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ON A S U M F O R M F U N C T I O N A L E Q U A T I O N R E L A T E D T O 
E N T R O P I E S A N D S O M E M O M E N T S O F A 

D I S C R E T E R A N D O M V A R I A B L E 

Abstract. The general solutions of a sum form functional equation have been ob-
tained. The importance of its solutions in relation to the entropies and some moments of 
a discrete random variable has been discussed. 

1. Introduction 

For n = 1 , 2 , . . . ; let = j ( p i , . . . ,pn) : Pi > 0, i = 1 , . . . , n; J2 Pi = 1 j 

denote the set of all n-component complete discrete probability distributions 
with nonnegative elements. For any probability distribution ( p i , . . . ,pn) £ 
r n , the entropies 

n 

(1-1) Hn(pi,...,pn) = - 5 ^ P i l o g 2 p j 
i=1 

are known as the Shannon entropies [7] with Hn :Tn—> R, n = 1 , 2 , . . . ; M 
denoting the set of all real numbers and 01og2 0 : = 0. 

Given any probability distribution (pi,... ,pn) € Tn , let us consider a 
discrete real-valued random variable Zn taking the values z\,..., zn with 
respective probabilities p\,..., pn where 

(1.2) Z i = i - l 0 g > P i B O O K * 1 
K ' \o if Pi = 0. 
Let 

n 

(1-3) n ' r { Z n ) = Y , * z i 
i=1 

denote the rth order moment of Zn about the origin, r = 0 , 1 , 2 , . . . . 
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Consider (1.3) when r = 0. In order that n'0(Zn) is unambiguously 
defined, we must define 0° : = 1. Then [i'0(Zn) = 1. Since f / 0 ( Z n ) does not 
depend upon the probabilities p\,... ,pn; it is not of much importance from 
information-theoretic point of view. 

Now consider (1.3) when r = 1. In this case, (1.1), (1.2), (1.3), together 
with 0 log2 0 : = 0, give 

( 1 . 4 ) fA(Zn) = H n ( p 1 , . . . , p n ) . 

Now consider (1.3) when r = 2 , 3 , . . . . In this CcLS6, 3-S cl generalization of 
01og2 0 : = 0, we define 

(1.5) 0 ( l o g 2 0 ) r : = 0 . 

Then 
n 

(1-6) ^ ( Z „ ) = ^ p i ( - l o g 2 p i ) r . 
¿=i 

Let I = {x € R : 0 < x < 1} = [0,1]. Define the mappings <pr : I -> R, 
r = 1 , 2 , . . . as 

(1.7) ipr(p) = p ( - l o g 2 p ) r 

for all p e l . Then, keeping in view 01og2 0 : = 0 and (1.5) (for r = 2 , 3 , . . . ) , 
it is obvious that 

n 

(1-8) A4(Z„) = 5 > r ( p 0 
i=1 

for r = 1 , 2 , . . . . So, all the moments fi'r(Zn), r = 1 , 2 , . . . admit of a sum 
representation. The mapping ipr : I —> R is called the generating function of 
the moment /i'r(Zn) whenever r = 1 , 2 , . . . . Since, for all r = 1, 2 , . . . , 

(1.9) ¥ > r ( 0 ) = 0 , ¥>r(l) = 0 

it follows that the values of the random variable Zn taking with probabilities 
0 and 1 do not contribute anything to the value of n'T{Zn). Also, the right 
hand side of (1.8) is a symmetric function of p i , . . . ,p n . 

