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ON ¢-BASKAKOV TYPE OPERATORS

Abstract. In the present paper we introduce two g-analogous of the well known
Baskakov operators. For the first operator we obtain convergence property on bounded
interval. Then we give the montonity on the sequence of ¢-Baskakov operators for n when
the function f is convex. For second operator, we obtain direct approximation property
on unbounded interval and estimate the rate of convergence.

One can say that, depending on the selection of ¢, these operators are more flexible
then the classical Baskakov operators while retaining their approximation properties.

1. Introduction

Phillips [13] introduced the generalization of Bernstein polynomials based
on g-integers. Very recently Aral [4] introduced the ¢-Szasz-Mirakyan oper-
ators. Aral and Gupta [5] extended the study and established some approx-
imation properties for ¢-Szasz Mirakyan operators. We now try to define
some other g-analogue of exponential type operators. Before introducing
the operators, we mention some properties of g-calculus (see [9] and [12]).

For any fixed real number ¢ > 0 and non-negative integer r, the g-integers
of the number r is defined by

] :{u—qr)/(l—q), q#1

T, q=1'

(1.1)

Also we have [0]; = 0.
The g-factorial is defined in the following:

[,,.] | — {[T]q[r_l]q---[l]q, 7'2172,...
r 1’ 7‘:0
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and g-binomzal coeflicient is defined as

W=

for integers n > r > 0. Also, let us recall the following identity

o n+k—1] & 1
1.2 ok = oz <1,
2 I S i

where
(z; ¢),=1—-2)(1—gz)...(1—¢" ')
(see [3, p. 420]).
Let

(13) (1ix; q>n: (1_ I—T—w) (l_q%> "(l_qn_llf—x>‘

We can easily see that

(o), =0 (e,
09 (55525 7).~ e eyt (157 1),
g

(5 ).~ e (520,

Motivated by the generalization of the Bernstein polynomial based on
g-integers, by Phillips [13] and subsequent work in this direction (see e. g.
[4], [5], [12] etc.), we introduce a new Baskakov type operators based on
g-integers as follows:

For f € C[0,00), ¢ € (0, 1) and each positive integer n, g-Baskakov
operators are defined as

KNP ) Zf( [k, >[n+:—1]q(1(fx)k,

where z € Rt := [0, 00).
It is observed that in a special case if ¢ = 1, the operators (1.5) reduce
to the well known Baskakov operators [6], defined by:

Bu(f,) =i (M;:_l)(lf%f G)

k=0

(15)  Bug(fiz) = (
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The well known Baskakov operators By (f,z) and their different gen-
eralization were studied by many researchers. Pethe [11] and Altomare
and Mongino [2] studied some approximation properties of certain gener-
alized Baskakov operators. Very recently Cao et al. [7] studied multivari-
ate Baskakov operators and gave some shape preserving properties such as
monotony, semi-additivity and convexity.

In the present paper, we study the approximation properties of ¢-Baska-
kov operators defined by (1.5), we first give uniform convergence of By, 4(f, )
on a compact subset of RT using Bohman and Korovkin Theorem. For con-
vex function f, we also establish the monotonicity property for the sequence
of these operators. In the last section we propose another g-generalization
of Baskakov operators, we obtain direct approximation result on unbounded
interval and give rate of convergence of these operators.

2. Convergence of ¢g-Baskakov operators
In the sequel we shall require the following lemma:
LEMMA 1. For q € (0,1), we have
Bng(l;z) =1, Bpgt;z)=1z, forzeRT,
z2 1 2?4z q
Bh (t}t)= ———— 4+ ———— "~ forze [O,———) .
WD D) Tl @ 2@ D) T—q

Proof. We deduce from (1.5) that B, 4(1;z) = 1, to calculate By 4(t; )
using (1.4) and (1.2) we proceed as follows:

[k]q [n-l—k—l

Brg(tiz) = (ffm; q)nqu ml, |k
- (=)

_( qz .q)
1+z n e .

oz qzr |n+k z \*
_1+m(1+x’ q) Z[ k ] <1+x>
q

T k=0

n+k—1
k-1

T (I%, Q)n
l+z (l-l-Lz’ q)n+1
=T.

