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ON A SUM FORM FUNCTIONAL EQUATION RELATED TO
ENTROPIES AND SOME MOMENTS OF A
DISCRETE RANDOM VARIABLE

Abstract. The general solutions of a sum form functional equation have been ob-
tained. The importance of its solutions in relation to the entropies and some moments of
a discrete random variable has been discussed.

1. Introduction
n
Forn=1,2,..;let ', = {(pl,...,pn) i >0i=1,...,m . pi= 1}
=1

1=
denote the set of all n-component complete discrete probability distributions

with nonnegative elements. For any probability distribution (pi1,...,pn) €
I',,, the entropies
n
(1.1) Hy(p1,---,pn) = — Y _ pilogy pi
i=1
are known as the Shannon entropies [7] with H, : T', = R, n=1,2,..; R

denoting the set of all real numbers and 0log, 0 := 0.

Given any probability distribution (pi,...,pn) € ['n, let us consider a
discrete real-valued random variable Z, taking the values zi,..., 2z, with
respective probabilities py, ..., p, where

pu— . 1 . <
(1.2) z = log, pi ?f 0<p; <1

0 if D = 0.
Let

(1.3) pr(Zn) = pic]
=1

denote the rth order moment of Z,, about the origin, r =0,1,2,.. ..
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Consider (1.3) when r = 0. In order that uj(Z,) is unambiguously
defined, we must define 0° := 1. Then p(Z,) = 1. Since u}y(Z,) does not
depend upon the probabilities py, ..., pn; it is not of much importance from
information-theoretic point of view.

Now consider (1.3) when r = 1. In this case, (1.1), (1.2), (1.3), together
with Olog, 0 := 0, give

(1.4) 11(Zn) = Hu(p1, .-, pn)-
Now consider (1.3) when 7 = 2,3,.... In this case, as a generalization of
Olog, 0 := 0, we define
(1.5) 0(log, 0)" := 0.
Then
n

(1.6) pn(Zn) =) pi(—logy i)'

i=1

Let I = {x € R:0 <z <1} =[0,1]. Define the mappings ¢, : [ — R,
r=1,2,...as

(1.7) ¢r(p) = p(—logy p)”

for all p € I. Then, keeping in view 0log, 0 := 0 and (1.5) (for r = 2,3,...),

it is obvious that
n

(1.8) pr(Zn) = or(pi)

i=1
for r = 1,2,.... So, all the moments y,.(Z,), r = 1,2,... admit of a sum
representation. The mapping ¢, : I — R is called the generating function of
the moment u..(Z,) whenever r = 1,2,.... Since, for all r = 1,2, ..,

(1.9) er(0)=0, ¢,(1)=0
it follows that the values of the random variable Z,, taking with probabilities
0 and 1 do not contribute anything to the value of ul.(Z,). Also, the right
hand side of (1.8) is a symmetric function of p1,...,pn.

Making use of (1.5) and (1.9) for » = 1,2 it is easy to verify that the
mappings 1 and o satisfy the functional equation

©2(pq) = qp2(p) + pw2(q) + 2¢1(p)e1(q)

for all p € I, q € I. Consequently, for all (p1,...,pr) € T'n, (q1,---,qm) €
I';n, the functional equation

(1.10) D> oalpigs) =Y _w2(pi) + > palg;) +2 Z e1(pi) Y p1(g5)
i=1 j=1 1 j=1

=1 j=1 : j 1=
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holds. So, it seems desirable to pay attention to the functional equation

n m n m n m
@11y YN fmig) =D f)+ Y fla) +ed gm)d ] 9(a;)
i=1 j=1 i=1 j=1 i=1 j=1
in which f: I - R, g:I >R, (p1,...,0n) € T'n, (q1,-.-,¢m) € I';, and
¢ # 0 is a given constant. Clearly f = 2 and g = 5 satisfy the functional
equation (1.11) when ¢ = 2. Keeping in view (1.9), we shall assume that

(1.12) f0)=f(1)=0
and
(1.13) g9(0) = g(1) =0.
If i g{pi) = 0 or i g(g;) = 0, then (1.11) reduces to the functional
equan;ilo:n1 =
(1.14) DN fmig) =D f0) + Y f(g)-
i=1 j=1 i=1 j=1

The functional equation (1.14) was first considered by T.W. Chaundy and
J.B. McLeod [1] who came across it while studying some problems in statis-
tical thermodynamics.