Making use of (1.5) and (1.9) for r = 1 ,2 it is easy to verify that the 
mappings tp\ and </?2 satisfy the functional equation 

<fi2(pq) = q<p2(p) +P<P2(q) + 2</?i(p)y>i(g) 

for all p € / , q € I. Consequently, for all (pi, • • • ,pn) S F„, (r/i , . . . , qm) G 
r m , the functional equation 

n m n m n m 

i=1 j=1 ¿=1 j=1 i= 1 J=1 
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holds. So, it seems desirable to pay attention to the functional equation 
Tt 771 Tl 771 IX Tfl 

(1.11) ¿ ¿ / ( m , ) = ¿ / ( P i ) + £ / ( < ? , ) + c Y j g { p i ) Y j g { q j ) 
i=1 j=1 i=1 j=1 i=1 j=1 

in which / : I R, g : I -> R, (p i , . . . ,p n) G Tn , ( g i , . . . , qm) G T m and 
c 0 is a given constant. Clearly / = <̂ 2 and g = tf\ satisfy the functional 
equation (1.11) when c = 2. Keeping in view (1.9), we shall assume that 

(1.12) / ( 0 ) = / ( l ) = 0 

and 

(1.13) 0(0) = s ( l ) = 0. 
n m 

If Y, 9(Pi) = 0 ° r E g(lj) = 0) then (1.11) reduces to the functional 
¿=1 j=1 

equation 
TI 77i n tn 

(1.14) f i p i o j ) = £ / ( R ) + E /(<?,)• 
i=1 j=1 i=1 J=1 

The functional equation (1.14) was first considered by T.W. Chaundy and 
J.B. McLeod [1] who came across it while studying some problems in statis-
tical thermodynamics. 

The object of this paper is to determine all possible solutions ( / , g) of 
equation (1.11) satisfying initial conditions (1.12) and (1.13), assuming that 
/ : / — > R, <?:/—> M, ( p i , . . . , p n ) G Tn , (<?i, ...,qm) G T m , n > 3 and 
m > 3 being fixed integers. This has been done in section 3. In section 4, 
we have discussed the importance of various obtained solutions of (1.11) in 
relation to statistics and various entropies in information theory. 

2. Some Preliminary Results 
In this section, we mention some definitions and known results. 
A mapping a : I —> R is said to be additive on I or on the unit triangle 

A = {(x,y) : 0 < x < l , 0 < y < 1, 0 < x + y < l } i f i t satisfies the equation 
a(x + y) = a{x) + a(y) for all (x, y) G A. A mapping A : R —> R is said to 
be additive on R if A{x + y) = A(x) + A(y) holds for all x G R, y G R. It 
is known (see Z. Daroczy and L. Losonczi [2]) that if a mapping a : I —> R 
is additive on I, then it has a unique additive extension A : R —> R in the 
sense that A is additive on R and A(x) = a(x) for all x G I. 

R E S U L T 1 . ( S e e [5]) Let V> : I —»• R be a mapping which satisfies the equation 
k 

Yh^^i) = c for aM ( x i > • • • > xk) G Tfe/ c a given constant and k > 3 a 
i=1 
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fixed integer. Then there exists an additive mapping b : M —» R such that 

ip(x) = b(x) - ifc(l) + r for all x€l. 
k k 

D E F I N I T I O N 1 . A mapping M : I —»• R is said to be multiplicative on I if 
M(0) = 0, M( 1) = 1 and M{pq) = M(p)M(q) for all p G ]0,1[, q G ]0,1[ 
where ]0,1[ = {x G R : 0 < x < 1}. 

DEFINITION 2. A mapping I : I —> R is said to be logarithmic on I if 
¿(0) = 0 and £(pq) = £{p) + £(q) for all p g]0, 1], q g]0, 1] where ]0,1] = {x G 
R : 0 < x < 1}. 

RESULT 2. ([5]) Suppose a mapping f : I R satisfies the functional 
equation (1.14) for all {pi,...,pn) € Tn , (qi,..., qm) G Tm, n > 3, m > 3 
being fixed integers. If /(l) = /(0) = 0, then f is of the form, 

\ o if P = 0 
where a : R —> R is additive; D : R x ] 0,1] —> R is additive in the first 
variable and there exists a mapping £ : M x R - > R additive in both variables 
such that a( l ) = E( 1,1) and 

(2.1) D(pq,pq) = D(pq,p) + D(pq, q) + E(p, q) 

for all p G ]0,1] and q G ]0,1]. 

Using the fact that a(l) = £7(1,1), it can be easily deduced from (2.1) 
that 

(2.2) o(l) + D ( l , l ) = 0. 

