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A l i A r a l , V i j a y G u p t a 

O N g - B A S K A K O V T Y P E O P E R A T O R S 

Abstrac t . In the present paper we introduce two g-analogous of the well known 
Baskakov operators. For the first operator we obtain convergence property on bounded 
interval. Then we give the montonity on the sequence of q-Baskakov operators for n when 
the function / is convex. For second operator, we obtain direct approximation property 
on unbounded interval and estimate the rate of convergence. 

One can say that , depending on the selection of q, these operators are more flexible 
then the classical Baskakov operators while retaining their approximation properties. 

1 . I n t r o d u c t i o n 

Phillips [13] introduced the generalization of Bernstein polynomials based 
on q-integers. Very recently Aral [4] introduced the g-Szasz-Mirakyan oper-
ators. Aral and Gupta [5] extended the study and established some approx-
imation properties for q-Szasz Mirakyan operators. We now try to define 
some other (/-analogue of exponential type operators. Before introducing 
the operators, we mention some properties of (/-calculus (see [9] and [12]). 

For any fixed real number q > 0 and non-negative integer r, the q-integers 
of the number r is defined by 

(1 .1) 

Also we have [0]? = 0. 
The q-factorial is defined in the following: 

r i J [ r ] , [ r - ! ] , . . . [ ! ] , . r = 1 , 2 , . . 

1991 Mathematics Subject Classification: 41A36. 
Key words and phrases: q-derivative, q-Baskakov operator. 



110 A. Aral, V. Gupta 

and q-binomial coefficient is defined as 

n 9' 
[r]q\[n ~ r ] q \ 

for integers n > r > 0. Also, let us recall the following identity 

(1 .2) 

where 

(see [3, p. 420]). 
Let 

oo 
E 
fc=0 

n + k - 1 

k 
x k = \x\ < 1, 

( x ; q)n = ( l - x ) ( l - q x ) . . . { l - q n - 1 x ) 

(1.3) ; q j =11 
n l + X 

We can easily see that 

qx 

x 

1 + x 

x 

l + x 
1 - q 

n-1 X 

l + X 

l + x ' ; (7 = ( l + x) 
X 

l + x ; q 
re+l 

(1.4) 
x 

<1 

(q + x { q - 1)) qx 

q ( l + x y V n + i ( l + x ( l - g " ) ) 9 ( l + x) + ^ 
x \ (q + X (q - 1)) / qx 

; Q 

9 ( 1 + ® ) '  qJn+2 q ( l + x ) 2 V l + ® 
-; q 

Motivated by the generalization of the Bernstein polynomial based on 
(/-integers, by Phillips [13] and subsequent work in this direction (see e. g. 
[4], [5], [12] etc.), we introduce a new Baskakov type operators based on 
q-integers as follows: 

For / € C [0, oo), q £ (0, 1) and each positive integer n, g-Baskakov 
operators are defined as 

(1.5) i W M - f e i ) ± f ( " ' ~ 
lk=0 q k N 9 

n + k - 1 

k 

qx 

l + x 

where x € M+ := [0, oo). 
It is observed that in a special case if q = 1, the operators (1.5) reduce 

to the well known Baskakov operators [6], defined by: 
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The well known Baskakov operators B n ( f , x) and their different gen-
eralization were studied by many researchers. Pethe [11] and Altomare 
and Mongino [2] studied some approximation properties of certain gener-
alized Baskakov operators. Very recently Cao et al. [7] studied multivari-
ate Baskakov operators and gave some shape preserving properties such as 
monotony, semi-additivity and convexity. 

In the present paper, we study the approximation properties of q-Baska-
kov operators defined by (1.5), we first give uniform convergence of Bn<q(f, x) 

on a compact subset of K + using Bohman and Korovkin Theorem. For con-
vex function /, we also establish the monotonicity property for the sequence 
of these operators. In the last section we propose another ^-generalization 
of Baskakov operators, we obtain direct approximation result on unbounded 
interval and give rate of convergence of these operators. 

2. Convergence of ^-Baskakov operators 
In the sequel we shall require the following lemma: 

L E M M A 1 . For q E ( 0 , 1 ) , we have 

Bn,q{l;x) = l , Bn>q(t\x) = x, for x G t>+ 

Bn}q(t J X) — 
X 

+ 
ar + x 

(q + x ( q - l ) ) [n]q (q + x(q - 1)) 
for x G 0, 

1 - q 

Proof. We deduce from (1.5) that Bn^q(l;x) = 1, to calculate Bn^ q(t;x) 

using (1.4) and (1.2) we proceed as follows: 

(\ 00 
m . 