The object of this paper is to determine all possible solutions (f,g) of
equation (1.11) satisfying initial conditions (1.12) and (1.13), assuming that
f:I >R g:1—>R,(p1,.-.-,0n) €T, (¢1,---,9m) € T';my n > 3 and
m > 3 being fixed integers. This has been done in section 3. In section 4,
we have discussed the importance of various obtained solutions of (1.11) in
relation to statistics and various entropies in information theory.

2. Some Preliminary Results

In this section, we mention some definitions and known results.

A mapping a : I — R is said to be additive on I or on the unit triangle
A={(z,y):0<z2<1,0<y<1,0<z+y <1} if it satisfies the equation
a(z +y) = a(z) + a(y) for all (z,y) € A. A mapping A : R — R is said to
be additive on R if A(z +y) = A(z) + A(y) holds for all z e R, y e R. It
is known (see Z. Daréczy and L. Losonczi [2]) that if a mapping a : I — R
is additive on I, then it has a unique additive extension A : R — R in the
sense that A is additive on R and A(z) = a(z) for all z € I.

RESULT 1. (See [5]) Let ¢ : I — R be a mapping which satisfies the equation

k
Y (zs) = ¢ for all (x1,...,2) € Tk; ¢ a given constant and k > 3 a
i=1
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fixed integer. Then there exists an additive mapping b : R — R such that
1

$(@) = b() - 2b(1) + % forallzel.

DEFINITION 1. A mapping M : I — R is said to be multiplicative on I if

M(0) =0, M(1) =1 and M(pq) = M(p)M(q) for all p € ]0,1], ¢ € ]0,1]
where |0,1[={z € R:0< z < 1}.

DEFINITION 2. A mapping £ : I — R is said to be logarithmic on T if
2(0) = 0 and £(pq) = £(p) + £(q) for all p €]0, 1], ¢ €]0, 1] where ]0,1] = {z €
R:0<z <1}

RESULT 2. ([5]) Suppose a mapping f : I — R satisfies the functional
equation (1.14) for all (p1,...,pn) € T'n, (q1,-.-,gm) €E'm, n >3, m >3
being fized integers. If f(1) = f(0) =0, then f is of the form

_Jalp)+D(p,p) if 0<p<1
f(p)—{o o0

where a : R — R is additive; D : R x ]0,1] — R is additive in the first
variable and there exists a mapping E : R xR — R additive in both variables
such that a(1) = E(1,1) and

(2.1) D(pgq,pq) = D(pg,p) + D(pg,q) + E(p,q)
for allp € ]0,1] and g € 10,1].

Using the fact that a(1) = E(1,1), it can be easily deduced from (2.1)
that

(2.2) a(1) + D(1,1) = 0.

3. On the Functional Equation (1.11)
The main result of this paper is the following

THEOREM. Let ¢ be a nonzero given constant and f: I - R, g:I—R
be mappings which satisfy the equation (1.11) for all (p1,...,pn) € Ty,
(g1y---,9m) € I'm, n > 3, m > 3 being fized integers. If f : I — R and
g : I — R satisfy respectively (1.12) and (1.13), then for all p € I, any
general solution of (1.11) is of the form

f(p) = {“(”) +Dp) ¥ 0<p<l
0 if p=0
(i) g(p) = Ar(p)

(3.1)
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. a(p) + D(p,p) + $plt(p))* if 0<p<1
@ flp)= ,
(3.2) 0 if p=0
(i) g(p)=pllp) # 0<p<1
0 fo) = {a(p)+D(p,p)+c/\2(M(p)—p) if 0<p<1
(3.3) "o if p=0

(i) g(p) = MM(p) — p)

where Ay : R — R is an additive mapping with A1(1) =0; a: R — R and
D : Rx]0,1] — R are mappings meeting all the requirements as stated in
Result 2; £: I — R is a mapping logarithmic on I in the sense of Definition
2; M : I — R is a nonconstant nonadditive mapping which is multiplicative
on I in the sense of Definition 1; and X\ is an arbitrary nonzero real constant.