3. On the Functional Equation (1.11) 
The main result of this paper is the following 

THEOREM. Let c be a nonzero given constant and f : I —>R, 5:/—>R 
be mappings which satisfy the equation (1.11) for all (p\,...,pn) G Tn, 
(91 > • • • >9m) € r m , n > 3, m > 3 being fixed integers. If f : I R and 
g \ I R satisfy respectively (1.12) and (1.13), then for all p G I, any 
general solution of (1 .11) is of the form 

(3.1) 
(*{p) + D(p>p) i / 0 < p < l 

(1) f{P) = < 
I 0 tf p = 0 

w(ii) g{p) = Al{p) 
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or 

(3-2) 

or 

(i) HP) = 
'a(p) + D(p,p) + ip[i{p)}2 if 0 < p < 1 

0 if p = 0 

' ̂  i + ^(P'P) + cX2(M(p) -p) */ 0 < P ^ 1 

(3.3) j ® / ( p ) = \o V P = 0 

k(ii) </(?) = A(M(p) -p) 

u>/iere j4i : R —> M is an additive mapping with Ai(l) = 0; a : R —> R and 
D : Rx]0,1] —> R are mappings meeting all the requirements as stated in 
Result 2; I : I —> R is a mapping logarithmic on I in the sense of Definition 
2; M : I R is a nonconstant nonadditive mapping which is multiplicative 
on I in the sense of Definition 1; and A is an arbitrary nonzero real constant. 

The proof of this theorem needs the following 

L E M M A . Let g : I —> R be a mapping which satisfies the equation 
- m -i m r m -i m 

(3-4) ^ g ( x q j ) - g { x ) £ g ( r t ) = g(xr t) - g(x) J^g(qj) 
Lj=i J t=i Li=i J j=\ 

for all x G I and (qi,..., qm) G Tm, ( n , . . . , r m ) G Tm ; m > 3 a fixed 
integer. Suppose g : I R a/so satisfies (1.13). Then for all p G /, any 
general solution g of (3.4) is of i/ie /orra (3.1) (ii) or (3.2)(ii) or (3.3)(ii) 
with mappings Ai, I, M and the constant A as mentioned in the statement 
of the Theorem stated above. 

Proof of the Lemma. We divide our discussion into two cases: 

Case 1. J2 9(rt) = 0 on Tm. 
t=l 

m 
In this case, ^ g(ft) = 0 for all (r\,..., rm) G Tr 

t=l 
exists an additive mapping A\ : R —> R such that 

By Result 1, there 

(3.5) s(p) = A i ( p ) - - A i ( l ) m 
for all p e l . Putting p = 0 in (3.5), using (1.13) and Ai(0) = 0, it follows 
that Ai(l) = 0. Then (3.5) reduces to (3.1)(ii) with ^ i ( l ) = 0. 

Case 2. Yh 9(rt) does not vanish identically on Tm. 
t=i 
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In this case, there exists a probability distribution ( r j , . . . , r£J G T m such 
m m 

that Yl 9(rt) 0- Substituting rt = r\ in (3.4) and using ) ^ 0, we 
t=i t=l 

obtain the equation 
m m 

(3.6) £ g{xqj) = M(x) £ g(gj) + g{x) 
j=l j=1 

where M : I —• R is defined as 
- m -l — l m 

(3.7) M(x) = Y.9{rl) Y } ^ ) - g(x)r*t} 
• t=l J t=l 

for all x £ I. Prom (3.7) and (1.13), it follows that 

(3.8) M(0) = 0, M ( 1) = 1. 

