, i.e. 

d(x + z,y + z) = d(x, y) f o r x,y,z G X, 
then the function 

||x|| := d(x,0) for x G I 
is an F-seminorm [F-norm]. 

Conversely, if (X, +) is an abelian group and a function || • || : X —> [0, oo) 
is an F-seminorm [F-norm], then d(x,y) := ||x — y\\ for x,y G X is an 
invariant semimetric [metric] and d(x, 0) = ||x|| for x G X. 

Because of the natural one-to-one corespondence between invariant semi-
metrics [metrics] and F-seminorms [F-norms], we will use these notions ex-
changeable and formulate our results in the language either of metrics or 
F-norms. We will consider isometries between abelian groups with invariant 
metrics (X, +, d\), (Y, +',dy) in the case where the both groups are uniquely 
2-divisible and the both F-norms || • ||x := dx(-, 0), || • ||y := dy(-,0) satisfy 
the condition: 

(1) there exists a constant c > 1 such that for all x: ||2x|| > c||x||. 

Let us note, that if an F-norm has property (1) and X {0}, then c < 2. 
Indeed, from condition (iii) of definition of F-norm and from (1) we have 

c||x|| < ||2x|| < 2||x|| for x G X. Thus c < 2. 

3. Examples 

E X A M P L E 1. Additive groups C, M, Q, with the F-norm d(x, y) = \x — y\ 
are the abelian uniquely 2-divisible groups with the F-norm || • || = d(x, 0) 
satisfying (1) with c = 2. 
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E X A M P L E 2 . Let X be a real linear space with F-norm satisfying for some 
p G (0,1] the condition: 
(v) ||ix|| = |i|p||a;|| for t G R, x G X. 

Then || • || satisfies (1) with c = 2P. 

E X A M P L E 3 . Let X be real linear spaces with F-norms || • ||i, || • H2 satisfying 
(v) with p\ and P2, respectively, let: 

|| • \\max = max{|| • ||i, || • ||2}, 

and let 
II • II. = (II-II!+ 11-III)-, 

for s G [l,oo). Then || • ||s. and || • ||max are F-norms satisfying (1) with 
c = 2min{pi.p2}_ 

E X A M P L E 4. Let a : M —> M be an additive injective function, p G (0,1] 
and let ||x||a = \a(x)\p for x G X. Then || • ||a is an F-norm, which satisfies 
(1) with c = 2P. 

EXAMPLE 5. Let (X, || • || be a normed space and let a function g : [0, 00) —» 
[0, 00) satisfies, for x, y G X, the following conditions: 

(a) g(x) = 0 « i = 0, 
(b) g(2x) = 2Pg{x), 
(c) g(x + y) < g{x) + g(y). 

Then ||| • ||| defined by ||x||j = p(||x||) for x G X is an F-norm satisfying (1) 
with c = 2P. 

For arbitrary p G (0,1] the function g : [0, 00) —>• [0, 00), 

g{x) = 2""(2(n + 1)p - 2np)x + 2np+1 - for x G [2", 2n + 1] 

and ^(O) = 0 is an example of a function satisfying (a), (b), (c). 
Our main result states, that if X, Y are the abelian uniquely 2-divisible 

groups with invariant metrics satisfing (1) and U : X —> Y is a surjective 
isometry with C/(0) = 0, then U is a homomorphism. 

4. Total family of semimetrics 
Let X be an abelian unique 2-divisible group. We say that ^ ^ is the 

algebraic center of points x,y G X. The Lemma 1 shows that if U : X 
Y is a surjective isometry between abelian unique 2-divisible groups with 
invariant semimetrics satisfying (1), then U preserves the algebraic center of 
each two points, modulo the subgroup {y G Y : dy(y, 0) = 0}. 
L E M M A 1. Let X,Y be abelian unique 2-divisible groups with invariant 
semimetrics dx, dy, let || • ||x := dx(-,0), || • ||y := dy(-,0) and let 
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F-seminorm || • | |y satisfy (1). If a function U : X —> Y is a surjective 
isometry, then 

'x + y \ U(x) + U(y) ( 2 ) u i ) - ; = o 

for x,y E X. 

