

Ali Aral, Vijay Gupta

ON q -BASKAKOV TYPE OPERATORS

Abstract. In the present paper we introduce two q -analogous of the well known Baskakov operators. For the first operator we obtain convergence property on bounded interval. Then we give the monotony on the sequence of q -Baskakov operators for n when the function f is convex. For second operator, we obtain direct approximation property on unbounded interval and estimate the rate of convergence.

One can say that, depending on the selection of q , these operators are more flexible than the classical Baskakov operators while retaining their approximation properties.

1. Introduction

Phillips [13] introduced the generalization of Bernstein polynomials based on q -integers. Very recently Aral [4] introduced the q -Szász-Mirakyan operators. Aral and Gupta [5] extended the study and established some approximation properties for q -Szász Mirakyan operators. We now try to define some other q -analogue of exponential type operators. Before introducing the operators, we mention some properties of q -calculus (see [9] and [12]).

For any fixed real number $q > 0$ and non-negative integer r , the q -integers of the number r is defined by

$$(1.1) \quad [r]_q = \begin{cases} (1 - q^r)/(1 - q), & q \neq 1 \\ r, & q = 1 \end{cases}.$$

Also we have $[0]_q = 0$.

The q -factorial is defined in the following:

$$[r]_q! = \begin{cases} [r]_q [r - 1]_q \dots [1]_q, & r = 1, 2, \dots \\ 1, & r = 0 \end{cases}$$

1991 *Mathematics Subject Classification*: 41A36.

Key words and phrases: q -derivative, q -Baskakov operator.

and q -binomial coefficient is defined as

$$\begin{bmatrix} n \\ r \end{bmatrix}_q = \frac{[n]_q!}{[r]_q! [n-r]_q!}$$

for integers $n \geq r \geq 0$. Also, let us recall the following identity

$$(1.2) \quad \sum_{k=0}^{\infty} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q x^k = \frac{1}{(x; q)_n}, \quad |x| < 1,$$

where

$$(x; q)_n = (1-x)(1-qx)\dots(1-q^{n-1}x)$$

(see [3, p. 420]).

Let

$$(1.3) \quad \left(\frac{x}{1+x}; q \right)_n = \left(1 - \frac{x}{1+x} \right) \left(1 - q \frac{x}{1+x} \right) \dots \left(1 - q^{n-1} \frac{x}{1+x} \right).$$

We can easily see that

$$(1.4) \quad \begin{aligned} \left(\frac{qx}{1+x}; q \right)_n &= (1+x) \left(\frac{x}{1+x}; q \right)_{n+1}, \\ \left(\frac{x}{q(1+x)}; q \right)_{n+1} &= \frac{(q+x(q-1))}{(1+x(1-q^n))q(1+x)} \left(\frac{qx}{1+x}; q \right)_n, \\ \left(\frac{x}{q(1+x)}; q \right)_{n+2} &= \frac{(q+x(q-1))}{q(1+x)^2} \left(\frac{qx}{1+x}; q \right)_n. \end{aligned}$$

Motivated by the generalization of the Bernstein polynomial based on q -integers, by Phillips [13] and subsequent work in this direction (see e. g. [4], [5], [12] etc.), we introduce a new Baskakov type operators based on q -integers as follows:

For $f \in C[0, \infty)$, $q \in (0, 1)$ and each positive integer n , q -Baskakov operators are defined as

$$(1.5) \quad B_{n,q}(f; x) = \left(\frac{qx}{1+x}; q \right)_{n+k=0} \sum_{k=0}^{\infty} f\left(\frac{[k]_q}{q^k [n]_q} \right) \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{qx}{1+x} \right)^k,$$

where $x \in \mathbb{R}^+ := [0, \infty)$.

It is observed that in a special case if $q = 1$, the operators (1.5) reduce to the well known Baskakov operators [6], defined by:

$$B_n(f, x) = \sum_{k=0}^{\infty} \binom{n+k-1}{k} \frac{x^k}{(1+x)^{n+k}} f\left(\frac{k}{n} \right).$$

The well known Baskakov operators $B_n(f, x)$ and their different generalization were studied by many researchers. Pethe [11] and Altomare and Mongino [2] studied some approximation properties of certain generalized Baskakov operators. Very recently Cao et al. [7] studied multivariate Baskakov operators and gave some shape preserving properties such as monotony, semi-additivity and convexity.

In the present paper, we study the approximation properties of q -Baskakov operators defined by (1.5), we first give uniform convergence of $B_{n,q}(f, x)$ on a compact subset of \mathbb{R}^+ using Bohman and Korovkin Theorem. For convex function f , we also establish the monotonicity property for the sequence of these operators. In the last section we propose another q -generalization of Baskakov operators, we obtain direct approximation result on unbounded interval and give rate of convergence of these operators.