Q M 

n + k - 1 

k 

qx 

l + x 

qx 

l + x 
; q E 

fc=i 

n + k — 1 

fc-1 

x 

x I qx 

l + x V I + x -; Q E 
•k=0 

n + k 

k 

l + x 

X 

l + x 

= X . 

Next using the identity [k]^ = [k]q (^q [k — + 1 j then we have 
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(\ 00 

qx 
-; Q E 

+ qx 

q2kH 

Q2k K 
^ [k]q 

, q l k«2kH 

n + k-l 
k 

qx 
1 + x 

1 + <t*[n?q 

X 

1 + x 
2 [n + 1] 

n + k-l 
k 

n + k-l 
k 

qx 
1 + x 

qx 
1 + x 

q(l + xf N 
x 

qx 
1 + x ' ¡ 0 £ 

qx 
nk=0 

oo 

n + k + 1 
k 

x 

[n]qq(l + x) \l + x5 q)n^0 
2 + 

q{l + xf [n]q q)n+2 

1 x ( i ^ ; q)n 

n + k 
k \q{ 1+x) 

\q(l + x) 
k 

N, ?(! + *) q)n+1 

Using the equalities (1.4), we have 

Bn,q(t ! — 
[n + l ] ? + 1 x(l + x(l-qn)) 

(q + x(q- 1)) [n]q [n], (q + x(q-l)) 
x2 f 1 \ 1 x ( l + x ( l - g n ) ) 

+ + (q + x(q- 1)) 
qx + 1 X 2 + X + (l-q)x2 

(q + x(q-l)) [n}(q + x(q- 1)) (q + x(q- 1)) 

+ x2 + x 
{q + x(q- 1)) [n]q(q + x(q-l)y 

This completes the proof of Lemma 1. • 

Let C [0, a] denote the space of all real-valued continuous functions on 
[0, a], a > 0. By Cm [0, a] be denote the space of all functions / which are 
continuous on [0, a] and bounded on K + : = [0, oo). The spaces of bounded 
functions, endowed with the norm 

ll/llc[0, ol = S U P l / ( s ) l > 
x£[0 , a] 

where / € C [0, a]. 
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The uniform convergence for the q-Baskakov operators can be deduced 
as a consequence of Bohman & Korovkin Theorem ( See [8, pp. 67]). 

T h e o r e m 1. Let (qn) denote a sequence such that qn —» 1 as n —» oo and 
the inequality < qn < 1 holds for fixed a > 0 and n large enough. If 
f G Cm [0, a] then 

limo\\Bn,qn(f;x)-f(x)\\c[0a]=0. 

Let Cx [0, oo) be the space of continuous functions / on R + such that 
the condition 

\f (x)\ < M (1 + x) 

holds. For any positive b we denote the modulus of continuity of function / 
on closed interval [0, 6] with 

ub(f,6)= sup \f(t)-f(x)\. 
t,xe[o, 6] 
|t-x|<5 

In the following theorem, we give a estimate of approximation of unbounded 
functions via modulus of continuity of derivative of function (see [10]). 

T h e o r e m 2. Let a > 0 and ^ J - <q< 1. If the function f G Cx [0, oo), 
then we have 

\\BnM; x)-f 0r)||c[Oj a] < 25n (q) u,a+1 ( f , Sn (q)) + M (3 + 2a) S2n (q), 

where Sn(q) = y j j + ^ l) and A,M are positive constant. 

Proof. By the mean value theorem there exist £ G (t, x) such that 

/ (t) - f (x) = (t-X) r ( x ) + ( t - x) ( / ' ( o - / (*)) 

holds. Because of the positivity we can apply Bn,q to this equality and after 
using Lemma 1 we have 

(2.1) |Bn < q( f (t) - / (x) ; :r)| < Bn,q(\t - x\ \ f ( 0 - f (x)| ; x). 

Besides, since / ' G Cx [0, oo) we have for x G [0, a] and t > a + 1 

(2.2) \f'{0-f'(x)\<M(2 + £ + x) 

<M(3 + 2a) \t-x\ 

where \t — x\ > 1. Also we have for x G [0, a) and t € [0, a + 1] 

(2.3) | / ' ( i ) - / ' ( x ) | < ^ + i ( / ' , | i -x|) 
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Now (2.2) and (2.3) imply that for x G [0, a] and t G [0, oo) 

\f ( 0 - r Or)I < Wa+1 (/', 6n (<?)) ( l + + M (3 + 2a) \t-x\. 