Proof . We follow the idea of the proof of Lemma 15.3 from [1]. 
Let x, y E X and let 

p :--
x + y 

q 
U(x) + U(y) 

d:= 
U(x) - U{y) 

2 2 
We define a sequence of mappings (gn)neN0> 9n '• Y Y and a sequence 
(Qn)neN of points as follows 

g0(u) := U(2p - U~\u)) for uGY, 
g\{u) := 2q — u for u eY, 

gn+1 9n-1 °gn o for n E N, 

Qi = q, 

<7n+1 : = 9n-i(qn) for n€ N. 
We will estimate the „distance", with respect to the semimetric dy, between 
q and U(p). To do it we will estimate the norms of differences qn — qn-i-

It is obvious that for all n E No, gn is an isometry. 
One can prove by induction that 

(3) 9n(U(x)) = U(y), 9n{U{y)) = U(x). 

for n E No- In turn, we prove inductively that 

(4) \\qn-U(x)\\=d, \\qn-U(y)\\=d 

for n E N. 
We have 

U(x) + U(y) U(y) - U(x) 
= d 

and similarly 
\\qi-U(y)\\=d. 

Hence (4) is valid for n = 1. Assume that (4) is valid for some n E N. Then 
making use of (3) and the induction hypothesis, we obtain 

||9n+1 - U(x)II = \\9n-i(qn) - gn-l(U(y))\\ = \\qn ~ U(y)II = d. 
In a similiar way we check that ||gn+i — U(y) || = d. 

Prom (4) we have 

Ikn - qn-l\\ < (I\qn - U(x)II + I IU{x) - g„_i||) = 2d. 
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Consequently 

(5) ||9n-9n-i|| < 2d for n > 2 n € N. 

We prove by induction, that 

(6 ) \\gn(u) - u\\ > c\\qn - u\\ 

for u € y, n € N. 
We have 

||gi(u) - ti|| = ||2 q -u-u || > c\\q - u|| > c\\q - u||. 

By the induction hypothesis we receive that for all u G Y 

||0„+i(u) - u|| = Wgn-igng'i^u) - II 

= hng'-liu) ~ 5n-l(")ll > C|\qn ~ ik±i(u)|| 
= c||5"il5n_i(gn) - 5n-l(")ll = C\\9n-l{qn) ~ u\ 

= c\\qn+1 - . 

Substituting u = qn+i in (6), we obtain for n G N 

(7) \\qn+2 ~ qn+ill > c\\qn+i - qn\\. 

Hence, for n > 3, n G N 

(8) ||?n-?n-l|| > cn-2\\q2 ~ qi\\-

From inequality (8) we have 

1192 - 911| < - ¿ 2 Ikn - 9n-i|| for n > 3. 

By this inequality and (5) we get, for n > 3, n G N 

(9) | | 9 2 - 9 i | | < ^ . 

On the other hand we have 

||92-9l|| = || U{2p-U-\q))-UU-\q)\\ = \\2p — 2U~l(q)\\ 

> c(||U(p) - q\\ = c\\U(p) - 9|| > c\\U(p) - q\\. 

From this inequality and from (9) we get 

c\\U(p)-q\\ < ||®-?i|| < d 

for n > 3, n G N. 
Consequently 

x + y\ U{x) + U{y) 
U < 

-.71 — 1 
x - y 2 1 „ 2 

< T-\\x — y\\ = —\\x — w — (fl—l c 11 311 r.n 11 w 11 

for n G N. Passing to the limit when n —> 00, we get the assertion. 
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DEFINITION 2 . Let X be a nonempty set and let {ds}ses be a family of 
semimetrics defined on X. We say that this family is total, if for each x, y 
G X such that x ^ y there exists s £ S such that ds(x, y) > 0. 

T H E O R E M 1. Let X, Y be the abelian unique 2-divisible groups with families 
{ds}s€S, {ps}.ses of invariant semimetrics, let each ps satisfy (1) and let the 
family {ps}se5 be total. If a function U : X —> Y is a surjection with 
{7(0) = 0 satisfying 

ps(U(x),U(y)) = ds{x,y) for x,y G X,s G S, 
then U is a homomorphism. 
Proof. By Lemma 1 we obtain that for each x, y G X and each s G S 

By the assumption {ps}seS is total, thus U satisfies the Jensen equation: 

TT(x + y\ U(x) + U(y) 

Since U(0) = 0, we have U(F) = ^ for z £ X. For arbitrary x, y G X we 
have 

u { x + y ) = = 2 m + m _ u [ x ] + u { y ) . 

Thus U is a homomorphism. • 

Obviously, if d is a metric, then the family consisting of the singleton d 
is total. Thus we have the following 

COROLLARY 1. LetX, Y be abelian unique 2-divisible groups with invariant 
metrics and let F-norm in Y satisfies (1). If a function U : X —> Y is a 
surjective isometry with U(0) = 0, then U is a homomorphism. 