The proof of this theorem needs the following

LEMMA. Let g: I — R be a mapping which satisfies the equation

(3.49) [égqu) - 4(2) g}g(n) - [gg(m) - o(a)| égay)

forallz €I and (q1,...,9m) € T'm, (r1,...,7m) € I'm, m > 3 being a fized
integer. Suppose g : I — R also satisfies (1.13). Then for all p € I, any
general solution g of (3.4) is of the form (3.1)(ii) or (3.2) (%) or (3.3)(it)
with mappings A1, £, M and the constant A\ as mentioned in the statement
of the Theorem stated above.

Proof of the Lemma. We divide our discussion into two cases:

m
Case 1. > g(r) =0 on I'p,.
=1

m
In this case, )_ g(r¢) = 0 for all (r1,...,7m) € I',. By Result 1, there
t=1
exists an additive mapping A1 : R — R such that

(3.5) g(p) = Ai1(p) — %Al(l)

for all p € I. Putting p = 0 in (3.5), using (1.13) and A4;(0)
that A;(1) = 0. Then (3.5) reduces to (3.1)(ii) with A;(1) =

= 0, it follows
0.
m
Case 2. > g(r;) does not vanish identically on T',.
: =1
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In this case, there exists a probability distribution (r},...,r} ) € 'y, such

m m
that )~ g(rf) # 0. Substituting r, = r{ in (3.4) and using 5 g(r}) # 0, we
t=1 t=1

obtain the equation

(3.6) ig(xqj) = M(z) Zm:g(qj) + g(z)
where M : I —- R is :;;ned as ~

(37) M(z) = [Zg )| h i[gm:) ~ 4@y
for all z € I. From (3.7) and (1.13), it follows that

(3.8) M) =0, M(1)=1.

Thus, M : I — R is a nonconstant mapping. Now let us write (3.6) in the
form

> lo(zg;) — M(x)g(g;) — g59(x)] = 0.
j=1

By Result 1, there exists an additive mapping E : R x I — R, additive in
the first variable, such that

(3.9) 9(zq) — M(z)g(q) — q9(z) = E(g;z) - —E(l z)

for all z € I, g € I. Since E is additive in the first variable, so £(0;z) = 0
for all z € I. Putting ¢ = 0 in (3.9) and making use of (1.13), it also follows
that E(1;z) = 0 for all z € I. Consequently, (3.9) reduces to the equation

(3.10) g9(zq) — M(z)g(q) — q9(z) = E(g; z)

forallg € I, z € I. Making use of (1.13) and (3.8), it can be concluded from
(3.10) that E(q;0) = 0 and E(g;1) = 0 for all ¢ € I. Now we prove that,
indeed,

(3.11) E(g;z) =0

for all g € I, x € I. To the contrary, suppose that there exists a pair (¢*, z*),
q* € I, z* ¢ I such that E(¢*;z*) # 0. Keeping in view the information
already obtained, we must have 0 < ¢* < 1 and 0 < z* < 1. To proceed
further, we prove that

(312) r—[E(¢%2")) " {M(z")E (7_"q)+E(qT$) E(r;z*q")}
= E(g"2")[M(z")M(q") — M(z"q")]g(r)
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holds for all 7, 0 < r < 1. Indeed, (3.12) holds for » = 0 and r = 1 because
of (1.13) and E(0;z) = 0, E(1;z) = 0 for all z € I. Now we prove (3.12) for
allr, 0<r < 1.

Let 0 <r < 1. Since 0 < ¢* < 1,0 < z* <1, we have

(3.13) 9(z*(q*r)) = g({z"¢")r).
Making use of (3.10), it can be proved that
(3.14)  g(z*(g’r)) = M(z")M(q*)g(r) + rM(z*)g(q")
+M(z*)E(r;¢") + ¢"rg(z”) + E(g"r; z7)
and
(3.15)  g((«"q")r) = M(z*q")g(r) + rM(z")g(q") +rq"g(z”)
+rE(¢";2*) + E(r;2°¢").
From (3.13), (3.14), (3.15) and E(g*;z*) # 0, (3.12) follows for all r,
0 < r < 1. Since the mappings r — r and r — E(r;-) are additive on
I, the left hand side of (3.12) is a mapping additive on I. Now we prove that
the right hand side of (3.12) is a mapping not additive on I. To the con-

trary, suppose the right hand side of (3.12) is a mapping additive on I. This
is possible onlyif g: I - R is additive Then, for all (r1,...,7m) € I'm,