Thus, M : I —»• R is a nonconstant mapping. Now let us write (3.6) in the 
form 

m 
J2[9(xQj) ~ M(x)g{qj) - qjg(x)] = 0. 
j=i 

By Result 1, there exists an additive mapping E : R x I —» R, additive in 
the first variable, such that 

(3.9) g(xq) - M(x)g(q) - qg(x) = E(q; x) - 1 ^ ( 1 ; x) 

for all x G I, q G I. Since E is additive in the first variable, so E(0; x) = 0 
for all x G I. Putt ing q — 0 in (3.9) and making use of (1.13), it also follows 
that E{Y\x) = 0 for all x G I. Consequently, (3.9) reduces to the equation 

(3.10) g(xq) - M(x)g(q) - qg(x) = E{q- x) 

for all q G I, x G I. Making use of (1.13) and (3.8), it can be concluded from 
(3.10) that E(q; 0) = 0 and E(q; 1) = 0 for all q € I. Now we prove that, 
indeed, 

(3.11) E{q\x) = 0 

for all q G / , x G I. To the contrary, suppose that there exists a pair (q*, x*), 
q* G I, x* G I such that E(q*\x*) / 0. Keeping in view the information 
already obtained, we must have 0 < q* < 1 and 0 < x* < 1. To proceed 
further, we prove that 

(3.12) r - [E(q*-, x * ) ] - 1 ^ * * ) ^ ; q*) + E(q*r; x*) - E(r; x*q*)} 
= E{q*\x*)[M(x*)M(q*) - M(x*q*)]g(r) 
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holds for all r, 0 < r < 1. Indeed, (3.12) holds for r = 0 and r = 1 because 
of (1.13) and E{0; x) = 0, E{ 1; x) = 0 for all x <E I. Now we prove (3.12) for 
all r, 0 < r < 1. 

Let 0 < r < 1. Since 0 < q* < 1, 0 < x* < 1, we have 

(3.13) 9(x*(q*r))=g((x*q*)r). 

Making use of (3.10), it can be proved that 

(3.14) g(x*(q*r)) = M(x*)M(q*)g(r) + rM(x*)g(q*) 

+ M(x*)E(r; q*) + q*rg(x*) + E{q*r; x*) 

and 

(3.15) g{{x*q*)r) = M(x*q*)g(r) + rM{x*)g{q*) + rq*g(x*) 

+ rE{q*-x*) + E(r-,x*q*). 

Prom (3.13), (3.14), (3.15) and E(q*;x*) + 0, (3.12) follows for all r, 
0 < r < 1. Since the mappings r i—> r and r i—• E(r;-) are additive on 
I , the left hand side of (3.12) is a mapping additive on I . Now we prove that 
the right hand side of (3.12) is a mapping not additive on I. To the con-
trary, suppose the right hand side of (3.12) is a mapping additive on I . This 
is possible only if g : I —> E is additive. Then, for all ( rx , . . . , r m ) £ r m , 
m m 

g{rt) = i?(l) = o contradicting £ g(r*t) / 0. So, (3.11) holds for all 
t=i t=l 
q G I, x G I. Now (3.10) reduces to 
(3.16) g(xq) = M(x)g(q) + qg(x) 

valid for all x G I, q G I. The left hand side of (3.16) is symmetric in x and 
q. Hence, so must also be the right hand side of (3.16). This gives us the 
equation 

(3.17) \M{x) - x]g(q) = [M(q) - q]g(x) 

for al l x G I, q G I. 

Case 2.1. The mapping x h-> M{X) — x vanishes identically on I. 
In this case, (3.16) reduces to 

(3.18) g(xq) = xg{q) + qg(x) 
for all x G I and q G I. The most general solution of (3.18) is of the 
form (3.2) (ii) in which i : I —> R is a mapping logarithmic in the sense of 
Definition 2. 

Case 2.2. The mapping x i-» M(x) — x does not vanish identically on I . 
In this case, keeping in view (3.8), there exists an element XQ G ]0,1[ such 

that (M(x0) - x0) ± 0. Putting x = x0 in (3.17), using (M(x0) - x0) ^ 0 
and performing necessary calculations, (3.3) (ii) follows with A = [ M { X Q ) — 



