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ON THE MAZUR-ULAM THEOREM IN METRIC GROUPS

Abstract. Let X,Y be abelian uniquely 2-divisible groups with metrics dx,dy re-
spectively, invariant with respect to the translations and let there exist a constant ¢ > 1
such that dy(2y,0) > cdy(y,0) for y € Y. We prove that each surjective isometry
U:X — Y has a form U(z) = a(z) + U(0) for z € X, where a : X — Y is a homomor-
phism.

1. Introduction

S. Mazur and S. M. Ulam proved the following well-known theorem con-
cerning isometries between normed spaces [3], which is a useful tool in prov-
ing many results.

Theorem (S. Mazur, S. M. Ulam). Let X,Y be real normed spaces and let
U:X —Y be a surjective isometry with U(0) = 0. Then U is linear.

Let X be a linear-metric space. A set A C X is said to be bounded, if for
each neighbourhood U of zero there is a number a such that A C aU. The
space X is said to be locally bounded, if it contains a bounded neighbourhood
of zero. The above theorem has several generalizations. For example, the
Theorem IX.3.1 in [4] states, that the assertion of the Mazur-Ulam Theorem
is true, if X,Y are locally bounded spaces with F-norms || - ||x, || - ||y such
that for all z € X, y € Y the functions ¢t — |tz||x, t — ||ty|ly are concave
for positive t.

It is natural to investigate the form of isometries between metric groups.
We obtain two results, analogous to that of the Theorem, one when the
groups admit total families of semimetrics (Def. 2) and another when the
group F-norms are regular (Def. 3).
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2. Invariant metrics and F-norms
We recall that by a semimetic on a fixed set X we mean a function
d: X — [0,00) satisfying for z,y,2z € X the following conditions: d(z,z)
=0, d(z,y) = d(y,z), d(z,z) < d(z,y) + d(y, 2).
DEFINITION 1. Let X be an abelian group. A function || - || : X — [0, 00)
satisfying for z,y € X:
) flo] = o,
(i) || - 2l = o],
(ifi) llz +yll < || + [y
we call the F-seminorm. An F-seminorm satisfying for € X the condition
(i) lzl =0 z=0
we call the F-norm.

If (X, +,d) is an abelian group with a semimetric [a metric] d invariant
with respect to the translations, i.e.

dlx+ z,y+ 2) =d(z,y) forz,y,z € X,

then the function
||| := d(z,0) forzeX

is an F-seminorm [F-norm)].

Conversely, if (X, +) is an abelian group and a function |-|| : X — [0, 00)
is an F-seminorm [F-norm|, then d(z,y) := |z — y|| for z,y € X is an
invariant semimetric [metric|] and d(z,0) = ||z|| for z € X.

Because of the natural one-to-one corespondence between invariant semi-
metrics [metrics] and F-seminorms [F-norms|, we will use these notions ex-
changeable and formulate our results in the language either of metrics or
F-norms. We will consider isometries between abelian groups with invariant
metrics (X, 4, dx), (Y, +, dy) in the case where the both groups are uniquely
2-divisible and the both F-norms || - || x := dx(,0), || - ly := dy (-, 0) satisfy
the condition:

(1) there exists a constant ¢ > 1 such that for all z: ||2z| > ¢||z||.

Let us note, that if an F-norm has property (1) and X # {0}, then ¢ < 2.
Indeed, from condition (iii) of definition of F-norm and from (1) we have
c|lz]| < ||2z| < 2||z|| for z € X. Thus ¢ < 2.

3. Examples

ExAMPLE 1. Additive groups C, R, Q, with the F-norm d(z,y) = |z — y|
are the abelian uniquely 2-divisible groups with the F-norm || - || = d(z,0)
satisfying (1) with ¢ = 2.
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EXAMPLE 2. Let X be a real linear space with F-norm satisfying for some
p € (0,1] the condition:

(v) |Itz]| = |tP||z|| for t e R, z € X.

Then || - || satisfies (1) with ¢ = 2P.

EXAMPLE 3. Let X be real linear spaces with F-norms |- |1, |- ||2 satisfying
(v) with p1 and py, respectively, let:

I+ llmaz = max{]| - {[1, [} - [l2},
and let .
-l = (- 13+ 1 113)=,
for s € {1,00). Then || - ||s and || - ||mez are F-norms satisfying (1) with
¢ = omin{p1,p2}

EXAMPLE 4. Let a : R — R be an additive injective function, p € (0, 1]
and let ||z||, = |a(z)|P for x € X. Then || - ||o is an F-norm, which satisfies
(1) with ¢ = 2P.

EXAMPLE 5. Let (X, ||-|| be a normed space and let a function g : [0, 00) —
[0, 00) satisfies, for z,y € X, the following conditions:

(a) g(z) =0 =0,

(b) g(2z) = 2Pg(x),

(c) g(z +y) < g(z) + 9(v)-

Then ||| - ||| defined by |||z||] = g(||z||) for ¢ € X is an F-norm satisfying (1)
with ¢ = 2P,

For arbitrary p € (0, 1] the function g : [0, 00) — [0, 00),

g(z) = 2720 HDP _ 9nP)g 4 grptl _ ot P for g € [27, 27
and g¢(0) = 0 is an example of a function satisfying (a), (b), (c).

