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LOCAL BOUNDS AND EXISTENCE OF SOLUTIONS TO 
NON-CONVEX DIFFERENTIAL INCLUSIONS 

A b s t r a c t . Using a global bifurcation theorem for convex-valued completely con-
tinuous mapping we prove an existence theorem for differential inclusions of the form 
u" G F(t,u,u'), where F admits a convex-valued, weakly completely continuous selector 
and u satisfies some nonlinear boundary conditions. 

1. Introduction 
In this paper we prove an existence theorem for multi-valued boundary 

value problem 

where F : [a,b] x Rfc x Rk cl(Rfc), B : ^( [a .&J .R*) -»• cf(Rfc x Rfc) 
satisfy suitable assumptions, and I : C1([a, 6],Rfc) —> Rfc x Rfc represents 
the Sturm-Lioville boundary conditions. Let us remind that one of the 
most used methods to get existence results for second order differential 
equations (inclusions), with the Sturm-Lioville boundary conditions is the 
topological transversality by A. Granas, for example see [5, 8, 9]. In [12] 
S.A. Marano considered convex-valued differential inclusions with the Pi-
card boundary conditions. His approach was based on a recent existence 
theorem for operator inclusions, see [18]. In this paper we consider multi-
valued boundary value problems with non-convex multi-valued mappings 
F : [a, 6] x Rfc x Rfe —> cl(Rfe). The assumptions refer to the appropriate 
asymptotic behaviour of F(t,x,y) for |x| + |y| close to 0 and to +oo, and 
they are independent of these used in [12]. What is more our boundary 
conditions are not linear. The approach we present is based on a global 
bifurcation theorem for convex-valued completely continuous mappings [4], 
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(1.1) f u"(t) e F{t,u{t),u'{t)) 
\ l(u) € B(u), 

for a.e. t G (a, b) 
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The paper will be divided into three sections. Firstly we will state the 
main existence theorem. In the second section the existence theorem will 
be proved. Finally some applications of the results given in the previous 
section, and selector theorems will be provided. 

2. Main theorem 
Let E be a real Banach space. By cl(E') we will denote the family of all 

non-empty, closed and bounded subsets of E. By cf (E) we will denote the 
family of all non-empty, closed, bounded and convex subsets of E. For two 
sets A,BE c l (E ) we will denote by B) the Hausdorff distance between 
A an B. In particular we put |A| = D(^4, {0}). 

Let Ei, E-2 be two Banach spaces. A multi-valued mapping ip : Ei —> 
cl(i?2) is called weakly upper semicontinuous (w-u.s.c.), provided for all se-
quences {xn} C Ei and {yn} C Ei the conditions {xn} —• x, {yn} —k y and 
yn G ip(xn) for every n G N imply y G <p(x) ({yn} y denotes the weak 
convergence). 

A multi-valued mapping ip is called weakly completely continuous if ip is 
w-u.s.c. and for every bounded subset A of E\ the image <p(A) = UxeA 
is a relatively weakly compact subset of E2. 

In this paper we will need the following notations. For x = (xi,..., xk) G 
Rfc we call x non-negative (and write x > 0), when Xi > 0 for i = 1 , . . . , k. Let 
|| • 110 be the supremum norm in C[a, b] and || • ||fc be the norm in C1([a, 6], Mfc) 
given by ||u||fc = £ t i ( l h l l o + ||u{||0) for u = (ui,...,uk) G Cl{[a, 6], Mfc). 
Let p : M.k —> Rfe be given by p(x = ( | x i | , . . . , |xfc|), and let 
P : C^Qa,6],Rfc) ^ ^ ( ( A ^ ) , ^ ) denotes the Nemytskii operator for the 
mapping p. 

Let us remind that a multi-valued mapping F : [a, b] x Rfc x Rfc —• 
cl(Rfc) is called integrably bounded if for every R > 0 there exists a function 
rriR G L1(a, b) such that for every x, y G Rfc with |x| + |y| < R we have 
\F(t,x,y)\ <mR(t) a.e. on [a, b]. 