Next using the identity [k]g = [k, (q [k—1],+ 1) then we have
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() £
(

k
qx
(1+x>

q

o gz ) iQ[k]q[k‘—l]q n+k-1 ( gz )k
T+a 1), & k]2 B \T+e
L[ . i [k] n+k—1 ( qT >k
1+a’ 7/, g2 n]2 koo \1te
I ]q(qw,q)in+k+1 < z )k
¢1+2° M, \1+z '), & ko] \a(l+a)
1 z qz ) |n+k ( T )k
o ; —
oRTE i el 2k | G

22 I+, (5 9,
¢(1+2)* Il (755 Date
1z (¥% 9,
+ = L :
[n], (1 +z) (m; Q),H_l
Using the equalities (1.4), we have
2 I+l 1 a(ta(i-gY)
(g+z(g—1)) [n], [n], (@+z(g—1))
2

B z 1 1 z(1+z(1-4")
‘<q+x(q—1>>("+[n]q)+[n1q CETICED)

B q(t%2) =

__ g 1 i+t (1-q)a®

(g+=z(g—1) ], (g+=z(g-1)) (g+z(g—1))
z2 1 24z

IRCEEAC )) [, (@+z(g-1)

This completes the proof of Lemma 1. =

Let C'[0, a] denote the space of all real-valued continuous functions on
[0, a], a > 0. By Cj [0, a] be denote the space of all functions f which are
continuous on [0, a] and bounded on R* := [0, oo). The spaces of bounded
functions, endowed with the norm

||f||c[0, a = :[lép ]|f(33)|,

where f € C[0, a].
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The uniform convergence for the ¢-Baskakov operators can be deduced
as a consequence of Bohman & Korovkin Theorem ( See [8, pp. 67]).

THEOREM 1. Let (q,) denote a sequence such that g, — 1 as n — 0o and
the inequality ;%7 < gn < 1 holds for fired a > 0 and n large enough. If
f€Cum |0, a] then

lim || Br g, (f;2) = f (2)llgpo, ) = O-

Let C, [0, co) be the space of continuous functions f on R* such that
the condition

If (@) < M (1+z)

holds. For any positive b we denote the modulus of continuity of function f
on closed interval [0, b] with

wp (f, 6) =, Sel[lgb]|f(t) - f(=)].
jt—2|<5

In the following theorem, we give a estimate of approximation of unbounded
functions via modulus of continuity of derivative of function (see [10]).

THEOREM 2. Let a > 0 and ;35 < ¢ < 1. If the function f' € C; [0, o0),
then we have

”Bn,q(f§ z)—f (x)”c[o, al < 26, (q) Wat1 (f,’ On (Q)) + M (3 + 2a) 5721 (q),

where dp(q) = \/ A(% + E[%E — 1) and A, M are positive constant.

Proof. By the mean value theorem there exist £ € (¢,z) such that

FO - f@)=t-2)f () +t-2)(F € -f ()

holds. Because of the positivity we can apply B, 4 to this equality and after
using Lemma 1 we have

(21)  |Bng(f (8) = f(2);2)] < Bug(lt — 2| |f' (€) = f' (2)|; ).
Besides, since f' € C; [0, co) we have for z € [0, a] and ¢t > a+ 1

(2.2) lF )~ f (@) <MQ2+£E+2)
< M(3+2a)]t— 2|

where |t — 2| > 1. Also we have for z € [0, a] and t € [0, a + 1]
(2.3) |7 (&) = f/ ()| < war1 (', It —al)

< wet1 (s 0n(9)) <1 - l;:(;;') '
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Now (2.2) and (2.3) imply that for z € [0, a] and ¢ € [0, o)

’ y / 't—l‘l
‘f &) —f (a:)[ < wat1 (f'; 0n () (1 - b (q)

Then the Cauchy-Schwartz inequality for positive functionals and (2.1) lead
to

Brg(lt =2l |1 (€) = £ (2)]52) < wata (F', 6n (@) <a+q>

+\/Bn,q((t —z)?; m)) + M (34 2a) Bny((t — 2)%; 2).

)+M(3+2a)|t—x|.

Bng((t —2)*;2)

If we choose 62 (q) = maxXge(o, o) Bn,g((t — z)%;z), then we have desired re-
sult. =

REMARK 1. Since z € [0,a], from Lemma 1 we get
B g((t — )% 2) = Bng(t%; ) — 2By 4(t; 2) 4+ 22 Bp 4(1; )

SN N N D S

- (q+w(q—1) 1)+[Tl]qq+:v(q—1)

zzz(l—q+w(1—q)) 1 2+
g+z(g—1) n)yq+z(g—1)

o 22 (14 7) 1 2tz
=09 <q+x(q—1)+1—qn x<1+$(q—1))

SM<q+ac(q—1) lq"xq+"’(1‘1_1))

1 1 1
SM(cﬁa(q—l) 1—g " q+a(q_1)) =:D(q),

where M = (1 — g)max{a®(1+a),a® +a}. We choose ¢ = ¢, such that
g — 1 and ¢ — ¢ (c is a constant) in the assumptions of Theorem 2.
From Lemma 1 we get 62 (¢n) = Bng,((t — 2)*;2) < D(g,) which tends
to zero as n — o0, so that 62 (g,) < 6, (gn) for n large enough. Since
On (gn) < Wat1 (f', On (q)) for f' # const on the interval [0, a+ 1], in the
preceding theorem we can write

| Bn,g.(f;%) — f (m)”c[o, a < Cwgt1 (f,7 On (Qn)) )

for n large enough, where C is a positive constant which depends on f’.