2. Convergence of q -Baskakov operators

In the sequel we shall require the following lemma:

LEMMA 1. *For $q \in (0, 1)$, we have*

$$B_{n,q}(1; x) = 1, \quad B_{n,q}(t; x) = x, \quad \text{for } x \in \mathbb{R}^+,$$

$$B_{n,q}(t^2; x) = \frac{x^2}{(q + x(q - 1))} + \frac{1}{[n]_q} \frac{x^2 + x}{(q + x(q - 1))} \quad \text{for } x \in \left[0, \frac{q}{1 - q}\right].$$

Proof. We deduce from (1.5) that $B_{n,q}(1; x) = 1$, to calculate $B_{n,q}(t; x)$ using (1.4) and (1.2) we proceed as follows:

$$\begin{aligned} B_{n,q}(t; x) &= \left(\frac{qx}{1+x}; q\right)_n \sum_{k=1}^{\infty} \frac{[k]_q}{q^k [n]_q} \left[\begin{matrix} n+k-1 \\ k \end{matrix} \right]_q \left(\frac{qx}{1+x}\right)^k \\ &= \left(\frac{qx}{1+x}; q\right)_n \sum_{k=1}^{\infty} \left[\begin{matrix} n+k-1 \\ k-1 \end{matrix} \right]_q \left(\frac{x}{1+x}\right)^k \\ &= \frac{x}{1+x} \left(\frac{qx}{1+x}; q\right)_n \sum_{k=0}^{\infty} \left[\begin{matrix} n+k \\ k \end{matrix} \right]_q \left(\frac{x}{1+x}\right)^k \\ &= \frac{x}{1+x} \frac{\left(\frac{qx}{1+x}; q\right)_n}{\left(\frac{x}{1+x}; q\right)_{n+1}} \\ &= x. \end{aligned}$$

Next using the identity $[k]_q^2 = [k]_q (q[k-1]_q + 1)$ then we have

$$\begin{aligned}
B_{n,q}(t^2; x) &= \left(\frac{qx}{1+x}; q \right)_n \sum_{k=1}^{\infty} \frac{[k]_q^2}{q^{2k} [n]_q^2} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{qx}{1+x} \right)^k \\
&= \left(\frac{qx}{1+x}; q \right)_n \sum_{k=2}^{\infty} \frac{q [k]_q [k-1]_q}{q^{2k} [n]_q^2} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{qx}{1+x} \right)^k \\
&\quad + \left(\frac{qx}{1+x}; q \right)_n \sum_{k=1}^{\infty} \frac{[k]_q}{q^{2k} [n]_q^2} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{qx}{1+x} \right)^k \\
&= \frac{x^2}{q(1+x)^2} \frac{[n+1]_q}{[n]_q} \left(\frac{qx}{1+x}; q \right)_n \sum_{k=0}^{\infty} \begin{bmatrix} n+k+1 \\ k \end{bmatrix}_q \left(\frac{x}{q(1+x)} \right)^k \\
&\quad + \frac{1}{[n]_q} \frac{x}{q(1+x)} \left(\frac{qx}{1+x}; q \right)_n \sum_{k=0}^{\infty} \begin{bmatrix} n+k \\ k \end{bmatrix}_q \left(\frac{x}{q(1+x)} \right)^k \\
&= \frac{x^2}{q(1+x)^2} \frac{[n+1]_q}{[n]_q} \frac{\left(\frac{qx}{1+x}; q \right)_n}{\left(\frac{x}{q(1+x)}; q \right)_{n+2}} \\
&\quad + \frac{1}{[n]_q} \frac{x}{q(1+x)} \frac{\left(\frac{qx}{1+x}; q \right)_n}{\left(\frac{x}{q(1+x)}; q \right)_{n+1}}.
\end{aligned}$$

Using the equalities (1.4), we have

$$\begin{aligned}
B_{n,q}(t^2; x) &= \frac{x^2}{(q+x(q-1))} \frac{[n+1]_q}{[n]_q} + \frac{1}{[n]_q} \frac{x(1+x(1-q^n))}{(q+x(q-1))} \\
&= \frac{x^2}{(q+x(q-1))} \left(q + \frac{1}{[n]_q} \right) + \frac{1}{[n]_q} \frac{x(1+x(1-q^n))}{(q+x(q-1))} \\
&= \frac{qx^2}{(q+x(q-1))} + \frac{1}{[n]_q} \frac{x^2+x}{(q+x(q-1))} + \frac{(1-q)x^2}{(q+x(q-1))} \\
&= \frac{x^2}{(q+x(q-1))} + \frac{1}{[n]_q} \frac{x^2+x}{(q+x(q-1))}.
\end{aligned}$$

This completes the proof of Lemma 1. ■

Let $C[0, a]$ denote the space of all real-valued continuous functions on $[0, a]$, $a > 0$. By $C_M[0, a]$ be denote the space of all functions f which are continuous on $[0, a]$ and bounded on $\mathbb{R}^+ := [0, \infty)$. The spaces of bounded functions, endowed with the norm

$$\|f\|_{C[0, a]} = \sup_{x \in [0, a]} |f(x)|,$$

where $f \in C[0, a]$.