E g(rt) = g(1) = 0 contradicting Z g(r) # 0. So, (3.11) holds for all

q G I, z € I. Now (3.10) reduces to

(3.16) g(zq) = M(z)g(q) + q9()

valid for all z € I, ¢ € I. The left hand side of (3.16) is symmetric in z and
q. Hence, so must also be the right hand side of (3.16). This gives us the
equation

(3.17) [M(z) - z]g(q) = [M(q) — gl9(x)
forallxel, qgel.

Case 2.1. The mapping z — M (z) — z vanishes identically on I.
In this case, (3.16) reduces to

(3.18) 9(zq) = zg(q) + qg(x)

for all z € I and ¢ € I. The most general solution of (3.18) is of the
form (3.2) (ii) in which ¢ : I — R is a mapping logarithmic in the sense of
Definition 2.

Case 2.2. The mapping x — M (z) — z does not vanish identically on I.

In this case, keeping in view (3.8), there exists an element z( € |0, 1{ such
that (M(zo) — z¢) # 0. Putting x = ¢ in (3.17), using (M (zo) — zo) # 0
and performing necessary calculations, (3.3)(ii) follows with A = [M(z¢) —
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zo] " tg(z0). We prove that A # 0. To the contrary, suppose that A = 0.
m
Then (3.3)(ii) reduces to g(p) = 0 for all p € I. Consequently, > g(r;) =0
=1
m
for all (r1,...,7m) € 'y, contradicting 3. g(r¥) # 0. So, A # 0. Now

=1
elimination of g from (3.16) and (3.3)(ii) (with A # 0) gives rise to the
equation M(zq) = M(z)M(q) valid for all ¢ € I, z € I. In particular,
M(zq) = M(z)M(q) for all z € 10,1], ¢ € 10,1. Thus, M : I - R is
multiplicative on I in the sense of Definition 1. Now we prove that M : I — R
is nonadditive. To the contrary, suppose M : I — R is additive. Then, for
all (r1,...,7m) € Ty, (3.3)(i) gives

ig (ZMH -1>—A<M<Z )—1)=/\(M(1)—1)=

t=1 t=1

m
contradicting > g(rf) #0. =
t=1

Proof of the Theorem. Let us write (1.11) in the form

Z{Zf(pi‘b) psz g;) —cg(p) Y 9(gs }
=1 * j=1 j=1 =1

By Result 1, there exists a mapping 4 : R x I';,, — R, additive in the first
variable, such that

m

(319) D f(pas) — (o) — P f(a5) ~ egP) D _9(g5)
Jj=1 j=1

),
—

=AP;q1,- .-, qm) — ;A(LQIa---an)

for all p € I and (q1,...,qm) € I'r. Putting p = 0 in (3.19), using (1.12),
(1.13) and A(0;q1,...,qm) = 0, it follows that A(1;q1,...,¢n) = 0. Conse-
quently, (3.19) reduces to

m m

m

(320) > flpg) = f(®) =P fla5) —ca®) Y _9(g;) = Alpian, .-, qm)
j=1 j=1 j=1

valid for all p € I and (q1,...,qm) € ;.

Let z € I and (r1,...,mm) € I'n, be any probability distribution. Putting
p=xry,...,xry in (3.20), adding the resulting m equations and using the
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additivity of A in the first variable, the equation

m m m m
(3.21) ZZ]‘ TT1g; Zf(:crt)—fo g —CZQ xr Zg
t=1 j=1 t=1 = Jj=1
= A(z;q1,- - Gm)

arises. Also, from (3.20),

(3.22) Zf zry) = f(z) + a:Zf(rt) + cg(z) Zg(rt) + A(z; 71, ..y Tm).
t=1

t=1 t=1
From (3.21) and (3.22), the equation

(323) Y ) flarwy) — f(z)—zy_ f(r)—2)_ fla)
t=1 j=1 t=1 j=1
—A(z;r1, .. .ytm) — AlZ;q15 - - -, Gm)