3. Monotony for the sequence of g-Baskakov operator

Note that, Phillips [12, pp.270] proved that the sequence of the g-Bern-
stein operators are decreases as n, when f is convex. However, it is shown in
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[5] that the ¢-Szasz Mirakyan operator does not satisfy this property. But, it
is interesting that the g-Baskakov operator defined by (1.5) satisfies similar
property as in the ¢g-Bernstein operators.

THEOREM 3. If f is a convex function defined on R, then the q-Baskakov
operator By, ¢ (f,-) defined by (1.5) is strictly monotonically non-decreasing in
n for allg € (0, 1), unless f is the linear function (in which case Bp 4 (f,-) =

Bni1,4 (f,-) for alln).

Proof. From (1.5) we can write

,Q(fv ) n+1,¢I(f7 )

-(1+x' )nkzof< [k], )[H:_l]q(ﬁx)k
(1+x’ q>n+1k > ( Lk]+1] ) [nzk]q(l(fx) :

By (1.3), we have

nt1 T ar
(1+w’ q) < 1+:r) <1+w’ q>n

and this equality leads to
(31) nII(fa ) n+17¢1(f’ )

- (111:; q) i{f

™ k=0

~ (1+:L'(1—q"+1)

14+

() e,
) (o) 1], (55)
- () S (@) ),
() ['E] ) (65)
() 3




116 A. Aral, V. Gupta
(i) [, G5
- (qu.’r; q>n,§{f (%) [Ziﬂq
B [k +1], n+k+1
f(q“4h1+1b> [ k+1 ]q

<ot (i) L 65)

If we take
[n+k] [n+k}
k+1 k
M= —— L =g
|:n+k:-+—l:| [n+k—l—1]
E+1 14 kE+1 [,
and
[k+1]q [k]q
=g 2T ka1
gt [n], g*[n+1],
then we have
n k+1 k+1 k
PRV . L e S A
[n+k+1], ¢**1 [n], [n+k+1], ¢ [n+ 1],
_ k1 1+qn+1 Kl _ [k+1],
g n+k+1], [n+1], g**t [n + 1],
and
A+ A =1.
Since f is convex, we obtain
[k+1],
f qk+1 [n+1]q
[n+k} [n+k]
- [n+k+1} g1 [n], {n+k+1] g*[n+1],
k+1 14 k+1 1,

Thus, from (3.1) we have desired result. »
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4. Another version of ¢-Baskakov operator

We can easily see that

(lqj-zx; q)n N (1 -|(-11;;1m)—2Q)) (1155; q>n+2
(41) (q% : q) (o) (e (=) ( o q)
n n+1

1+z (1+z(1—-q)) 14z

@’z (1+z) qx
) 4 = y q .
1+z ., (+z(l-g)\1+z nil
For f € C[0,00), ¢ € (0,1) and each positive integer n, another version
of ¢-Baskakov operators are defined as

(4.2) k
n+k+1 g’z
() £ ) 1) ()
e 1+a nl;) +1 [n] k J\1+z
LEMMA 2. Forqe (0, 1) and z € RY | we have
* * xr
B (Liz)=1, B (t;z)= Atzs0=q)
z2 1 2+

* 2,
Bn,q(t’ ) (1+.’13(1—Q) [n] q 1-|-.’L'(1—Q))

Proof. By (4.2), it is obvious that B}, ,(1;z) = 1, to estimate By, ,(t%;z) =
x%, 2= 1,2 using (4.1) we proceed as follows

0= (% 0) Samn [ ()
( o)l L6

() S ()

q2x‘
_ x 1+z? q n x
_(1+CL‘)(_11$_. ) T 1+z(1-gq)
1427 q n+l

Next using the identity [k]g = [k], (g [k — 1], + 1), we have
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e o]

By (t%z) = (fixx; q) Zqzkiﬁ[n]g [n +: ) lL (ﬁfx)k
(

N k=1

) St )

n k=2

+
N

q%_q) i k], [n+k—1] (qu >k
1+’ 0’ q2k+2[n]2 k 1+z

=1

- (S ) 5 )

wirm; (e ), 24 (55)

= 1'2 [’I’L + l]q (-lq%’ q)n
g(1+2)* [nl, (Zliz ; q)n+2
2
1z (59,

E(F 1+2) (ﬁ7 q)n+1.

