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EXISTENCE OF BOUNDED SOLUTIONS FOR 
FOURTH ORDER DIRICHLET PROBLEMS WITH 

CONVEX-CONCAVE NONLINEARITY 

Abstract . We consider the Dirichlet boundary value problem for higher order O.D.E. 
with nonlinearity being the sum of a derivative of a convex and of a concave function in 
case when no growth condition is imposed on the concave part. 

1. Introduction 
We shall consider the higher order ordinary differential equations with 

Dirichlet boundary type conditions and with nonlinearity being the sum of 
derivative of a convex and of a concave function in case when no growth 
condition is imposed on the concave part. In order to demonstrate our 
approach, we shall show that for any a > 0 and for A from a certain interval 
there exists a bounded solution for the problem 

d4 d2 

( 1 1) ( i ) + 'T ( I ) + 6 X ( I ) + A G X ( I ' X ( I ) ) = X F X ( I ' X ( I ) ) ' 

x ( 0 ) = x (TT) = X ( 0 ) = X (TR) = 0 , 

where the constants ¡3, 7, <5 are such that (3 — 7 — > 0, 7 < 0, 0 > 0; 
F, Fx, G, Gx : [0,7R] X R —• R are Caratheodory functions with F and G 
continuously differentiable and convex with respect to the second variable in 
R for a. e. t G [0,7r] and with Gx continuous on [0,7r] x R. 

Concerning the growth of F and the properties of G we assume only that 

F1 for any d > 0 there exists a constant a > 0 such that for a. e. t € [0,7r]; 

(1.2) max I F x ^ z ) ! < a x€[-d,d[ 
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F 2 Fx(t, 0) / 0, for a.e. t G [0,TT], functions t F{t,0), t -» G ( i , 0 ) are 
integrable on [0,7r]. 

G 1 Gx (t, x) x > 0 for xeR. 
From FL, F2 , GL it follows by convexity that integral functionals x —> 

Jo F (t, x (t)) dt, X ^ So G(t,x (t)) dt are well defined on L2 (0, TT), see [7], 
Our assumptions are not very restrictive. Namely, assumption GL pro-

vides that G is a coercive function with respect to the second variable while 
assumption (1.2) reflects the local boundedness of the derivative Fx. For ex-
ample we may take F (t, x) = ex+4x4—0.25x2+/ (t) x and G (t, x) = g (t) xv, 
where g G C (0, n) , / G L°° (0,7t), g(t) > 0 for t G (0,7r) and where v is any 
even number. Function F is convex in x on R and Fx is continuous in x. 
Thus for any d > 0 relation (1.2) is satisfied for a certain a. 

Higher order problems with both Dirichlet and periodic boundary value 
have been investigated by a variety of methods and approaches lately, see 
for example [3], [9], [8] to mention a few works that use either topological or 
other variational approaches. 

We will minimize the Euler action functional 
* ( d4 d2 \ * 
^ + + + G(t,x(t))dt 

7T 
- A \F(t,x(t))dt 

o 
over the set 

X = j x G Hi (0,7r) N H4 (0, TT) : ||¿||i2(0jW) < x (t) G [-d, d] on [0, TT] , 

l | a W ) " V ^ M * J ' 

We note that J is unbounded in HQ (0,7r). Our main result reads 

THEOREM 1.1. Let us assume FL, F2 , GL. Let d > 0 be fixed. Leta>0 
and let 

0 < A < ( / ? - 7 - | ¿ l ) d 
air 

There exists a solution x G X to the Dirichlet Problem (1.1). Moreover 

P ^ x (•) + (•) + áx (•) + (-, x (•)) G L°°(0, tt). 

In order to prove Theorem 1.1 we will investigate the abstract realization 
of (1.1) and provide the abstract variational principle. In case Gx (t, x) = 0, 
the dual variational method was developed in [4], However now our as-
sumptions are weaker and therefore the construction of the dual variational 
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method substantially differs. Still we may obtain with the approach of the 
present paper the results from [4] and the present paper advances the con-
struction from [6]. It is worth to be noted that our method applies to a 
wider class of nonlinear problems than methods from [4], [6]. 