Our main result states, that if X,Y are the abelian uniquely 2-divisible
groups with invariant metrics satisfing (1) and U : X — Y is a surjective
isometry with U(0) = 0, then U is a homomorphism.

4. Total family of semimetrics

Let X be an abelian unique 2-divisible group. We say that %ﬂ is the
algebraic center of points z,y € X. The Lemma 1 shows that if U : X —
Y is a surjective isometry between abelian unique 2-divisible groups with
invariant semimetrics satisfying (1), then U preserves the algebraic center of
each two points, modulo the subgroup {y € Y : dy(y,0) = 0}.

LEMMA 1. Let X,Y be abelian unique 2-divisible groups with invariant
semimetrics dx, dy, let | - ||x := dx(-,0), | - |ly = dy(-,0) and let
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F-seminorm || - ||y satisfy (1). If a function U : X — Y is a surjective
isometry, then

U U
forz,ye X.

Proof. We follow the idea of the proof of Lemma 15.3 from [1].
Let z,y € X and let

Sy RV, |V V)
We define a sequence of mappings (gn)neNg, gn @ Y — Y and a sequence
(gn)nen of points as follows

go(w) :=U(2p—U"Y(u)) foruey,

g1(u) :=2¢g—u foruey,
gn+1 1= gn-10gnognt; forn € N,
a1 = q,
Gn+1 = gn-1(gn) for n € N.

We will estimate the ,distance", with respect to the semimetric dy, between
g and U(p). To do it we will estimate the norms of differences ¢, — ¢,—1.

It is obvious that for all n € Ny, g,, is an isometry.

One can prove by induction that

(3) gn(U(2)) =U(y), gn(U(y)) =U(z).
for n € Ng. In turn, we prove inductively that
(4) lgn —U@)ll =4, llgn —U@)ll =
for n € N.
We have
o - v = | R - ey - | LS g

and similarly

gy —U@)ll =d

Hence (4) is valid for n = 1. Assume that (4) is valid for some n € N. Then
making use of (3) and the induction hypothesis, we obtain

lgn+1 = U(@)|l = llgn-1(gn) — gn-21(U@)Il = llgn — U (W)l = @
In a similiar way we check that ||gn4+1 — U(y)|| = d
From (4) we have

lgn — gn-1ll < (lgn = U(@)|| + U (2) = gn-a)) = 24.
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Consequently
(5) lgn — gn-1ll <2d forn>2 neN
We prove by induction, that
(6) llgn(u) — ul| > clign — ull
foru€eY,neN.
We have
lg1(w) — ull = lI2g — v —ull 2 cllg —ull = cllg — .

By the induction hypothesis we receive that for all u € ¥
Ign+1() = ull = llgn-19n9721(w) = gn-19,71 (W)

= [1gngn21(w) = 921 (W) 2 cllgn — 9521 (w)l]
= cllgnt19n-1(gn) — 9,21 (W) = cllgn-1(gn) — ul|
= cllgn+1 — uf.

Substituting u = gn+1 in (6), we obtain for n € N

() gtz — gns1ll 2 cllgnss — aall

Hence, forn > 3, n € N
(8) lgn = g1l > " llg2 — a1l-
From inequality (8) we have

1
lgz — @l < Cn—_2HQn —gn-1f forn=3.
By this inequality and (5) we get, forn > 3,n € N
2
%) loz — @1l < 5.
On the other hand we have
lgz — a1l = [U(2p - U(q)) —UU (gl = li2p — 2U (g}

2 c(|lU(p) —gll =cllU(p) — all = cl|U(p) —al|-
From this inequality and from (9) we get

127

clU(p) —dll < llgz — a1ll < Z=d
forn>3,neN.
Consequently
T+y U(z)+ Ul(y) 2 llz—y 2 1 2
’U( 2 )_ 2 <ol T5 || S gl vl = Zlle -yl

for n € N. Passing to the limit when n — oo, we get the assertion. m
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DEFINITION 2. Let X be a nonempty set and let {ds;}scs be a family of
semimetrics defined on X. We say that this family is total, if for each z, y
€ X such that z # y there exists s € S such that ds(z,y) > 0.

THEOREM 1. Let X, Y be the abelian unique 2-divisible groups with families
{ds}ses, {ps}ses of invariant semimetrics, let each ps satisfy (1) and let the
family {ps}ses be total. If a function U : X — Y is a surjection with
U(0) = 0 satisfying

ps(U(z),U(y)) = ds(z,y) forz,y€ X,s €S,
then U is a homomorphism.

Proof. By Lemma 1 we obtain that for each z,y € X and each s € S
U U
(U222 - (z) + (y),O —0
2 2
By the assumption {ps}scs is total, thus U satisfies the Jensen equation:

o(25Y) - Vel U

Since U(0) = 0, we have U(%) = @ for z € X. For arbitrary z,y € X we
have

for z,y € X.