Using the equalities (4.1), we have

PR (RS MR W (T4 )

Bt 0) = o v e -a) T, 0+ 2 (1= 0)
_ z 1 (1+z(1-q¢"")
T d(tz(-9) (‘” n]q) m," 1+x1— 2)

1 (1+a-gzh+1,)

2
(
2
¢l +z(l—q) M, @l+z(l-q)
2
(

(r+r)
1~ 9) (‘”L)*L :

g(l+z [n], ? (1+z(1-4q))

1 (1—q)x?
" (” [n1q> Fltz(1-09)

- i )
TP+ -)\" " [,) " W, A +z1-q)
z? +L 2+

¢(l+z(1-9q) [, ?1+z(1-4q)
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REMARK 2. We observe that the behavior of g-Baskakov operators defined
by (4.2) is different from the usual Baskakov operators. From Lemma 2
we observe that the g-Baskakov operators defined by (4.2) reproduce only
the constant functions not the linear ones, while the Baskakov operators i.e.
q = 1 and ¢-Baskakov operators defined by (1.5), reproduce constant as well
as linear functions.

Let C (R™) be a space that all real valued continuous functions on R¥.
For o« > 0 we define following weighted space

Eo = {feC(R+): lim & :0}

z—oo 1 4+ x@

with the norm

1l = sup L@

0<:1:<oo1 +z o

Let f be a uniform continuos function in [0, co). Then the modulus of
continuity of f defined as

(4.3) w(f; 0):= sup If () = £ (2)]

0<z<00, |t—z|<é

exist on the entire positive half-axis.

It is known that, for a uniform continuous function f, we have
limw(f; ) =0
limw (f; 6)
and, for any 6 > 0,

(4.0 F0-1@l <6 (1+154).

THEOREM 4. Let q = qp, satisfies 0 < ¢, <1 and g, — 1 as n — oo. For
every f € Ey (a > 2) one has

nqn .’I?)—f((L')HaZO.

If f is uniform continuous function in RY, then we have

jz(l+x) 1 1

(4.5) B~
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Proof. Using Lemma 2, with the condition a > 2, we get

|B* (tz;a:) — a:2|

sup N,4dn
0<z<o0 1+2z2
— swp 1 z? n 2’ +zx 22
0<z <00 1+ 2z~ qn (1 +z (1 - Qn)) q721 [n]qn (1 +z (1 - Qn))
2 (1-qp) T
S Ssup -
0<z <00 14z dn (1 +z (1 - qn))
I 24z 1
up
0<s<oo 1+ 2% g3 [n]qn (I+z(1-gn))
1-— 1
< ( Qn) + - .
qn an [n]qn

As a consequence of assumptions over the sequences (gn),-;, the above
estimate tends to zero as n — oco. Thus (4.5) holds on account of Korovkin’s

theorem (see, e.g., [1, pp.215]).
Now we show that the inequality (4.6) holds. Using the property (4.4)
and the Cauchy—Schwarz inequality we get

A7)  |Brg. (fiz) = f ()|

< (5 0), Eho-s (o) 1, ()

<w(f; 9) ¢’z i 1+‘w_q5“[ﬁ]fn1q n+k+1 ¢z \*
<w(f; sk 3 — ) itz

<w(f; 8) (1 + %\/B:z,qn ((t— z)” w)) :

Using Lemma 2, we get

B,",,qn ((t — :L')2 ;z)
_ z? + 1 l 4z _ 272 422
gn(l+z2(1—gn)) [, a(1+z(1—gn)) (1+z(1-4gn))
2(l=gn)  1+amz o’ +z
g (+z(l-gn) @¢inl, (1+z(1-gn))

=
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a:(1+ac)< z (1—g7%) 1+ gnx 1 )
N, \1+z ¢ @Q+z(l-g) GQ+z(1-gn))

z(l+z) 1+ gpz + 1
], \anlnl, (1+2z)  G(1l+z(1—gn))

z(1+4+zx) 1 1
+= .
[TL] qn dn [n]qn dn
Using this inequality in (4.7) and choosing d ‘/W, en we have

desired result. =

REMARK 3. We note here that, this type theorem does not hold for the
operators (1.5).

REMARK 4. If the assumption of Theorem 4 holds for the function f, then
we have lim,,_,o w ( f; fﬁﬂ) = 0 when z is constant. Thus (4.6) gives
an

us the pointwise rate of convergence of the operators g (F3T) to f(z).
Also this rate of convergence is \/T

convergence of the classical Baskakov operators.

faster than —-= which is the rate of
N
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