90 P. Nath, D. K. Singh 

xq}"1 g(xo). We prove that A / 0. To the contrary, suppose that A = 0. 
m 

Then (3.3) (ii) reduces to g(p) = 0 for all p G 7. Consequently, J2 g(rt) = 0 
t=i m 

for all ( r i , . . . , r m ) G T m contradicting J2 d(rt) 0- So, A ^ 0. Now 
t=l 

elimination of g from (3.16) and (3.3)(ii) (with A 0) gives rise to the 
equation M(xq) = M(x)M(q) valid for all q G 7, x G 7. In particular, 
M(xq) = M(x)M(q) for all x G ]0,1[, q G ]0,1[. Thus, M : 7 -»• R is 
multiplicative on 7 in the sense of Definition 1. Now we prove that M : I —>• R 
is nonadditive. To the contrary, suppose M : 7 —> R is additive. Then, for 
all ( n , . . . , r m ) G r m , (3.3) (ii) gives 

m / m / / m \ 

E = A ( E - 1 J = A ( E r «J - 1 = A(M(1) - 1) = 0 

contradicting ^ ^(rj1) ^ 0. 
t=i 

Proof of the Theorem. Let us write (1.11) in the form 

n , m m m 

E \ E - / (w) - ^ E ~ °9(pi) E [ = 
i=1 ^ = 1 j = i j = i j 

By Result 1, there exists a mapping A : R x T m —> R, additive in the first 
variable, such that 

m m m 
(3.19) ^ / ( p ^ - ^ - p ^ / f e ) - ^ ) ^ ^ ) 

j=1 j=i j'=i 

= > l ( p ; • • • ,9m) - ->1(1;91, . . . ,9m) n 

for all p G 7 and (q\,... ,qm) G Tm. Putting p = 0 in (3.19), using (1.12), 
(1.13) and >1(0; 91 , . . . , qm) = 0, it follows that >1(1; 91 , . . . , qm) = 0. Conse-
quently, (3.19) reduces to 

m m m 
(3.20) E f(m) - f(p) - p E / ( fc) - E ) = >•••>*») 

i= i j = i j = i 

valid for all p G 7 and (91 , . . . , qm) G Tm . 
Let x G 7 and ( r i , . . . , rm) G T m be any probability distribution. Putting 

p = xr\,..., x r m in (3.20), adding the resulting m equations and using the 
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additivity of A in the first variable, the equation 

91 

mm m m m m 

t=1 j= l t=1 j=1 i=l j = l 
= A(x;qi,...,qm) 

arises. Also, from (3.20), 

m m m 
(3.22) f(xrt) = f ( x ) + * E + c ^ x ) E ^ + A& ri,...,rm). 

t=l t=l t=i 

Prom (3.21) and (3.22), the equation 

mm m m 
(3.23) J ] J2 f(xrtqj) - / (x) - x £ / ( r t ) - x £ /(<&) 

t=l j=l t=l j= l 
- A ( x ; r i , . . . , r m ) - A(x;qi , . . . ,qm) 

m m m 
= cg(x) g(rt) + c p(xr4) s ( 9 i ) 

t=i t=i j=i 

follows. The left hand side of (3.23) is symmetric in rt and qj, t = 1 , . . . , m; 
j = 1,... ,m. Hence, so should be the right hand side of (3.23). This gives 
rise to the equation (3.4) for all x & I and ( r i , . . . , rm) € Tm as c ^ 0. Also, 
(1.13) holds by assumption. So, by the Lemma proved above, g : I —• R 
is of the form (3.1)(ii) or (3.2)(ii) or (3.3)(ii) with mappings A\,M and the 
constant A as stated in the statement of the Theorem. 

Prom (3.1)(ii) with Ai(l) = 0 and the additivity of Ai : R R, it 
n 

follows that £ g(Pi) = 0 for all (pi , . . . ,pn) G Tn. Making use of this fact 
i=i 

in (1.11), we observe that / : / —> R satisfies the equation (1.14) for all 
(pi,...,pn) G r n , (qi,...,qm) G Tm , n > 3, m > 3 being fixed integers. 
Moreover, (1.12) holds by assumption. 