In what follows the multi-valued mapping F : [a, b] x Rfc x Rfe —> cl(Rfc) 
satisfies the condition 

(2.1) there exists a weakly completely continuous mapping f : Cl ([a, 6],Rfc) 
-> cf(L1((a, 6),Rfc)) such that, for every v G C1([a, 6],Mfc) 

<p(v) C {u; G ^ ( (0 ,6 ) ,®*) : w(t) G F(t,v(t),v'(t)) a.e. on [a, b]}. 

The mapping I : C^Qa, b],Rk) xRk is given by 

l(ui,...,uk) = (li(ui),...,lk(uk)) 

where 

lj (Uj) = (—Uj (a) sin aj + u'j (a) cos ctj, —Uj (b) sin /3j — u'j (b) cos f3j), 
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with aj,0j G [0, §], OLj + /3j > 0, ( j = 1, ...,*:)> and B : C1([a, 6],] 
cf(Rfe x Mfc) is completely continuous. 

Before we state the existence theorem, we will need some of spectral 
properties of the linear problem 

/ u"(t) + Au{t) = 0 for t G (a, b) 
\ l(u) = 0. 

It is obvious that fx G R is an eigenvalue of (2.2) if and only if there exists 
j G {1,..., k} such that fx is an eigenvalue of the scalar problem 

( 2 / < ( i ) + AUj(t) = 0 for t G (a, b) (u'j(t) + \Uj( 
\ h (u j ) = 0. 

It is well known (cf [3, 10]), that there exists exactly one eigenvalue 
fij G M of (2.2)j , with an eigenvector v^., such that vfJ/] (t) > 0 for t £ (a, b), 
and then ¡i3 > 0. Let us observe that u i l j — (0,..., , ...0) is the eigenvector 
of (2.2) associated with the eigenvalue / i r The set of eigenvalues /Xj of 
(2.2), for which there exists non-negative eigenvector is non-empty and 
contains at most k-elements. Let us denote this set by A = {fii : i = 
1,2,..., N}, where N < k. 

T H E O R E M 1 . Let F : [a,b] x Rfe x Rfc —>• cl(Rfe) be an integrably bounded 
mapping satisfying (2.1), and for every e > 0 there exists R > 0 such that 

(2.3) D(F{t,x,y),{-m2P(x)})<e(\x\ + \y\) fort€[a,b] |ar| + \y\ > R\ 

for every e > 0 there exists 8 > 0 such that 

(2.4) D(F(t,x,y),{-mlP(x)}) < e(\x\ + \y\) for t G [a,b] |x| + < J 

with constants mi, > 0 such that 

min{mi,m2} < minA < maxA < max{mi,m2}. 
In addition assume that a completely continuous mapping B : C1([a, 6],Rfc) 
-» cf(Rfc x Rfc) satisfies 

(2.5) Ve>o35>oVu6Ci([a)6])Mfc)||u||fc < <5 =» \B(u)\ < e||u|U; 

(2.6) Ve>o3ii>oVueC.i([a)6])Rfc)||u||jk > R \B(u)\ < e||u||fe. 

Then there exists at least one non-trivial solution of boundary value problem 
(1 .1 ) . 

3. Proof of Theorem 1 
We need some notations to prove Theorem 1. Let ^ : (0, oo) xC1([a, 6], Rfc) 

—» cf(C1([a, 6],Rfc)) be a completely continuous mapping such that 
0 G for every A G (0,oo). Let / : (0,oo) x Cl([a,b], 
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cf(C1([a,6],M fe)) be given by 

(3.1) f(\,u) = u-V(\,u). 

We call (fi, 0) G (0, oo) x C1([a, 6],Mfc) a bifurcation point of / if for each 
neibourghood U of (¡j,, 0) in (0, oo) x C ' ( [ a , 6], Rfe) there exists a point (A, u) G 
U such that « / 0 and 0 G f(\,u). Let us denote the set of all bifurcation 
points of / by Bf. Let 7Zf C (0, oo) x C1([a, b],Rk) be a closure (in (0, oo) x 
C1([a, 6],Rfc)) of the set of non-trivial solutions of the inclusion 0 G f (X ,u) , 
i.e. 

% = {(A,u) G (0, oo) x C ^ M ] , ® * ) : A 0 G f{X,u) }. 