The uniform convergence for the *q*-Baskakov operators can be deduced as a consequence of Bohman & Korovkin Theorem (See [8, pp. 67]).

THEOREM 1. *Let (q_n) denote a sequence such that $q_n \rightarrow 1$ as $n \rightarrow \infty$ and the inequality $\frac{a}{a+1} < q_n < 1$ holds for fixed $a > 0$ and n large enough. If $f \in C_M [0, a]$ then*

$$\lim_{n \rightarrow \infty} \|B_{n,q_n}(f; x) - f(x)\|_{C[0, a]} = 0.$$

Let $C_x [0, \infty)$ be the space of continuous functions f on \mathbb{R}^+ such that the condition

$$|f(x)| \leq M(1+x)$$

holds. For any positive b we denote the modulus of continuity of function f on closed interval $[0, b]$ with

$$\omega_b(f, \delta) = \sup_{\substack{t, x \in [0, b] \\ |t-x| \leq \delta}} |f(t) - f(x)|.$$

In the following theorem, we give a estimate of approximation of unbounded functions via modulus of continuity of derivative of function (see [10]).

THEOREM 2. *Let $a > 0$ and $\frac{a}{a+1} < q < 1$. If the function $f' \in C_x [0, \infty)$, then we have*

$$\|B_{n,q}(f; x) - f(x)\|_{C[0, a]} \leq 2\delta_n(q) \omega_{a+1}(f', \delta_n(q)) + M(3+2a)\delta_n^2(q),$$

where $\delta_n(q) = \sqrt{A(\frac{1}{q} + \frac{1}{q[n]_q} - 1)}$ and A, M are positive constant.

Proof. By the mean value theorem there exist $\xi \in (t, x)$ such that

$$f(t) - f(x) = (t-x)f'(x) + (t-x)(f'(\xi) - f'(x))$$

holds. Because of the positivity we can apply $B_{n,q}$ to this equality and after using Lemma 1 we have

$$(2.1) \quad |B_{n,q}(f(t) - f(x); x)| \leq B_{n,q}(|t-x| |f'(\xi) - f'(x)|; x).$$

Besides, since $f' \in C_x [0, \infty)$ we have for $x \in [0, a]$ and $t > a+1$

$$(2.2) \quad \begin{aligned} |f'(\xi) - f'(x)| &\leq M(2+\xi+x) \\ &\leq M(3+2a)|t-x| \end{aligned}$$

where $|t-x| > 1$. Also we have for $x \in [0, a]$ and $t \in [0, a+1]$

$$(2.3) \quad \begin{aligned} |f'(\xi) - f'(x)| &\leq \omega_{a+1}(f', |t-x|) \\ &\leq \omega_{a+1}(f', \delta_n(q)) \left(1 + \frac{|t-x|}{\delta_n(q)}\right). \end{aligned}$$

Now (2.2) and (2.3) imply that for $x \in [0, a]$ and $t \in [0, \infty)$

$$|f'(\xi) - f'(x)| \leq \omega_{a+1}(f', \delta_n(q)) \left(1 + \frac{|t-x|}{\delta_n(q)} \right) + M(3+2a)|t-x|.$$

Then the Cauchy-Schwartz inequality for positive functionals and (2.1) lead to

$$\begin{aligned} B_{n,q}(|t-x| |f'(\xi) - f'(x)|; x) &\leq \omega_{a+1}(f', \delta_n(q)) \left(\frac{1}{\delta_n(q)} B_{n,q}((t-x)^2; x) \right. \\ &\quad \left. + \sqrt{B_{n,q}((t-x)^2; x)} \right) + M(3+2a) B_{n,q}((t-x)^2; x). \end{aligned}$$

If we choose $\delta_n^2(q) = \max_{x \in [0, a]} B_{n,q}((t-x)^2; x)$, then we have desired result. ■