Then the Cauchy Schwartz inequality for positive functionals and (2.1) lead 
to 

Bn,q(\t -x\\f (0 - f (x) | ; x) < uja+1 (/', Sn (q)) - x)2 ; x) 

+^Bn,q({t-x)2;x)^ + M (3 + 2a) Bn,q((t - x)2 ; x). 

If we choose S2 (q) = maxxe[0) a] BnA((t — x)2 ; x), then we have desired re-
sult. • 

REMARK 1. Since x G [0,a], from Lemma 1 we get 

Bnjq((t - x)2 ; x) = Bn,q(t2; x) - 2xBn,q{t; x) + x2Bn>q{ 1; x) 

2 ( 1 x2 + x 
= ^ — ^ 7 T - 1 + q + x (q - 1) J [n]q q + x (q - 1) 

= x2 n - g + x(l-q)\ | 1 x2 + x 
q + x(q-l) J [n]qq + x(q- 1) 

„ , / x2 (1 +x) 1 x2+x 
= (!-?) 7TTT TT + 

< M ; - + 

q + x(q- 1) 1 -qn q + x{q- 1) 
1 1 

q + x(q- 1) 1 — qn q + x(q- 1) 

s M ( i T ^ T i ) + x i T ^ r y ) 

where M = (1 — q) max {a 2 (1 + a), a2 + a } . We choose q = qn such that 
qn —> 1 and q™ —»• c (c is a constant) in the assumptions of Theorem 2. 
From Lemma 1 we get S2(qn) = Bn<qn((t — x)2 ; x) < D{qn) which tends 
to zero as n —> oo, so that (q„) < 5n (qn) for n large enough. Since 

(Qn) < ua+\ Sn for /' const on the interval [0, a + 1], in the 
preceding theorem we can write 

\\Bn,qn(fix) ~ f ( z ) l l C [ 0 , a] — (/ > ^n (Qn)) , 

for n large enough, where C is a positive constant which depends on /'. 

3. Monotony for the sequence of (/-Baskakov operator 
Note that, Phillips [12, pp.270] proved that the sequence of the ¿/-Bern-

stein operators are decreases as n, when / is convex. However, it is shown in 
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[5] that the g-Szasz Mirakyan operator does not satisfy this property. But, it 
is interesting that the q-Baskakov operator defined by (1.5) satisfies similar 
property as in the q-Bernstein operators. 

THEOREM 3. If f is a convex function defined on M+, then the q-Baskakov 
operator Bn^q ( / , •) defined by (1.5) is strictly monotonically non-decreasing in 
n for all q € (0, 1), unless f is the linear function (in which case Bn^q ( / , •) = 
Bn+i,q ( / , • ) for all n). 

Proof. From (1.5) we can write 

Bn,q{f\x) - Bn+iiq(f-,x) 

qx v̂ (4jq 
n k=0 " ^ - U ^ ' . S ' qk [n] 

n + k-1 
k 

qx [kl 

By (1.3), we have 

qx 
1 + x ; Q 

n+1 
= 1 - 9 ' n+1 X 

q 

n + k 
k 

qx 

qx 
1 + x 

qx 
1 + x 

1 + x J Vl + z ; Q 

l + x ( l - 9 n + 1 ) ' 

and this equality leads to 

(3.1) x) - Bn+itq(f\ x) 

qx 
1 + x ; q £ / 

nk=0 k 

1 + x (1 - qn+1) ' 

1 + x 

' lk}q 

qk [n] 

qx 
1 + x ; q 

n + k - 1 
k 

1 + x f 
Qk [« + l]a 

n + k 
k 

qx 
1 + x 

qx 
1 + x ; q 

OO f 

' fc=lk 
/ ' j v 

qk [n]q 

~f qk[n + 11 
n + k 

k 

n + k-1 
k 

qx 
1 + x 
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X / 
K 

qk [n + 1] 

qx 
1 + x ; q 

Q, 
oo 

n + k 
k 

£ / [fe + 1] 
7fc+1 

1 + x 

; k=0 

J l ^ + M n + l] , 

+ qnf 
K 

Qk [ n + l L 
If we take 

Ai = 

n + k 
k + 1 

n + k + 1 
k + 1 

KJ 

n + k + l 
k + 1 

n + k 
k + 1 

A 2 = ?" 

n + fc 
fc + 1. 

qx 
1 + x 

n + k 
k 

k+1 

n + k + l 
k + 1 

and 

then we have 

Ai^i + A2Z2 = 

Xl = 
Ik+ 11 

Qk+1 M , 

K [k + l]q 

[n + k + 11 qk+1 [n]t 

x2 = 
[kl 

+ q 

qk [n + l]q 

n+ [kl 
[n + k + 1L qk+1 [n + 1] 

[k + 11 nn+1 
1 + 

[kl [k + ll 

and 

qk+x [n + k + l]q ^ ' [n + l]q 

Ai + A2 = 1. 