For each A satisfying (A, 0) ^ Bf there exists ro > 0, such that for \\u\\k = 
r G (0, ro] the relation u # ^(A, u) holds, so the value deg(/(A, •), 5 ( 0 , r), 0) 
is defined (where 5 ( 0 , r) denotes an open ball with the centre at 0 and a 
radius r > 0). 

Assume that for an interval [ai, bi] C (0, oo) there exists S > 0 such that 

( ( [ d - 6, a i ) U (6i, h + 5}) x { 0 } ) n Bf = 0. 

Then we may define the bifurcation index s [ f , ai, 6i] of the mapping /, with 
respect to the interval [ai,6i] as 

s [ / , a i , 6 1 ] = lim deg(/(A, •), B(0 , r), 0) — lim deg(/(A, •), 5 ( 0 , r), 0), 
A—>6j A—»ax 

where r = r(A) > 0 is small enough. 
The main tool used in this section is a global bifurcation theorem for 

convex-valued completely continuous mappings called Theorem A, which 
is a consequence of the generalization of the Rabinowitz global bifurcation 
alternative (see [17]). 

THEOREM A . [4] Let f : (0 ,oo) x C R L ( [ A , c ^ C ^ M ] , ] ] * * ) ) be 
given by (3.1). Assume that there exists an interval [ai,&i] C (0, oo) such 
that Bf C [ai, &i] x { 0 } and s[/, ai , &i] ^ 0. Then there exists a non-compact 
component C C 1Zf satisfying C CiBf 0. 

It is well known that with a boundary value problem 

, . / u"(t) = h{t) for a.e. t G (a, b) 
I Ku) = 0, 

we may associate continuous mappings Pi : C1([a, 6],Rfc) — C 1 ( [ a , b], Mfc), 
i : Rk x Rk C1([a,6],M fc) and T : Ll{{a, b), Rk) ^ ( [a . fe J .R* ) given by 
formulas 

(3.3) Pi(u)(t) = u{a) + u'(a)(t-a) 
(3.4) i(x,y)(t) = x + y(t-a) 
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t s 
(3.5) T(u){t) = \\u(T)dTds. 

a a 

Let us observe that u = Px{u) + i(l{u)) + T(h) iff ti G C^fla, 6], Rfc), 
v! : [a, 6] —> Rfe is absolutely continuous and u is a solution of (3.2). 

We will also need the following results. 

(3.6) (Maximum principle cf [14]) If the mappings u G C2([a, b], Rk) and 
h G C([a, 6],Rfc) satisfy 

( u"(t) = h{t) for t G (a, b) 
\ l(u) = 0 

and h < 0 then u > 0. 
According to the property of Green's function for (3.2) (cf [3, 10]) we 

obtain the following property. 

(3.7) Let us assume that G A and let ujU¿ be an eigenvector of (2.2) 
associated with such that u ^ > 0 , moreover assume that A > max A then 
for r G (0,1] the problem 

u"(t) -f A u ( t ) + Tmu^ (t) = 0 for t G (a, b) 
l(u) = 0 
u> 0 

has no solutions. 

Proof of Theorem 1. Let us denote m = min{mi,m2} and M = 
max{mi,m2}. Let u > be fixed constant. Let q\,q2 : (0,+oo) —> 
[0,1] be continuous mappings forming the partition of unity associated with 
the open cover {(0,2v), (is, +oo)} of the interval (0,+oo). By assumption 
(2.1) there exists a weakly completely continuous multi-valued mapping 
<p : C1([a, 6],Rfe) c i ^ d a , b),Rk)) such that 

(3.8) (p(u) C {w G L1((a, b), Rk) : w(t) G F(t, u(t),u'(t)) a.e. on [a, 6]} 

for each u G C^Qa, b], Mfc). In virtue of (2.1), and the integrably bounded of 
F the composition T o ip : C1([o,6],Rfc) -»• ci(C1([a,b],Rk)) is completely 
continuos (cf [16]). Let / : (0, oo) x C71([a,6], Rk) cf(C1([a, 6], Rfe)) be 
given by the formula 

/ ( A , u) = u - P i ( « ) - i(l(u)) + \qi(\)i(B(u)) - T(\qi(\)ip(u) 

-\q2(\)m2P(u)). 