2. Auxiliary Lemmas 

L E M M A 2 . 1 . There exists x G X such that i n f u e x J (u) = J (x)• 

Proof. X is weakly compact in H% (0,7r) and J is bounded from below on 
X. Hence we take a sequence C X such that xn —x in H2 (0,7r) 
and i n f u e x J {u) = limn^oo J (xn). Since {xn}^=i contains a subsequence 
convergent uniformly we get (for this subsequence) 

7T 7T 
j F (t, xnk (t)) dt-*\F(t,x (t)) dt, 

(2.1) 0 0 v / 7T 7T 
5 G (t, xnk (t)) dt^\G(t,x (t)) dt. 
0 0 

Thus J weakly l.s.c. on X. Hence inf u e x J (u) = limn-^oo J (xn) > J (x) > 
iniueX J (u). • 

L E M M A 2.2. Assume F l , F2, G l . Let 0 < A < (/3~7~l<5|)d and let a > 0. 
' ' — air — 

For each x £ X there exists a solution u € X to the Dirichlet problem 

dA d2 

(2 2) ( i ) + 7 di2 ' " ( i ) + S U ( i ) + a G : r U ( i ) ) = X F x ( i ' X ( < ) ) ' 
u (0) = u (tr) = u (0) = u (tr) = 0. 

Proof. By (1.2) for a fixed x G X the function t —> Fx (t,x(t)) belongs to 
L°° (0,7r). Since G is convex it follows that the functional 

Jm = f I -(t))2 * •- i J (£-(1>)dt+\ \"2 (t)
TV 7r 

+G \G(t,u ( t ) ) - \ XFx (t, x (t)) u (t) dt 
o o 

is coercive on Hq (0,7r). Since it is also convex and lower semicontinuous, 
it follows by a direct method of the calculus of variations that J has a 
minimum over Hq (0,7r) which satisfies the Euler-Lagrange equation, i.e. 
(2.2), compare with [5], Multiplying (2.2) by u and taking integrals we 
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obtain what follows by the Poincaré inequality, Schwarz inequality and (1.2) 

(/3-7-I5I) |Hli2(0i7r) + a] Gx(t,u (t)) u (t) < (j^u (i)) dt 

n ( d \ 2 w * 
- 7 W -j u (t) ) dt + S\ u2 ( i) dt + a\Gx (t, u (t)) u (t) 

o ¿ 0 o 
7T 

= 5 AFx (t, x (t)) u ( i) dt < y/nXa ||ù||L2(0)7r). 
o 

Since A < we get 
— an ° 

7T 

(/? - 7 - \S\) ||«||Ì2(0lir) + cr\Gx(t,u (t)) u (t) 
o 

/-(/? — 7 ~ 1̂ 1) d 11 11 
< v ^ I M I L ^ ) • 

Since Jq Gx(t,u(t))u(t) > 0 we see that |H|£2(07r) ^ By Sobolev's 

inequality we get max |u(i)| < < d. By relation 

(0) * dt + s] J (t) dt < { i 3 - ^ 6 ì ) d 2 

and since 7 < 0, ||«||£a(<,,*) < ^ w e S e t 

1, < I ( ~ 7 + 1̂ 1) d2 (P — H ) d2 

- v — f a — + — ^ — ' ' 

3. Existence of solutions for (1.1) 
Lemma 2.1 provides the existence of an x £ X which is a candidate for 

a solution of (1.1). We may not apply the Euler-Lagrange Lemma or the 
mountain pass geometry to show that it indeed is one. In order to show 
that x is a solution of (1.1) we introduce a certain abstract dual variational 
method. Let Y be a separable real Hilbert space with scalar product (•, •). 
We will investigate the existence of solution to equation 

(3.1) Lx + Gx (x) = Fx (x), 

where L : D ( L ) C Y —> Y is a densely defined linear operator, i.e. D ( L ) is a 
dense subspace of Y. L is a self-adjoint and positive definite linear operator. 
In that case there exists a densely defined self-adjoint square root operator 
S :D(S)-'Y. We observe that Sx € D ( S ) for any x € D (L) and S2 = L, 
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see [2]. On D (S) we use a norm ||x||£)(£) = H-SxHy which makes it into a 
complete space. 

