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EXISTENCE OF BOUNDED SOLUTIONS FOR
FOURTH ORDER DIRICHLET PROBLEMS WITH
CONVEX-CONCAVE NONLINEARITY

Abstract. We consider the Dirichlet boundary value problem for higher order O.D.E.
with nonlinearity being the sum of a derivative of a convex and of a concave function in
case when no growth condition is imposed on the concave part.

1. Introduction

We shall consider the higher order ordinary differential equations with
Dirichlet boundary type conditions and with nonlinearity being the sum of
derivative of a convex and of a concave function in case when no growth
condition is imposed on the concave part. In order to demonstrate our
approach, we shall show that for any ¢ > 0 and for A from a certain interval
there exists a bounded solution for the problem

d d?
ﬂ@w () + T32% (t) + 0z (t) + oGy (t,z (t)) = AF; (t,z (1)),

z(0) =z (1) = % (0) = & () =0,

where the constants 3, v, é are such that 8 —~v — 16| >0,y <0, 8 > 0;
F, Fy, G, G : [0,7] x R — R are Caratheodory functions with F and G
continuously differentiable and convex with respect to the second variable in
R for a. e. t € [0, 7] and with G5 continuous on [0, 7] x R.

Concerning the growth of F' and the properties of G we assume only that

(1.1)

F1 for any d > 0 there exists a constant o > 0 such that for a. e. t € [0, 7);

12 T \" S
(1.2) zg[lg;fd]lF tz) <a
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F2 F.(t,0) £ 0, for a.e. t € [0,7], functions t — F (t,0), t — G (t,0) are
integrable on [0, 7).
Gl G, (t,z)x >0 for x € R.

From F1, F2, G1 it follows by convexity that integral functionals z —
§o F (t,z(t)dt, z — {§ G (¢, z (t)) dt are well defined on L% (0,7), see [7].

Our assumptions are not very restrictive. Namely, assumption G1 pro-
vides that G is a coercive function with respect to the second variable while
assumption (1.2) reflects the local boundedness of the derivative Fy. For ex-
ample we may take F (¢,z) = e*+42%—0.252%+ f (t) x and G (t,z) = g () z7,
where g € C (0, 7), f € L*(0,7), g(t) > 0 for t € (0,7) and where v is any
even number. Function F is convex in x on R and F, is continuous in z.
Thus for any d > 0 relation (1.2) is satisfied for a certain a.

Higher order problems with both Dirichlet and periodic boundary value
have been investigated by a variety of methods and approaches lately, see
for example [3], [9], [8] to mention a few works that use either topological or
other variational approaches.

We will minimize the Euler action functional

™ 4 9 ™
J(@)= | <,B%x () + ’y%x () + 6z (t)) z(t)dt+0 |G (t,z (1)) dt

0 0
m

=AM F(t,z(t))dt
0
over the set

d
X = {;v € HZ (0,7)n H*(0,7) : 2l 220,y < , z(t) € [-d,d] on [0,7],

NG
[E P \/(—’7+ N |5|)d2}.

B Ve
We note that J is unbounded in HZ (0, 7). Our main result reads
THEOREM 1.1. Let us assume F1, F2, G1. Let d > 0 be fixred. Let ¢ > 0

and let
- amn '
There exists a solution © € X to the Dirichlet Problem (1.1). Moreover
d4 d2
B e () b yaze () 462 () +0Ce (12 () € L2(0,).

In order to prove Theorem 1.1 we will investigate the abstract realization
of (1.1) and provide the abstract variational principle. In case G; (¢,z) =0,
the dual variational method was developed in [4]. However now our as-
sumptions are weaker and therefore the construction of the dual variational
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method substantially differs. Still we may obtain with the approach of the
present paper the results from [4] and the present paper advances the con-
struction from [6]. It is worth to be noted that our method applies to a
wider class of nonlinear problems than methods from [4], [6].

2. Auxiliary Lemmas
LEMMA 2.1. There ezists ¢ € X such that inf,ex J (u) = J (z).

Proof. X is weakly compact in HZ (0,7) and J is bounded from below on
X. Hence we take a sequence {z,}>>; C X such that z, — z in H2(0,n)
and infyex J (u) = limp 0 J (€5). Since {z,},2; contains a subsequence
convergent uniformly we get (for this subsequence)

F(t,zn, (t)) dt —
(2.1)
(t))

F(t,z (t))dt,
G (t,zn, (t,z (t)) dt.

dt -\ G

O e N O e

0
0
Thus J weakly ls.c. on X. Hence infycx J (u) = limp 00 J (z4) > J (z) >

infuex J(u). =

LEMMA 2.2. Assume F1, F2, G1. Let 0 < A < W and let ¢ > 0.
For each z € X there exists a solution u € X to the Dirichlet problem

d* d?
Bﬁu (t) + Vg (t) + du(t) + oG (t,u(t)) = AF; (t,z (),

u(0)=u(r)=u(0) =u(mr) =0.