R E M A R K 1. The c > 1 is essential in Corollary 1. Indeed, let ci,c2 > 0, 
ci < 2C2, and let ||x|| = ci for x G Q \ {0}, ||x|| = c2 for x G R \ Q, ||0|| = 0. 
Then || • || is an F-norm, satisfying condition (1) and (R, + , ) is an abelian 
uniquely 2-divisible group. For an arbitrary bijection g : Q \ {0} —> Q \ {0} 
a function U : R -»• M, U(x) = g(x) for x G Q \ {0}, and U{x) = x for 
x G R \ Q, C/(0) = 0, is a surjective isometry from (R, || • ||) onto itself, but 
U is not additive if g(x) ^ x for an x G Q \ {0}. 

5. Regular F-norms 
In this section we consider isometries between real linear spaces with 

invariant metrics satisfying (1). 
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D E F I N I T I O N 3 . Let X be a real linear space with an invariant metric d. We 
say that the F-norm || • || := d(-, 0) is regular, if for every x G X a function 
M 3 i i - » ||ix|| G R is bounded on a set A C R of the positive inner Lebesgue 
measure or is of the second category with the Baire property. 

Let us note that if for every x £ X the function R 3 t i—> ||ix|| G R is 
Lebesgue- or Baire measurable, then the F-norm || • || is regular. 

L E M M A 2 . Let X be a real linear space with an invariant metric d satisfy-
ing (1). Then the following conditions are equivalent: 

(a) the F-norm || • || is regular , 
(b) for every x G X function R 3 11—> tx G X is continuous on R. 

Proof . Because of the continuity of F-norm (b) implies (a). We will show 
that (a) implies (b). Let (tn) C R, tn —> 0 and x G X. From Theorem 
XVI.2.6 [2], we obtain that a function R 3 t t—> ||fx|| G R is bounded on 
every bounded set. In particular, there exists a constant K(x) > 0 such that 
||ix|| < K(x) for all t G (—1,1). One can prove that there is a sequence (ln), 
ln 6 R such that ln —> oo and 2 l n t n —> 0. Thus \2lntn\ < 1 for sufficient 
large n. Using (1) we get, for such n, that 

cln\\tnx\\ < \\tn2lnx\\ < K(x). 

Hence \\tnx\\ < ^ ^ —» 0 as n —> oo. Consequently we obtain that the 
function R 3 t i—• tx € X is continuous at 0. Since it is additive, it is 
continuous on R. • 

T H E O R E M 2 . Let X, Y be real spaces with invariant metrics dx, dy, 
let || • | |x := dx{-, 0), || • ||y := dy(-,0) the latter F-norm satisfying (1). If 
a function U : X —> Y is a surjective isometry with U(0) = 0, then U is 
additive. 

Moreover, if F-norms || • ||x, || • ||y are regular, then U is linear. 

Proof . The first part of the assertion immediately follows from Corollary 1. 
Suppose that || • | |x, || • ||y are regular. For an arbitrary i f l w e have 

| |2x|U = \\U(2x)\\y = \\2U(x)\\y > c\\U(x)\\Y = c\\x\\x. 
Hence the F-norm in X also satisfies (1). 

By the additivity of U we have U(tx) = tU(x) for t e Q, x € X. From 
Lemma 2 we have, that for all x G X, y G Y the functions R 3 t h-» tx G X 
and R 3 11—• ty G Y are continuous. Let t G R, x G X and let (tn), tn G Q, 
lim^—xx) tn = t. Then because of the continuity of both the two function just 
introduced and the isometry U we get 

U(tx) = U( lim ( t n x ) ) = lim U(tnx) = lim ( t n U ( x ) ) = tU(x). 
ra—>oo n—•oo n—>oo 

Consequently U is also homogeneous, therefore linear. • 
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R E M A R K 2 . The assumptions that F-norms are regular are essential for the 
linearity of U in Theorem 2. Indeed, let U : R —> R be an additive, bijective 
and discontinuous function, p G (0,1], and let ||x||i = \U(x)\p, ||x||2 = 
Then || • ||i, || • H2 are F-norms in R satisfying (1), with c = 2P. Obviously the 
F-norm || • ||i is not regular. Since | |U(x) — U(y)H2 = \\U(x — y)\\2 = ||x —y||i 
for x, y € R, U is a surjective isometry from (M, || • ||i) onto (R, || • H2), but it 
is not homogeneous. 
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