REMARK 1. Since $x \in [0, a]$, from Lemma 1 we get

$$\begin{aligned} B_{n,q}((t-x)^2; x) &= B_{n,q}(t^2; x) - 2xB_{n,q}(t; x) + x^2 B_{n,q}(1; x) \\ &= x^2 \left(\frac{1}{q+x(q-1)} - 1 \right) + \frac{1}{[n]_q} \frac{x^2+x}{q+x(q-1)} \\ &= x^2 \left(\frac{1-q+x(1-q)}{q+x(q-1)} \right) + \frac{1}{[n]_q} \frac{x^2+x}{q+x(q-1)} \\ &= (1-q) \left(\frac{x^2(1+x)}{q+x(q-1)} + \frac{1}{1-q^n} \times \frac{x^2+x}{q+x(q-1)} \right) \\ &\leq M \left(\frac{1}{q+x(q-1)} + \frac{1}{1-q^n} \times \frac{1}{q+x(q-1)} \right) \\ &\leq M \left(\frac{1}{q+a(q-1)} + \frac{1}{1-q^n} \times \frac{1}{q+a(q-1)} \right) =: D(q), \end{aligned}$$

where $M = (1-q) \max \{a^2(1+a), a^2+a\}$. We choose $q = q_n$ such that $q_n \rightarrow 1$ and $q_n^n \rightarrow c$ (c is a constant) in the assumptions of Theorem 2. From Lemma 1 we get $\delta_n^2(q_n) = B_{n,q_n}((t-x)^2; x) \leq D(q_n)$ which tends to zero as $n \rightarrow \infty$, so that $\delta_n^2(q_n) \leq \delta_n(q_n)$ for n large enough. Since $\delta_n(q_n) \leq \omega_{a+1}(f', \delta_n(q))$ for $f' \neq \text{const}$ on the interval $[0, a+1]$, in the preceding theorem we can write

$$\|B_{n,q_n}(f; x) - f(x)\|_{C[0, a]} \leq C \omega_{a+1}(f', \delta_n(q_n)),$$

for n large enough, where C is a positive constant which depends on f' .

3. Monotony for the sequence of q -Baskakov operator

Note that, Phillips [12, pp.270] proved that the sequence of the q -Bernstein operators are decreases as n , when f is convex. However, it is shown in

[5] that the q -Szász Mirakyan operator does not satisfy this property. But, it is interesting that the q -Baskakov operator defined by (1.5) satisfies similar property as in the q -Bernstein operators.

THEOREM 3. *If f is a convex function defined on \mathbb{R}^+ , then the q -Baskakov operator $B_{n,q}(f, \cdot)$ defined by (1.5) is strictly monotonically non-decreasing in n for all $q \in (0, 1)$, unless f is the linear function (in which case $B_{n,q}(f, \cdot) = B_{n+1,q}(f, \cdot)$ for all n).*

Proof. From (1.5) we can write

$$\begin{aligned} B_{n,q}(f; x) - B_{n+1,q}(f; x) &= \left(\frac{qx}{1+x}; q \right)_n \sum_{k=0}^{\infty} f \left(\frac{[k]_q}{q^k [n]_q} \right) \left[\begin{matrix} n+k-1 \\ k \end{matrix} \right]_q \left(\frac{qx}{1+x} \right)^k \\ &\quad - \left(\frac{qx}{1+x}; q \right)_{n+1} \sum_{k=0}^{\infty} f \left(\frac{[k]_q}{q^k [n+1]_q} \right) \left[\begin{matrix} n+k \\ k \end{matrix} \right]_q \left(\frac{qx}{1+x} \right)^k. \end{aligned}$$

By (1.3), we have

$$\begin{aligned} \left(\frac{qx}{1+x}; q \right)_{n+1} &= \left(1 - q^{n+1} \frac{x}{1+x} \right) \left(\frac{qx}{1+x}; q \right)_n \\ &= \left(\frac{1+x(1-q^{n+1})}{1+x} \right) \left(\frac{qx}{1+x}; q \right)_n \end{aligned}$$

and this equality leads to

$$\begin{aligned} (3.1) \quad B_{n,q}(f; x) - B_{n+1,q}(f; x) &= \left(\frac{qx}{1+x}; q \right)_n \sum_{k=0}^{\infty} \left\{ f \left(\frac{[k]_q}{q^k [n]_q} \right) \left[\begin{matrix} n+k-1 \\ k \end{matrix} \right]_q \right. \\ &\quad \left. - \left(\frac{1+x(1-q^{n+1})}{1+x} \right) f \left(\frac{[k]_q}{q^k [n+1]_q} \right) \left[\begin{matrix} n+k \\ k \end{matrix} \right]_q \right\} \left(\frac{qx}{1+x} \right)^k \\ &= \left(\frac{qx}{1+x}; q \right)_n \sum_{k=1}^{\infty} \left\{ f \left(\frac{[k]_q}{q^k [n]_q} \right) \left[\begin{matrix} n+k-1 \\ k \end{matrix} \right]_q \right. \\ &\quad \left. - f \left(\frac{[k]_q}{q^k [n+1]_q} \right) \left[\begin{matrix} n+k \\ k \end{matrix} \right]_q \right\} \left(\frac{qx}{1+x} \right)^k \\ &\quad + \left(\frac{qx}{1+x}; q \right)_n \sum_{k=0}^{\infty} \left(1 - \frac{1+x(1-q^{n+1})}{1+x} \right) \end{aligned}$$