Since v > 1 then if 0 G / ( l , u) then u is a solution to (1.1). So it is enough 
to show that there exists u G Cl([a, 6],Rfc) such that 0 G /(1, u). To prove 
this we apply Theorem A. 

The proof will be given in three steps. 
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Step 1. We are going to show that Bf C 0) : /z, G A } . Let us take 
a sequence { (An , un)} C (0, +oo) x Cl([a, b], R fc) of non-trivial solutions to 
the inclusion 

un G Pi(un) + i{l{un)) - Xnq\(Xn)i(B(un)) + Xnqi(Xn)T(ip(un)) 

-Xnq2(Xn)m2T(P(un)) 

such that A„ —> Ao G [0, +oo) and un —> 0. Thus we have 

un G P\(un) + i(l(un)) - \nqi(\n)i(B(un))+ 

+A„gi (Xn )T (<p(un ) + miP(un)) - A„(mi<?i(An) + m2q2{Xn))TP(un). 

Let us denote vn = .. u% , therefore we have 

_ r> / \ • ^ , v fB(un)\ ^(Un) + mXP(un) 
Vn & Pl(Vn)+l( l {Vn))-^nqi(^n)l h ¡7" + Antfl(An)T-| || I ' "Till•ft/-' || || 

I ̂ n life/ IPnllfe 
-A n (mig i (A n ) + m2q2(Xn))TP{vn)). 

By (2.4) and (2.5) we obtain ^ ^ ¡ ^ I ^ 0, and |f£fi}| 0. 
Since the sequence { (miq i (\n ) + m2q2(Xn))P(vn)} is bounded there exists a 
subsequence of {vn} convergent to vq G Cl{[a, 6], Mfc), where ||fo||fc = 1- So 
letting n —> +oo we obtain 

vo = Pi(vo) + i(l{v0)) - Xo{(m1q1(X0)+m2q2{Xo))TP{v0)) 

and 
( Wo(i) + Ao(mi9i(Ao) + m2q2(\o))p(vo(t)) = 0 for a.e. t G (a, 6) 
I l(vo) = 0, 

Since Ao(mi9i(Ao) + Tn2q2(Xo))p(vo{t)) > 0, then by (3.6) vo > 0 in conse-
quence (miqi(Xo) + m2q2(Xo))Xo G A. No matter what is the value of Ao we 
have mi^i(Ao) +m2Q2(Ao) G [m,M], so 

max A 
Ao < < v, 

m 
that implies miAo G A completing the proof of Step 1. 

Step 2. We will now show that s[f, a ^ A ] = -1 . First let us observe 
that for A ^ : /Xj G A } there exists r > 0 such that, according to (2.4), 
(2.5) the mapping /(A,-) : 5 (0 , r ) c f ^Qa ,6 ] ,R f c ) ) is homotopic to a 
mapping /(A, •) : 5(0, r) - C\[a, b], R f c)) given by 

f(X,u) = u- Pi(u) - i(l(u)) + X(miqi(X) + m2q2(X))TP(u). 

We can also see, that the mapping /(A, •) : B(0, r) —> C1([a, 6], R fc) for A > v, 

may be joined by homotopy with a mapping/o(A, •) : 5(0, r) —• C1([a, 6], 
given by 

fo(X,u) = u-Pi(u)- i(l(u)) + Xm\TP(u). 
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Let the homotopy h : [0,1] x B(0,r) C^Qa, 6], Mfc) be given by 

h(r, u) = u - Pi(u) - i(l(u)) + A(rmigi(A) + T m 2 g 2 ( A ) + (1 - r )mi)TP(u) . 

Similarly to what we showed in Step 1 of this proof, for any non-trivial zero 
of the homotopy h there must be 

A(rmi9i(A) + Tm2<?2(A) + (1 - r ) m i ) G A, 
that implies A < and contradicts A > v. On the other hand for A < u 
we have /(A,-) = /0(A, •)• Let r > 0 and A0 G (0, s g ^ ) be fixed, then 

the mapping /o(Ao, •) : B(0, r) C1([a, 6],Rfc) may be joined by homo-
topy with the identity mapping. Hence, by the homotopy property of the 
topological degree, we have deg(/o(Ao, •)> B(0, r), 0) = 1. Assume now that 
Ao G ( ^ , + o c ) . Choose any i G {1,. . . , AT} and denote by u^ a non-trivial 
mapping, such that 