We assume that 

A1 any bounded sequence in D (S) contains a subsequence convergent in Y; 
A2 F, G : Y —» R are convex l.s.c. and Gâteaux differentiable functions 

bounded on bounded sets; Fx (0) ^ 0; 
A3 there exists a nonempty set X C D (L) such that for each relation 

(3.2) Lx + Gx (x) = Fx (x), 

implies that x G X\ X is weakly compact in D (5); 
A4 for any sequence { x C X strongly convergent in Y to x G X we have 

lim„_>oo F (xn) = F (x). 

We will investigate on X the action functional J : D (S) —> R defined by 

J{x) = \ (Sx, Sx) +G(x) — F (x). 
£ 

T H E O R E M 3.1. We assume A1-A4. There exists x G X satisfying equa-
tion (3.1) and such that J (x) = infu ex J (u). 

Proof. J is bounded from below on X. Thus, by the properties of X, see 
A3, we choose a minimizing sequence weakly convergent in D (S) 
to a certain x G X. By A1 it is convergent strongly in Y, possibly up to a 
subsequence. Since the norm in D (S) is weakly l.s.c. and by A2 and A4 we 
see that functional J is weakly lower-semicontinuous on a sequence 
Hence J (x) = infu ex J (u). 

Since x G X, there exists (p, q) G D (5) x Y such that 

(3.3) Sp + q = Fx (œ), 

holds. Indeed, by definition of X, there exist x G X related to x by (3.2) 
and such that Sx = p and q = Gx (x). We then have (x, Sp) — \ (Sx, Sx) = 
\(p,p) and (q,x) — G (x) = G* (q); here G* denotes the Fenchel-Young 
transform of a convex functional G, see [1], Therefore by a direct calculation 

(3.4) i (p,p) + G* (q) < sup Sp) - \ (Su, Su) + (q, u) - G (u) j 

<\(P,P) + G* (q). 

By (3.3) we have 

(3.5) (Sp + q,x) =F(x) + F* (Sp + q). 
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Thus by the Fenchel-Young inequality we obtain 

J(x) = \ (Sx, Sx) — F (x) + G (x) 

= i (Sx, Sx) - (Sp + q,x)+ F* (Sp + q) + G (x) 

> -l<p,p) + F*(Sp + q)-G*(q). 

Next we see by (3.4) that 

J (x) = inf J (u) = inf ( J (Su, Su) - F (u) + G («)) 
u&X uEX 2 J 

< inf ( - (p, Su) + ^ {Su, Su) - (q, u) + G (u)) + F* (Sp + q) 
uex z J 

= ~^(P,P)-G* (q) + F* (Sp + q). 

Hence 

i Sx) — F (x) + G (x) = ~ (p,p) - G* (q) + F* {Sp + q) 

and by (3.5) 

^ (Sx, Sx) + 1 (p, p) - (p, Sx) + G* (q) + G (x) - (q, x) = 0 . 

By the Fenchel-Young inequalities we have actually the equalities 

\ (Sx, Sx) + i (p,p) = (p, 5 x ) , G* (g) + G (x) = (q, x). 

Hence, 
we get Sx — Pi q — Gx (x) which inserted into (3.3) show that (3.1) 

satisfied. • 
Proof of Theorem 1.1. Let L = (3-^x + x + Sx with D(L) = 
Hi (0 , tt) n H4 (0 ,7r). We see that D (S) = H^ (0 ,7r ) D H2 (0 , tt). Thus 
we have Al . A2 is obviously satisfied. Lemma 2.2 shows that A3 holds. 
A4 holds by first relation in (2.1). The last assertion follows by (1.2). • 
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