$$\begin{aligned}
& \times f\left(\frac{[k]_q}{q^k [n+1]_q}\right) \left[\begin{matrix} n+k \\ k \end{matrix} \right]_q \left(\frac{qx}{1+x}\right)^k \\
& = \left(\frac{qx}{1+x}; q\right)_n \sum_{k=0}^{\infty} \left\{ f\left(\frac{[k+1]_q}{q^{k+1} [n]_q}\right) \left[\begin{matrix} n+k \\ k+1 \end{matrix} \right]_q \right. \\
& \quad \left. - f\left(\frac{[k+1]_q}{q^{k+1} [n+1]_q}\right) \left[\begin{matrix} n+k+1 \\ k+1 \end{matrix} \right]_q \right. \\
& \quad \left. + q^n f\left(\frac{[k]_q}{q^k [n+1]_q}\right) \left[\begin{matrix} n+k \\ k+1 \end{matrix} \right]_q \right\} \left(\frac{qx}{1+x}\right)^{k+1}.
\end{aligned}$$

If we take

$$\lambda_1 = \frac{\left[\begin{matrix} n+k \\ k+1 \end{matrix} \right]_q}{\left[\begin{matrix} n+k+1 \\ k+1 \end{matrix} \right]_q}, \quad \lambda_2 = q^n \frac{\left[\begin{matrix} n+k \\ k \end{matrix} \right]_q}{\left[\begin{matrix} n+k+1 \\ k+1 \end{matrix} \right]_q}$$

and

$$x_1 = \frac{[k+1]_q}{q^{k+1} [n]_q}, \quad x_2 = \frac{[k]_q}{q^k [n+1]_q}$$

then we have

$$\begin{aligned}
\lambda_1 x_1 + \lambda_2 x_2 &= \frac{[n]_q}{[n+k+1]_q} \frac{[k+1]_q}{q^{k+1} [n]_q} + q^{n+1} \frac{[k+1]_q}{[n+k+1]_q} \frac{[k]_q}{q^{k+1} [n+1]_q} \\
&= \frac{[k+1]_q}{q^{k+1} [n+k+1]_q} \left(1 + \frac{q^{n+1} [k]_q}{[n+1]_q}\right) = \frac{[k+1]_q}{q^{k+1} [n+1]_q}
\end{aligned}$$

and

$$\lambda_1 + \lambda_2 = 1.$$

Since f is convex, we obtain

$$\begin{aligned}
& f\left(\frac{[k+1]_q}{q^{k+1} [n+1]_q}\right) \\
& \leq \frac{\left[\begin{matrix} n+k \\ k+1 \end{matrix} \right]_q}{\left[\begin{matrix} n+k+1 \\ k+1 \end{matrix} \right]_q} f\left(\frac{[k+1]_q}{q^{k+1} [n]_q}\right) + q^n \frac{\left[\begin{matrix} n+k \\ k \end{matrix} \right]_q}{\left[\begin{matrix} n+k+1 \\ k+1 \end{matrix} \right]_q} f\left(\frac{[k]_q}{q^k [n+1]_q}\right).
\end{aligned}$$

Thus, from (3.1) we have desired result. ■

4. Another version of *q*-Baskakov operator

We can easily see that

$$(4.1) \quad \begin{aligned} \left(\frac{q^2 x}{1+x}; q \right)_n &= \frac{(1+x)^2}{(1+x(1-q))} \left(\frac{x}{1+x}; q \right)_{n+2} \\ \left(\frac{q^2 x}{1+x}; q \right)_n &= \frac{(1+x)(1+x(1-q^{n+1}))}{(1+x(1-q))} \left(\frac{x}{1+x}; q \right)_{n+1} \\ \left(\frac{q^2 x}{1+x}; q \right)_n &= \frac{(1+x)}{(1+x(1-q))} \left(\frac{qx}{1+x}; q \right)_{n+1}. \end{aligned}$$

For $f \in C[0, \infty)$, $q \in (0, 1)$ and each positive integer n , another version of *q*-Baskakov operators are defined as

$$(4.2) \quad B_{n,q}^*(f; x) = \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=0}^{\infty} f \left(\frac{[k]_q}{q^{k+1} [n]_q} \right) \left[\begin{matrix} n+k+1 \\ k \end{matrix} \right]_q \left(\frac{q^2 x}{1+x} \right)^k.$$

LEMMA 2. For $q \in (0, 1)$ and $x \in \mathbb{R}^+$, we have

$$B_{n,q}^*(1; x) = 1, \quad B_{n,q}^*(t; x) = \frac{x}{(1+x(1-q))},$$

$$B_{n,q}^*(t^2; x) = \frac{x^2}{q(1+x(1-q))} + \frac{1}{[n]_q} \frac{x^2+x}{q^2(1+x(1-q))}.$$