)Y g +¢> gar) 3 g(a5)
t=1 t=1 j=1

follows. The left hand side of (3.23) is symmetric in 7; and ¢;, t =1,...,m;

j=1,...,m. Hence, so should be the right hand side of (3.23). This gives

rise to the equation (3.4) for all z € I and (r1,...,7m) € 'y, as ¢ # 0. Also,

(1.13) holds by assumption. So, by the Lemma proved above, g : I — R

is of the form (3.1)(ii) or (3.2)(ii) or (3.3)(ii) with mappings A;, M and the

constant A as stated in the statement of the Theorem.

From (3.1)(ii) with A;(1) = 0 and the additivity of A; : R — R, it

n

follows that ) g(p;) = 0 for all (p1,...,pn) € T'n. Making use of this fact
i=1

n (1.11), we observe that f : I — R satisfies the equation (1.14) for all

(P1,---,Pn) € Tny (q1,--+,9m) € T'im, n > 3, m > 3 being fixed integers.

Moreover, (1.12) holds by assumption.

From (1.11) and (3.2)(ii), the equation

ZprzQJ Zf( ) Z %)‘i‘czzpz% pz QJ

i=1 j=1 Jj= i=1 j=1

follows. Since £ : I — R is logarithmic, the above equation can be written
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as

324) YN {f (Pig;) — %CPin [f(piqj)]z}

1j=1

=X::{ (pi ——cpz[fpz }+i{ cqg[f(q])]z}-

Jj=1

n

%

Define a mapping f; : I — R as

(3.25) h1(p) = £(p) — 5eplt())

for all p € I. Then, making use of (1.12), it follows that f1(0) = 0 and
fi(1) = 0. Also, from (3.24) and (3.25), one can infer that f; : I — R also
satisfies the equation (1.14).

From (1.11) and (3.3)(ii) with A # 0, we obtain the equation

DD fmigy) =3 fm)+ 3 f(g)

eSS

which can be written in the form (using the multiplicativity of M)

(3.26) ZZ (pigj) — A2M(pig;) + cApig;}

{f(p) — XM (p) + cApi} + > _{F(q5) — cA2M(g5) + cX?q;}.
i=1 ij=1

Define fo : I — R as

(3.27) fa(p) = F(p) — cX*M(p) + cX?p

for all p € I. From (3.27), (1.12) and (3.8), one can infer that fo(0) = 0
and fa(1) = 0. Also, from (3.26) and (3.27), it follows that fo : I — R also
satisfies (1.14).

Making use of Result 2, it follows that

(328)  f(0) = fi(0) = Falp) = {g(p) + D(p,p) i 2:5 <1

where a : R —» R and D : R x |0,1] — R are as stated in Result 2. From
(3.28) and respectively (3.1)(ii), (3.2)(ii), (3.3)(ii), the equations (3.1)(i),
(3.2)(i) and (3.3)(i) follows. m

I
"M: T
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REMARK. In our subsequent research work, the Theorem proved above
has proved to be useful in obtaining the general solutions of the functional
equation ([4], [6])

n m n m n

YN Flmg) =Y G+ > Hig) + Y Kmi)Y_ Lgy)

i=1 j=1 i=1 j=1 i=1 j=1
inwhich ¥:I - R, G: I >R H: I —-R K:I—-R L:I— R,
(p1,---,Pn) €Ty, (q1,---,6m) € 'y and n > 3, m > 3 being fixed integers.
The details are complicated and will be published elsewhere.

4. Comments

In this section, we discuss the importance of solutions (3.1), (3.2) and
(3.3) in information theory and statistics.

Let (p1,...,pn) €ETpand S={i:1<i<n,0<p; <1}

Then S is a nonempty set.