1 n+ll 

Since / is convex, we obtain 
( [k +1], \ 

/ 1k+1 [ n + 1 ] 

< 

1/ 
n + k 
k + 1 

n + k + l 
k + 1 

n + k 
k [kl 

n n + k + l 
k + 1 

qk [n+ll 

Thus, from (3.1) we have desired result. 
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4. Another version of Q-Baskakov operator 
We can easily see that 

(1 + x) 2 2 q'x 

l + x5 q ) „ (l + x ( l - q ) ) \1 + X] qJn+2 

x 

(4.1) 
q2x 

1 + x : 

2 q£x 

l + x 

_ (l + x) ( l + x ( l - g w + 1 ) ) ( _ X _ . ' 

; q 

(1 + x (1 — q)) 

(l + x) ( qx 

l + x ' n+1 

(1 + X (1 — q)) V l + x ' Vn+l' 

For / G C[0, oo), q G (0,1) and each positive integer n, another version 
of q-Baskakov operators are defined as 
(4.2) 

B*,q(M = 
[kl 

Q k + 1 [ n ] q J 

L E M M A 2 . For q G (0 , 1) and x G M + , we have 

l ; x ) = l , B l q ( f , x ) = i i + x X ( i _ q ) y 

n + k + 1 

k 

q2x x k 

l + x 

B*(t2-x) = 
x 

+ 
X2 + X 

q(l + x ( l - q ) ) [ n U 2 ( l + x ( l - < ? ) ) ' 

Proof. By (4.2), it is obvious that 5 * ( l ; x ) = 1, to estimate B^ q(tl\x) = 

x l , i = 1,2 using (4.1) we proceed as follows: 

B"njt;x) = ( J t -; q E; V l + x ' l i—' q 
oo 

£ 
n fc= l y 

fc+1 [ n ] 

n + k - 1 

k 

2 \ fc <TX 
1 + X 

X 
Vl + x ' 

X 
l + x Vl + x 

2 (ĵ X 
-; q 

n + k - 1 

k - 1 

oo 

E 
1 fc=0 

n + & 
jfe 

qx 

l + x 

qx 

l + x 

( l + x 
} ( ï 2 ^ ; «) 

l + x ( l - g ) " 
n+1 

Next using the identity [fc]2 = [k]q (q [A; — 1] + 1), we have 
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B*n,q(t2-X) = 2. ^ = ( r x \ v -

2 

qix 

l + x 

; q ) E „ 2 f c + 2 r ~ i 2 

1 q [ k ] a [ k - 1] 

n + k - 1 

k 

2 \ <Tx 
1 + X 

; 9 E 
1 k=2 

,̂2 9t r i2 <T qZk [n\ 

n + k - l 

k l + x 

l + x ' £ K 

• k=1 
2fc+2 K 

a; N + l l 
q( l + x)2 [n] \1 + 

q x 

n + k - l 

k 

oo 

2 \ (TX 
1 + X 

+ 
g 2 ( l + x ) [n] V l + x 

2 
qzx 

n k=0 
oo 

E 
fc=0 

ra + fc + 1 

k 

n + k 

k 

x 

l + x 

k 

l + x 

X n + 1 ] , ( f e ? ) 

9 ( l + x ) 

1 

n 

+ 

n+2 

M ^ 2 ( i + * ) fe; q)n+1-

U s i n g t h e e q u a l i t i e s ( 4 . 1 ) , w e h a v e 

B*n,q(t2-,X) = 
[n + l l 

,n+l )) 
[n}q q ( l + x ( l - q ) ) [n], q 2 ( l + x ( l - q ) ) 

a , M i 1
 x(1+^(1-g"+1)) 

q [ n ] J N 0 q 2 ( l + x ( l - q ) ) g ( l + x ( l -

x 2 
1 

g ( l + x ( l - <?)) 1 

x 2 
1 

<7 ( 1 + x ( 1 — 9 ) ) 1 

+ N + r r 
V N , 

X 2 

1 ! ( l + ( l - g ) x [ n + l ] 9 ) 

+ ( i + x a - ? ) ) 

' j _ \ i 
K q + l n } q ) + [n}qq*(l + x ( l - q ) ) 