Proof. By (4.2), it is obvious that $B_{n,q}^*(1; x) = 1$, to estimate $B_{n,q}^*(t^i; x) = x^i$, $i = 1, 2$ using (4.1) we proceed as follows:

$$\begin{aligned} B_{n,q}^*(t; x) &= \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=1}^{\infty} \frac{[k]_q}{q^{k+1} [n]_q} \left[\begin{matrix} n+k-1 \\ k \end{matrix} \right]_q \left(\frac{q^2 x}{1+x} \right)^k \\ &= \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=1}^{\infty} \frac{1}{q} \left[\begin{matrix} n+k-1 \\ k-1 \end{matrix} \right]_q \left(\frac{qx}{1+x} \right)^k \\ &= \frac{x}{1+x} \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=0}^{\infty} \left[\begin{matrix} n+k \\ k \end{matrix} \right]_q \left(\frac{qx}{1+x} \right)^k \\ &= \frac{x}{(1+x)} \frac{\left(\frac{q^2 x}{1+x}; q \right)_n}{\left(\frac{qx}{1+x}; q \right)_{n+1}} = \frac{x}{1+x(1-q)}. \end{aligned}$$

Next using the identity $[k]_q^2 = [k]_q (q[k-1]_q + 1)$, we have

$$\begin{aligned}
B_{n,q}^*(t^2; x) &= \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=1}^{\infty} \frac{[k]_q^2}{q^{2k+2} [n]_q^2} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{q^2 x}{1+x} \right)^k \\
&= \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=2}^{\infty} \frac{1}{q^2} \frac{q [k]_q [k-1]_q}{q^{2k} [n]_q^2} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{x}{1+x} \right)^k \\
&\quad + \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=1}^{\infty} \frac{[k]_q}{q^{2k+2} [n]_q^2} \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q \left(\frac{q^2 x}{1+x} \right)^k \\
&= \frac{x^2}{q(1+x)^2} \frac{[n+1]_q}{[n]_q} \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=0}^{\infty} \begin{bmatrix} n+k+1 \\ k \end{bmatrix}_q \left(\frac{x}{1+x} \right)^k \\
&\quad + \frac{x}{q^2(1+x)} \frac{1}{[n]_q} \left(\frac{q^2 x}{1+x}; q \right)_n \sum_{k=0}^{\infty} \begin{bmatrix} n+k \\ k \end{bmatrix}_q \left(\frac{x}{1+x} \right)^k \\
&= \frac{x^2}{q(1+x)^2} \frac{[n+1]_q}{[n]_q} \frac{\left(\frac{q^2 x}{1+x}; q \right)_n}{\left(\frac{x}{1+x}; q \right)_{n+2}} \\
&\quad + \frac{1}{[n]_q} \frac{x}{q^2(1+x)} \frac{\left(\frac{q^2 x}{1+x}; q \right)_n}{\left(\frac{x}{1+x}; q \right)_{n+1}}.
\end{aligned}$$

Using the equalities (4.1), we have

$$\begin{aligned}
B_{n,q}^*(t^2; x) &= \frac{[n+1]_q}{[n]_q} \frac{x^2}{q(1+x(1-q))} + \frac{1}{[n]_q} x \frac{(1+x(1-q^{n+1}))}{q^2(1+x(1-q))} \\
&= \frac{x^2}{q(1+x(1-q))} \left(q + \frac{1}{[n]_q} \right) + \frac{1}{[n]_q} x \frac{(1+x(1-q^{n+1}))}{q^2(1+x(1-q))} \\
&= \frac{x^2}{q(1+x(1-q))} \left(q + \frac{1}{[n]_q} \right) + \frac{1}{[n]_q} x \frac{(1+(1-q)x[n+1]_q)}{q^2(1+x(1-q))} \\
&= \frac{x^2}{q(1+x(1-q))} \left(q + \frac{1}{[n]_q} \right) + \frac{1}{[n]_q} \frac{x}{q^2(1+x(1-q))} \\
&\quad + \left(q + \frac{1}{[n]_q} \right) \frac{(1-q)x^2}{q^2(1+x(1-q))} \\
&= \frac{x^2}{q^2(1+x(1-q))} \left(q + \frac{1}{[n]_q} \right) + \frac{1}{[n]_q} \frac{x}{q^2(1+x(1-q))} \\
&= \frac{x^2}{q(1+x(1-q))} + \frac{1}{[n]_q} \frac{x^2+x}{q^2(1+x(1-q))}. \blacksquare
\end{aligned}$$

REMARK 2. We observe that the behavior of q -Baskakov operators defined by (4.2) is different from the usual Baskakov operators. From Lemma 2 we observe that the q -Baskakov operators defined by (4.2) reproduce only the constant functions not the linear ones, while the Baskakov operators i.e. $q = 1$ and q -Baskakov operators defined by (1.5), reproduce constant as well as linear functions.