(2.2)

Proof. By (1.2) for a fixed z € X the function t — Fy (¢,z (t)) belongs to
L* (0, 7). Since G is convex it follows that the functional

B T 9 2 ks 2 T
J(u) = gg(%u(t)) dt—%é(%u(t)) dt+g§)u2(t)dt

+aT§rG (t,u(t)) - 7§AF,,. (t,z () u(t) dt
0 0

is coercive on HZ (0, 7). Since it is also convex and lower semicontinuous,
it follows by a direct method of the calculus of variations that J has a
minimum over HZ (0, ) which satisfies the Euler-Lagrange equation, i.e.
(2.2), compare with [5]. Multiplying (2.2) by u and taking integrals we
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obtain what follows by the Poincaré inequality, Schwarz inequality and (1.2)

T d2 2
(8= ) ills s+ § G e ) ut) < 05 (w1 o

0

™ d 2 ™
—u(t)) dt+6\u2@t)dt+0\Gs(t,ut))u(t
1§ (Gu®) @ 8§ Odsoie uwue

= S AF; (t,z(t)u(t)dt < Vra 2]l L2¢0,7) -
0

Since A\ < %@E we get
(B = —18]) el Z2¢0r) + 0 § G (80 (£) u (t)
0

B—~v-—|6Dd ..
< ﬁ% 1]l 20,7y -

Since §§ Gz (t,u(t))u(t) > 0 we see that 2l 20 < %. By Sobolev’s
inequality we get tm[gx] [u ()] < v |liflL20q) < d. By relation
€l0,w ’

0

T/ d2 2 T rd T (ﬁ-’)’-‘d')dz
ﬂg(ﬁ t) dt—v(ﬂ)(d— t)) dt +6 {u? (t)dt < 7

and since v < 0, [|ul| 29 r) < % we get

. (= +idhd®  (B-v—|8])d
||u||L2(0,7r) < \/ B + Bﬁ

3. Existence of solutions for (1.1)

Lemma 2.1 provides the existence of an z € X which is a candidate for
a solution of (1.1). We may not apply the Euler-Lagrange Lemma or the
mountain pass geometry to show that it indeed is one. In order to show
that z is a solution of (1.1) we introduce a certain abstract dual variational
method. Let Y be a separable real Hilbert space with scalar product (-, -).
We will investigate the existence of solution to equation

(3.1) Lz + G, (z) = F; (z),

where L: D (L) C Y — Y is a densely defined linear operator, i.e. D (L) is a
dense subspace of Y. L is a self-adjoint and positive definite linear operator.
In that case there exists a densely defined self-adjoint square root operator
S:D(S) — Y. We observe that Sz € D (S) for any z € D (L) and S% =
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see [2]. On D (S) we use a norm ||z||p(s) = ||Sz||y which makes it into a
complete space.
We assume that

A1 any bounded sequence in D (S) contains a subsequence convergent in Y’;

A2 F, G :Y — R are convex l.s.c. and Gateaux differentiable functions
bounded on bounded sets; F;, (0) # 0;

A3 there exists a nonempty set X C D (L) such that for each z € X relation

(3.2) LF + G, (3) = Fy (z),

implies that Z € X; X is weakly compact in D (S);
A4 for any sequence {zx} C X strongly convergent in Y to z € X we have
lim, 00 F' (z5) = F (x).

We will investigate on X the action functional J : D (S) — R defined by
1
J(z) = 3 (Sz,Sz) + G (z) — F(x).

THEOREM 3.1. We assume A1-A4. There exists x € X satisfying equa-
tion (3.1) and such that J (z) = infyex J (u).

Proof. J is bounded from below on X. Thus, by the properties of X, see
A3, we choose a minimizing sequence {z; };’il weakly convergent in D (S)
to a certain x € X. By A1l it is convergent strongly in Y, possibly up to a
subsequence. Since the norm in D (S) is weakly l.s.c. and by A2 and A4 we
see that functional J is weakly lower-semicontinuous on a sequence {z; }Joil

Hence J (z) = infyuex J (u).
Since x € X, there exists (p,q) € D (S) x Y such that

(3.3) Sp+q=F;(z),

holds. Indeed, by definition of X, there exist T € X related to z by (3.2)
and such that ST = p and ¢ = G, (Z). We then have (Z, Sp) — 1 (5%, ST) =
5 (p,p) and (¢,Z) — G(T) = G*(g); here G* denotes the Fenchel-Young
transform of a convex functional G, see [1]. Therefore by a direct calculation

ueX

B 50+ (@ < sup{ w5~ 5 (Sus) + (g.0) - C(w)}

sémm+cww-
By (3.3) we have
(3.5) (Sp+q,z)=F(z)+F* (Sp+4q).
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Thus by the Fenchel-Young inequality we obtain
J(z) = % (Sz, Sz) — F(z) + G (z)
= % (Sz,Sz) — (Sp+ ¢, z) + F* (Sp+¢q) + G(z)

> —%(p,p>+F*(Sp+q)—G*(q)-

Next we see by (3.4) that

7 (@) = inf J (u) zuig)f({% (Su, Su) — F (u) +G’(u)}

< inf {— (p, Su) + % (Su, Su) — (g, u) +G(u)} + F*(Sp+q)

ueX
= —%( ,p) —G* (q) + F*(Sp+4q).
Hence
5 (52,50) = F(2) + G (2) = =3 (p.p) ~ G (@) + F" (Sp + )
and by (3.5)
5 (52,52) + 2 {p,p) — (9, 52) + G* () + G () ~ 3,7) =0.

By the Fenchel-Young inequalities we have actually the equalities

1 1 %
Hence, we get Sz = p, ¢ = G, (z) which inserted into (3.3) show that (3.1)
satisfied. =

Proof of Theorem 1.1. Let L = ﬂdi;;a: + ’ydi:ga: + dz with D(L) =
HZ(0,7) N H*(0,7). We see that D(S) = H}(0,7) N H?(0,7). Thus
we have A1l. A2 is obviously satisfied. Lemma 2.2 shows that A3 holds.
A4 holds by first relation in (2.1). The last assertion follows by (1.2). =
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