(1 ~ q ) x 2 

x 

q>{ 1 + x ( 1 - q)) \ q + [n] ) + [nl <z2 ( 1 + x ( 1 - q)) 

+ 

J q/ L Jg 

X2 + X 

g ( l + x ( l - 9 ) ) [n] n 2 ( l + x ( l - g ) ) -
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R E M A R K 2 . We observe that the behavior of q-Baskakov operators defined 
by (4.2) is different from the usual Baskakov operators. From Lemma 2 
we observe that the q-Baskakov operators defined by (4.2) reproduce only 
the constant functions not the linear ones, while the Baskakov operators i.e. 
q = 1 and q-Baskakov operators defined by (1.5), reproduce constant as well 
as linear functions. 

Let C (M ) be a space that all real valued continuous functions on M+. 
For a > 0 we define following weighted space 

Ea:=ifeC(R+) : lim I ^ L = o ) 
Y V 7 x—>oo \ + Xa J 

with the norm 

0<x<oo 

Let / be a uniform continuos function in [0, oo). Then the modulus of 
continuity of / defined as 

(4.3) " ( / ; * ) : = sup | f ( t ) - f ( x ) \ 
0<x«x>, |i-x|<5 

exist on the entire positive half-axis. 
It is known that, for a uniform continuous function / , we have 

lim u ( / ; S) = 0 
5—>0 W ' ' 

and, for any <5 > 0, 

1 + ^ (4.4) \f(t)-f(x)\<u(f-,5)\l+ s 

T H E O R E M 4 . Let q = qn satisfies 0 < qn < 1 and qn —> 1 as n —> oo. For 
every f G Ea (a > 2) one has 

(4-5) ||B*]9n (f;x) - f(x)\\a = 0. 

If f is uniform continuous function in R+, then we have 

(4.6) \B^qn ( / ; x)-f{x)I < w , 
Qn[n]qn

 + q 2
n 
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Proof . Using Lemma 2, with the condition a > 2, we get 

„21 
sup 

0<x<oo 

= sup 

1 + Xa 

1 
0<x<oo 1 + X a 

X + x2 + X 

qn{\+x{l-qn)) ql[n}qn{l + x(l-qn)) 
x 

< sup x2 (1 - qn) 
0<x<oo 1 + xa qn 

1 -
x 

( l + x ( l - in)) 

+ sup 
X2 + x 

0<x<oo 1 + xa q2 [n] (1 + x (1 — qn)) 

< ( l ~ g n ) , 1 
Qn QÌ [n. qn 

As a consequence of assumptions over the sequences (qn)n>i, the above 
estimate tends to zero as n —> oo. Thus (4.5) holds on account of Korovkin's 
theorem (see, e.g., [1, pp.215]). 

Now we show that the inequality (4.6) holds. Using the property (4.4) 
and the Cauchy-Schwarz inequality we get 

(4.7) K * , ( / ; z ) - / ( x ) | 

E 
fc=0 

l + x ' 
K 

7fe+i n 
n + k + l 

k 

2 \ k 

l + x 

l + x ' • k=0 
1 + 

x — 
[fc]. 

n + k + 1 

k 

1 \ k 
qzx 

l + x 

< * ( / ; 5) ( l + -6]jB*,qn((t-x)2;x)y 

Using Lemma 2, we get 

Blqn((t-x)2;x) 

+ 
1 x2 4- x 2x2 

= x 

qn(l + x(l-qn)) [ ^ ^ ( l + ^l-<?„)) (l+x(l-gn)) 

2(1 ~ Qn) 1 + QnX 

+ x ' 

+ 
x2 + X 

qn ( l + x ( l - 9 n ) ) q2[n]qn(l + x(l-qn)) 
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x{l + x) { x (1 1 + qnx 1 

n]qn \ l + x qn ( l + x ( l - i „ ) ) q l { l + x ( l - q n ) ) 

^ x (1 + x) I 1 + q„x | 1 

x ( l + x ) / 1 

n 

Using this inequality in (4.7) and choosing 5 = y then we have 

desired result. • 

R E M A R K 3 . We note here that, this type theorem does not hold for the 
operators (1.5). 

R E M A R K 4 . If the assumption of Theorem 4 holds for the function / , then 

we have l im™-^u \ J = ® when x is constant. Thus (4.6) gives 

us the pointwise rate of convergence of the operators B^ qn ( / ; x) to / (x). 
Also this rate of convergence is —J=— faster than A= which is the rate of 
convergence of the classical Baskakov operators. 
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