U+ = 20252 ) =PI vy 1 o)

Thus U is a homomorphism. =

Obviously, if d is a metric, then the family consisting of the singleton d
is total. Thus we have the following

COROLLARY 1. Let X, Y be abelian unique 2-divisible groups with invariant
metrics and let F-norm in Y satisfies (1). If a function U : X - Y is a
surjective isometry with U(0) = 0, then U is a homomorphism.

REMARK 1. The ¢ > 1 is essential in Corollary 1. Indeed, let ¢1,¢c0 > 0,
c1 < 2¢g, and let ||z|]| = ¢1 for € Q\ {0}, ||z|| = ¢2 for z € R\ Q, ||0]| = 0.
Then || - || is an F-norm, satisfying condition (1) and (R, +,) is an abelian
uniquely 2-divisible group. For an arbitrary bijection g : Q \ {0} — Q\ {0}
a function U : R — R, U(z) = g(z) for z € Q\ {0}, and U(z) = z for
z € R\ Q, U(0) = 0, is a surjective isometry from (R, || - ||) onto itself, but
U is not additive if g(z) # x for an z € Q \ {0}.

5. Regular F-norms

In this section we consider isometries between real linear spaces with
invariant metrics satisfying (1).
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DEFINITION 3. Let X be a real linear space with an invariant metric d. We
say that the F-norm || - || := d(-,0) is regular, if for every z € X a function
R >t~ |jtz| € R is bounded on a set A C R of the positive inner Lebesgue
measure or is of the second category with the Baire property.

Let us note that if for every z € X the function R > ¢t — |tz|| € R is
Lebesgue- or Baire measurable, then the F-norm || - || is regular.

LEMMA 2. Let X be a real linear space with an invariant metric d satisfy-
ing (1). Then the following conditions are equivalent:

(a) the F-norm || - || is regular ,

(b) for every x € X function R >t — tx € X is continuous on R.

Proof. Because of the continuity of F-norm (b) implies (a). We will show
that (a) implies (b). Let (t,) C R, t, — 0 and z € X. From Theorem
XVI1.2.6 [2], we obtain that a function R > ¢ — ||tz|| € R is bounded on
every bounded set. In particular, there exists a constant K (z) > 0 such that
ltz]] < K(z) for all t € (—1,1). One can prove that there is a sequence (),
I, € R such that I, — oo and 2'»t,, — 0. Thus |2i*t,| < 1 for sufficient
large n. Using (1) we get, for such n, that

nitnz)| < [[ta22|| < K(z).
H K(z .
ence |[thz| < _CITZ — 0 as n — oo. Consequently we obtain that the
function R 3 t — txr € X is continuous at 0. Since it is additive, it is
continuous on R. =

THEOREM 2. Let X, Y be real spaces with invariant metrics dx, dy,
let | - lx :=dx(-,0), || - [ly := dy(-,0) the latter F-norm satisfying (1). If
a function U : X — Y is a surjective isometry with U(0) = 0, then U is
additive.

Moreover, if F-norms || - ||x, || - |y are regular, then U is linear.

Proof. The first part of the assertion immediately follows from Corollary 1.

Suppose that || - ||x, || - ||y are regular. For an arbitrary z € X we have

12z]|x = [UQ22)lly = 12U (z)lly = c||[U(z)lly = c|lz|lx-
Hence the F-norm in X also satisfies (1).

By the additivity of U we have U(tz) = tU(z) for t € Q, z € X. From
Lemma 2 we have, that for all x € X, y € Y the functions R>t— tx € X
and Rt~ ty €Y are continuous. Let £t € R, z € X and let (¢,), t, € Q,
lim,,—,o t, = t. Then because of the continuity of both the two function just
introduced and the isometry U we get

U(tz) = U(Jl'ngo(tnx)) = nll%lo U(tox) = Jirlgo(tnU(w)) =tU(z).

Consequently U is also homogeneous, therefore linear. m
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REMARK 2. The assumptions that F-norms are regular are essential for the
linearity of U in Theorem 2. Indeed, let U : R — R be an additive, bijective
and discontinuous function, p € (0,1], and let ||z||1 = [U(z)?, ||z|2 = |z/|P.
Then ||-||1, || - |2 are F-norms in R satisfying (1), with ¢ = 2P. Obviously the
F-norm || - ||; is not regular. Since |U(z) —U(y)ll2 = Uz —y)|2 = |lz—yl1
for z,y € R, U is a surjective isometry from (R, | - ||1) onto (R, || - ||2), but it
is not homogeneous.

References

[1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis I, Amer.
Math. Soc. Colloquium Publications, Vol. 48, Amer. Math. Soc., Providence, RI, 2000.

[2] M. Kuczma, An Introduction to the Theory of Functional Equation and Inequalities,
Cauchy’s Equation and Jensen’s Inequality, PWN i Uniwersytet Slaski, Warszawa-
Krakéw-Katowice, 1985.

[3] S. Mazur, S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés,
Comp. Rend. Paris 194 (1932), 946-948.

[4] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa 1972.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF RZESZOW
Rejtana 16A

35-310 RZESZOW, POLAND

E-mail: marek_z2@op.pl

Recetved December 18, 2007; revised version June 12, 2008.