Let us consider (3.1). Using equations (2.1), (2.2), a(1) = E(1,1),
A1(1) = 0 and the additivity of (i) ¢ : R - R (ii) D : Rx]0,1] —» R in
the first variable (iii) £ : R x R — R in both variables and (iv) A; : R — R,
equation (3.1) gives

(4.1) Y fp)=-D(1,1)+ > D(pipi)
i=1

1€S
n
> g9(p) =0.
i=1

Keeping into consideration the form of the Shannon entropies given by (1.1),
it seems desirable to consider the mapping D : Rx]0,1] — R defined as

(4.2) D(z,y) = dxlogy y

for all z € R, y €]0, 1], d being an arbitrary real constant. The case d = 0 is

not of much importance. So, we restrict to d # 0. Now D(p,p) = dplogyp

for all p €]0,1]. So, D(1,1) = 0. To accommodate the 0-probabilities, it

seems natural to assume 1i1’(1)1+ D(p,p) = 0, that is, 0log, 0 = 0 as d # 0.
p—'

Now, (4.1) gives

f(pl) = —dHn(pl,' . apn)‘
1

n
1=

n

Thus, the summand > f(p;) represents the Shannon entropy or the first
i=1

order moment u}(Z,) up to nonzero multiplicative constant.
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Now we discuss (3.2). Here, proceeding as in the case of solution (3.1)
and using the fact that £: I — R is logarithmic, it follows that

(43) Y f)=-D(L1)+Y_ D) +5 > pill(p))?
i=1

ieS i€S

n

(4.4) > 9(mi) = _pit(p;) because 0£(0)=0.
i=1 i€S

Keeping in view the form of the Shannon entropies given by (1.1), it seems

desirable to choose D : R x ]0,1] — R as defined by (4.2) and assume

Olog, 0 = 0 as justified above but as regards the logarithmic mapping

£ . I — R is concerned, it seems appropriate to choose £ : I — R defined as

AMlogep if O0<p<1
(4.5) Up) =31
0 if p=0
where A; is an arbitrary, real constant. Here, too, the case A\y = 0 is

not of much importance. So, we restrict to A\; # 0. To accommodate
0-probabilities, it seems desirable to assume

0log,0 =0 and O0(log,0)% =0.
Since
~ 1
Ho(Zn) =D _pizf =) _pi(=logapi)* = 3 D pilt(po)]”,
i=1 i€s 1 jes
it follows that

n 2
(46) S (i) = — i (Z2) + L Za)
=1
and
(4.7) > 9(pi) = = Mph(Zn)
=1

where A1 # 0 and d # 0 are arbitrary constants and ¢ # 0 is a given con-
n
stant. Thus the summand Y f(p;) represents a suitable linear combination
i=1
of the first two moments of the random variable Z,,. On the other hand,
n
the summand Y g(p;) represents the first moment of Z, up to a nonzero
i=1
multiplicative constant.
Now we discuss (3.3). Here, proceeding as in the case of solution (3.1)
and using the fact that M : I — R is a nonadditive and multiplicative
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mapping, it follows that

(4.8) Zf pi)=—D(1,1)+ > D( pz,pz)—cﬁ[l—ZM(pi)}

€S =1
and

(49) ggm) —-afi- gwm)]

where A is an arbitrary nonzero constant.
For any probability distribution (pi,...,pr) € I'n, the entropies

(4.10) Hineooom) = (1= 272 (1 Zpl)

with HY : T, - R,n=1,2,..;0€R, a>0,a#1,1%:=1,0%:=0 are
called the entropies of degree o, @ > 0, @ # 1, @ € R. These entropies are
nonadditive and were given by J. Havrda and F. Charvat [3].

Keeping into consideration the forms of entropies given by (1.1) and
(4.10), it is desirable to choose D : R x ]0,1] — R as in the case of solutions
(3.1) and (3.2) but choose M : I — R defined as M(p) = p® for all p € I
with o € R,a > 0, # 1,0% := 0 and 1% := 1. Then (4.8) and (4.9) give

(4.11) Z f(pi) = —dHn(py, . .. \Pn) = C)‘2(1 - 21_a)H7?(pla <oy Pn)

and
n

(4.12) > 9(pi) = —A(1 =2 H(p1, - .. pn)-

i=1
Thus we see that in (3.3), the mapping g is connected only with the nonaddi-
tive entropy H3(p1, - ..,pn) whereas f is connected with both the entropies
H2(p1,...,pn) and Hy(py,...,p,) which is also the first moment u!(Z,).
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