Let $C(\mathbb{R}^+)$ be a space that all real valued continuous functions on \mathbb{R}^+ . For $\alpha > 0$ we define following weighted space

$$E_\alpha := \left\{ f \in C(\mathbb{R}^+) : \lim_{x \rightarrow \infty} \frac{f(x)}{1+x^\alpha} = 0 \right\}$$

with the norm

$$\|f\|_\alpha := \sup_{0 \leq x < \infty} \frac{|f(x)|}{1+x^\alpha}.$$

Let f be a uniform continuos function in $[0, \infty)$. Then the modulus of continuity of f defined as

$$(4.3) \quad \omega(f; \delta) := \sup_{0 \leq x < \infty, |t-x| < \delta} |f(t) - f(x)|$$

exist on the entire positive half-axis.

It is known that, for a uniform continuous function f , we have

$$\lim_{\delta \rightarrow 0} \omega(f; \delta) = 0$$

and, for any $\delta > 0$,

$$(4.4) \quad |f(t) - f(x)| \leq \omega(f; \delta) \left(1 + \frac{|t-x|}{\delta} \right).$$

THEOREM 4. Let $q = q_n$ satisfies $0 < q_n < 1$ and $q_n \rightarrow 1$ as $n \rightarrow \infty$. For every $f \in E_\alpha$ ($\alpha > 2$) one has

$$(4.5) \quad \|B_{n,q_n}^*(f; x) - f(x)\|_\alpha = 0.$$

If f is uniform continuous function in \mathbb{R}^+ , then we have

$$(4.6) \quad |B_{n,q_n}^*(f; x) - f(x)| \leq \omega \left(f; \sqrt{\frac{x(1+x)}{[n]_{q_n}}} \right) \sqrt{\left(\frac{1}{q_n [n]_{q_n}} + \frac{1}{q_n^2} \right)}.$$

Proof. Using Lemma 2, with the condition $\alpha > 2$, we get

$$\begin{aligned}
& \sup_{0 \leq x < \infty} \frac{|B_{n,q_n}^*(t^2; x) - x^2|}{1 + x^\alpha} \\
&= \sup_{0 \leq x < \infty} \frac{1}{1 + x^\alpha} \left(\left| \frac{x^2}{q_n(1 + x(1 - q_n))} + \frac{x^2 + x}{q_n^2[n]_{q_n}(1 + x(1 - q_n))} - x^2 \right| \right) \\
&\leq \sup_{0 \leq x < \infty} \frac{x^2}{1 + x^\alpha} \frac{(1 - q_n)}{q_n} \left| 1 - \frac{x}{(1 + x(1 - q_n))} \right| \\
&\quad + \sup_{0 \leq x < \infty} \frac{x^2 + x}{1 + x^\alpha} \frac{1}{q_n^2[n]_{q_n}(1 + x(1 - q_n))} \\
&\leq \frac{(1 - q_n)}{q_n} + \frac{1}{q_n^2[n]_{q_n}}.
\end{aligned}$$

As a consequence of assumptions over the sequences $(q_n)_{n \geq 1}$, the above estimate tends to zero as $n \rightarrow \infty$. Thus (4.5) holds on account of Korovkin's theorem (see, e.g., [1, pp.215]).

Now we show that the inequality (4.6) holds. Using the property (4.4) and the Cauchy-Schwarz inequality we get

$$\begin{aligned}
(4.7) \quad & |B_{n,q_n}^*(f; x) - f(x)| \\
&\leq \left(\frac{q^2 x}{1 + x}; q \right)_n \sum_{k=0}^{\infty} \left| f(x) - f\left(\frac{[k]_q}{q^{k+1}[n]_q} \right) \right| \left[\begin{matrix} n+k+1 \\ k \end{matrix} \right]_q \left(\frac{q^2 x}{1 + x} \right)^k \\
&\leq \omega(f; \delta) \left(\frac{q^2 x}{1 + x}; q \right)_n \sum_{k=0}^{\infty} \left(1 + \frac{|x - \frac{[k]_q}{q^{k+1}[n]_q}|}{\delta} \right) \left[\begin{matrix} n+k+1 \\ k \end{matrix} \right]_q \left(\frac{q^2 x}{1 + x} \right)^k \\
&\leq \omega(f; \delta) \left(1 + \frac{1}{\delta} \sqrt{B_{n,q_n}^*((t-x)^2; x)} \right).
\end{aligned}$$