Prom (1.11) and (3.2) (ii), the equation 

n m n m n m 
E E = E /(»)+E /(%•)+cE E w tfoWij) 
¿=1 j=1 i= 1 j=1 i=1 j=1 

follows. Since I : I —> R is logarithmic, the above equation can be written 
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as 
n in s , n 

• 2 4 ) E E \ f M ~ 2cPrtMPiQi)}2 

i=1j=i ^ J 

= E { / ( » ) - + E { / ( * ) - ^ w r f } -
3= 

Define a mapping / i : / —> R as 

(3-25) /iCP) = /(P) - |cp[^(p)]2 

for all p £ I. Then, making use of (1.12), it follows that / i (0) = 0 and 
/ i ( l ) = 0. Also, from (3.24) and (3.25), one can infer that / i : I R also 
satisfies the equation (1.14). 

From (1.11) and (3.3)(ii) with A ̂  0, we obtain the equation 
TL 771 71 771 

¿ E / ( w ? i ) = E / ( p i ) + E / ( ? i ) 
j = i ¿ = i j = i 

+ cA 
n 

2 ' 

3=1 L i=l 

which can be written in the form (using the multiplicativity of M) 
n m 

(3.26) Y 1 5 2 i f ( P i < b ) ~ ^ M f a q j ) + cX 2 p i q j } 
i=i j=l 
71 771 

= E ^ ( f t ) - c A 2 m ^ ) + c X 2 P i } + - c A 2 m ( ^ ) + c a 2 ^ } . 
¿=1 j = l 

Define / 2 : / —>• R as 

(3-27) / 2(p) = / (p) - cA2M(p) + cA2p 

for all p e l . From (3.27), (1.12) and (3.8), one can infer that / 2(0) = 0 
and f2( 1) = 0. Also, from (3.26) and (3.27), it follows that f 2 : I -> R also 
satisfies (1.14). 

Making use of Result 2, it follows that 

(3.28) / (p) = / 1(p) = A ( p ) = H + ^ " 1 

10 if p = 0 

where a : R —> R and D : R x ]0,1] —> R are as stated in Result 2. From 
(3.28) and respectively (3.1)(ii), (3.2)(ii), (3.3)(ii), the equations (3.1)(i), 
(3.2) (i) and (3.3) (i) follows. -
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REMARK. In our subsequent research work, the Theorem proved above 
has proved to be useful in obtaining the general solutions of the functional 
equation ([4], [6]) 

n m n m n m 

£ F(Piqj) = £ G(JH) + £ H ( q j ) + J 2 K(JH) £ L(Qj) 
¿=1 j=1 i—1 j=l i=1 j=1 

in which F : / -> R, G : / -» R, H : I ^ R, K : I R, L : / R, 
(pi, • • • G r n , (91, . . . , qm) G r m and n > 3, m > 3 being fixed integers. 
The details are complicated and will be published elsewhere. 

4. Comments 
In this section, we discuss the importance of solutions (3.1), (3.2) and 

(3.3) in information theory and statistics. 
L e t ( p i , . . . ,pn) € r „ a n d S — {i : 1 < i < n, 0 < pi < 1} . 
Then S is a nonempty set. 
Let us consider (3.1). Using equations (2.1), (2.2), a( l ) = ¿£(1,1), 

Al(1) = 0 and the additivity of (i) a : R -> R (ii) D : R x ]0,1] -> R in 
the first variable (iii) E : R x R —> R in both variables and (iv) Ai : R —> R, 
equation (3.1) gives 

n 
(4.1) X ^ O * ) = - D ( l , l ) + Y ,D(p i ,P i ) 

¿=1 ieS 
n 

1=1 

Keeping into consideration the form of the Shannon entropies given by (1.1), 
it seems desirable to consider the mapping D : Rx]0,1] —• R defined as 

(4 .2 ) D(x,y) = dxlog2y 

for all x G R, y G]0, 1], d being an arbitrary real constant. The case d = 0 is 
not of much importance. So, we restrict to d ^ 0. Now D(p,p) = dplog2p 
for all p G ]0,1]. So, ¿2(1,1) = 0. To accommodate the O-probabilities, it 
seems natural to assume lim D(p,p) = 0, that is, 01og20 = 0 as d 0. 

p—>0+ 
Now, (4.1) gives 

n 

X / ( P O = - d H n ( p i , . . . , p n ) . 
i=1 
n 

Thus, the summand f(Pi) represents the Shannon entropy or the first 
i=i 

order moment ¡j,\(Zn) up to nonzero multiplicative constant. 
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Now we discuss (3.2). Here, proceeding as in the case of solution (3.1) 
and using the fact that £ : I —> R is logarithmic, it follows that 

n 

(4.3) ^ / ( r ) = - D ( l 1 l ) + ' £ D ( p i , P i ) + ^ P i [ t ( p i ) ] 2 

i=i i€S ies 
n 

(4.4) = because 0£(0) = 0. 
¿=i ies 

Keeping in view the form of the Shannon entropies given by (1.1), it seems 
desirable to choose D : R x ]0,1] —> R as defined by (4.2) and assume 
0 log2 0 = 0 as justified above but as regards the logarithmic mapping 
£ : I —> R is concerned, it seems appropriate to choose £ : I —» R defined as 

( « I : ! 0 < f 1 

10 if p = 0 

where Ai is an arbitrary, real constant. Here, too, the case A] = 0 is 
not of much importance. So, we restrict to Ai ^ 0. To accommodate 
O-probabilities, it seems desirable to assume 

0 log2 0 — 0 and 0(log2 0)2 = 0. 

Since 
n ^ 

»2(Zn) = J2P iZi = ^ P i i - ^ P i f = ^ P A ^ P i ) ? , 
i=i i€S  1 ies 

r\2  £ f ( P i ) = -  d ^ Z n ) + 
i=l 

it follows that 

(4.6) 

and 
n 

(4-7) 5 > ( P i ) = " AiMi(Sn) 
¿=i 

where Ai ^ 0 and d ^ 0 are arbitrary constants and c ^ 0 is a given con-
n 

stant. Thus the summand f ( p i ) represents a suitable linear combination 
i=1 of the first two moments of the random variable Zn. On the other hand, 

n 
the summand g(pi) represents the first moment of Zn up to a nonzero 

¿=1 
multiplicative constant. 

Now we discuss (3.3). Here, proceeding as in the case of solution (3.1) 
and using the fact that M : I —> R is a nonadditive and multiplicative 
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¿=1 

mapping , it fo l lows that 
n r n 

(4.8) J 2 f ( P i ) = ~ D ( l , l ) + £ £ ( P i , P i ) - c A 2 l ~ Y . M i . P i 

i=l ieS 

and 
n r n 

(4.9) Y d ( P i ) = ~ A 

¿=1 L t= i 

where A is an arbi trary nonzero constant. 

For any probabi l i ty distr ibution ( p i , . . . ,pn) G T n , the entropies 
n 

(4.10) H®(pi,... ,pn) = (1 — 2 1 _ Q ) - 1 1 ' 
v i = i 

n v 

»-Erf) 
¿=1 y 

wi th H ? : n = 1, 2 , . . . ; a G M, a > 0, a / 1, l a : = 1, 0 Q : = 0 are 

called the entropies of degree a, a > 0, a ^ 1, a G R . These entropies are 

nonaddi t ive and were g iven by J. Havrda and F . Charvât [3]. 

Keep ing into consideration the forms of entropies g iven by (1.1) and 

(4.10), it is desirable t o choose D : M x ]0,1] —> M as in the case of solutions 

(3.1) and (3.2) but choose M : I R def ined as M(p) = p° for all p G I 

wi th a G R , a > 0, a ± 1, 0 a : = 0 and 1 Q : = 1. T h e n (4.8) and (4.9) g ive 

(4.11) £ / ( P I ) = ~dHn(px,... ,pn) - CA2 (1 - 2 l ~ a ) H % { p u ... ,pn) 

i= 1 

and 

n 

(4.12) = " A (1 - 2l~a)HZ{Pl,... .pn). 

i=1 

Thus we see that in (3.3), the mapp ing g is connected only w i th the nonaddi-

t i ve entropy (pi,... ,pn) whereas / is connected w i th bo th the entropies 

H"(pi,..., pn) and Hn(p\,... ,pn) which is also the first moment (Zn). 
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