Using Lemma 2, we get

$$\begin{aligned}
& B_{n,q_n}^*((t-x)^2; x) \\
&= \frac{x^2}{q_n(1 + x(1 - q_n))} + \frac{1}{[n]_{q_n}} \frac{x^2 + x}{q_n^2(1 + x(1 - q_n))} - \frac{2x^2}{(1 + x(1 - q_n))} + x^2 \\
&= x^2 \frac{(1 - q_n)}{q_n} \frac{1 + q_n x}{(1 + x(1 - q_n))} + \frac{x^2 + x}{q_n^2[n]_{q_n}(1 + x(1 - q_n))}
\end{aligned}$$

$$\begin{aligned}
&= \frac{x(1+x)}{[n]_{q_n}} \left(\frac{x}{1+x} \frac{(1-q_n^n)}{q_n} \frac{1+q_n x}{(1+x(1-q_n))} + \frac{1}{q_n^2(1+x(1-q_n))} \right) \\
&\leq \frac{x(1+x)}{[n]_{q_n}} \left(\frac{1+q_n x}{q_n [n]_{q_n}(1+x)} + \frac{1}{q_n^2(1+x(1-q_n))} \right) \\
&\leq \frac{x(1+x)}{[n]_{q_n}} \left(\frac{1}{q_n [n]_{q_n}} + \frac{1}{q_n^2} \right).
\end{aligned}$$

Using this inequality in (4.7) and choosing $\delta = \sqrt{\frac{x(1+x)}{[n]_{q_n}}}$, then we have desired result. ■

REMARK 3. We note here that, this type theorem does not hold for the operators (1.5).

REMARK 4. If the assumption of Theorem 4 holds for the function f , then we have $\lim_{n \rightarrow \infty} \omega \left(f, \sqrt{\frac{x(1+x)}{[n]_{q_n}}} \right) = 0$ when x is constant. Thus (4.6) gives us the pointwise rate of convergence of the operators $B_{n,q_n}^*(f; x)$ to $f(x)$. Also this rate of convergence is $\frac{1}{\sqrt{[n]_{q_n}}}$ faster than $\frac{1}{\sqrt{n}}$ which is the rate of convergence of the classical Baskakov operators.

References

- [1] F. Altomare, M. Campiti, *Korovkin-type Approximation Theory and its Applications*, Vol. 17, de Gruyter Series Studies in Mathematics, de Gruyter, Berlin-New York, 1994.
- [2] F. Altomare, E. M. Mangino, *On a generalization of Baskakov operator*, Rev. Roumaine Math. Pures Appl. 44, 683–705.
- [3] G. E. Andrews, R. Askey, R. Roy, *Special Functions*, Cambridge Univ. Press, 1999.
- [4] A. Aral, *A generalization of Szász-Mirakyan operators based on q -integers*, Math. Comput. Modelling 47 (9–10) (2008), 1052–1062.
- [5] A. Aral, V. Gupta, *q -derivative and applications to the q -Szász Mirakyan operators*, Calcolo 43 (2006), 151–170.
- [6] V. A. Baskakov, *An example of sequence of linear positive operators in the space of continuous functions*, Dokl. Akad. Nauk. SSSR 113 (1957), 259–251.
- [7] F. Cao, C. Ding, Z. Xu, *On multivariate Baskakov operator*, J. Math. Anal. Appl. 307 (2005), 274–291.
- [8] E. W. Cheney, *Introduction to Approximation Theory*, Chelsea Publishing Company, New York, 1982 (Second Edition).
- [9] T. Ernst, *The history of q -calculus and a new method*, U.U.D.M Report 2000, 16, ISSN 1101-3591, Department of Mathematics, Uppsala University, 2000.
- [10] E. İbikli, E. A. Gadjieva, *The order of approximation some unbounded functions by the sequences of positive linear operators*, Turkish J. Math. 19 (1995), 331–337.

- [11] S. Pethe, *On the Baskakov operator*, Indian J. Math. 26 (1984), No. 1–3, 43–48 (1985).
- [12] G. M. Phillips, *Interpolation and Approximation by Polynomials*, Springer-Verlag, 2003.
- [13] G. M. Phillips, *On generalized Bernstein polynomials*, in: D. F. Griffiths, G. A. Watson (Eds.), Numerical Analysis: A. R. Mitchell 75th Birthday Volume, World Science, Singapore, 1996, pp. 263–269.

A. Aral

FACULTY OF SCIENCE AND ARTS
DEPARTMENT OF MATHEMATICS
KIRIKKALE UNIVERSITY
YAHİHAN, KIRIKKALE, TURKEY
E-mail: aral@science.ankara.edu.tr

V. Gupta

SCHOOL OF APPLIED SCIENCES
NETAJI SUBHAS INSTITUTE OF TECHNOLOGY
SECTOR 3 DWARKA
NEW DELHI 110078 INDIA
E-mail: vijay@nsit.ac.in

Received March 1, 2008; revised version July 4, 2008.