= Pl(Ufii) + M K x i ) - ft^i 

and > 0, for t G (a, b). We will show that the mapping /o(Ao, •) may 
be joined by homotopy on B{0, r) with /i : B(0,r) —• C1([a, 6], Mfc), given 
by 

fi(u) = /o(Ao, It) + ViTu .̂ 
A homotopy h : [0,1] x B(0,r) Cl{[a, 6],Rfe) is given by 

h{r, u) = /o(Ao, u) + rfiiTuIH. 

Assume now that for ||it||fc < r and r G (0,1] the equality h(r,u) = 0 
holds, so we have 

J u"(t) + Xomip(u(t)) + TfiiU^t) = 0 f o r a . e . t G ( a , b) 
{ l(u) = 0. 

Then by (3.6) and (3.7) we obtain contradiction, so for r G (0,1] and 
IMIfc < 0 h(r,u) / 0 . I f r = 0 , t h e n h(0, u) = 0 if a n d only if fo(Xo,u) = 0 . 
Since miAo 0 A, the condition /o(Ao,u) = 0 implies u = 0. Hence the 
homotopy h has no non-trivial zeroes, and h( 1, •) has no zeroes at all and 
that is why 

deg(/o(Ao, •)> -8(0, r), 0) = 0. 
Step 3. Let us observe that by Theorem A there exists a non-compact 
component C C K / . Now we are going to show that there exists a sequence 
{(An ,^n)} C C, such that ||itn||fc —> +oo and An —> A0 G : m G A}. 

Since the set C is not compact there exists a sequence {(A„, un)} c C 
such that A„ —> 0 or An —> +oo or ||un||fe +oo. We are going to show that 
there must be ||n„|| & —• +oo. First let us assume that An —> 0 and {||un||fc} 
is bounded. Since Tip, B are completely continuous, and Xn —> 0 there 



72 S. Domachowski 

exists a subsequence of {un} convergent to zero in the space Cl([a,b],] 

In this case, as we showed in Step 1 un —> 0 and An —> Ao implies that 
Ao G : fj,i G A } what contradicts Xn —> 0. Now let us consider the case 
Xn —> +oo. Then for almost all n G N there must be f/2(An) = 1, un ^ 0 and 

un = Pi(un) + il(un) - AnTm2P(un ) . 

By (3.6) un > 0, so we have Are G : yn G A } what contradicts An —• +oo. 

Then we may assume that ||un||fc —> +oo and An —> Ao G (0,+oo). We 
can see that 

_ r> / x . u , v/B{un)\ s^viun) + m2P(un) 
vn e P i K ) + i ( i K ) ) - A „ i / i ( A n ) i -¡j—rp +Ang i (An )T II i i " n - i J . n n 

Un\\kJ \\Un\\k 

- A nm2TP(vn)), 

where vn = • Prom (2.3), (2.6) and integrably bounded of the mapping 
F there exists a subsequence of {vn} convergent to vq G C1([a, 6], Rfc), where 
ll̂ ollfc = 1- So letting n —> +oo we obtain 

v0 = Pi(v0) + il(v0) - \0Tm2P(v0), 

what results in Ao G : /¿j G A } . As a consequence of Step 1 and Step 3 
of this proof, we can see that the connected set C contains pairs (Ai,-u) and 
(A2,u) with Ai < 1 and A2 > 1. By connectedness of C there exists u with 
( l ,u ) G C . For such solution of inclusion 0 G f(X,u) there must be ii / 0, 
because (1,0) Zf. So the proof is completed. • 

4. Examples 
In the first part of this section we will give a class of multi-valued map-

pings which admits a convex-valued weakly comletely continuous selectors. 
The problem concerning the existence of a continuous selector and a weakly 
completely continuous selector have been studied by many authors for ex-
ample see: Antosiewicz and Cellina[l], Lojasiewicz [11], Plis [13], Pruszko 
[15, 16], Fryszkowski [7], Bressan and Colombo [2], Frigon and Granas [6]. 

In what follows we will consider integrably bounded mappings F : [a, 6] x 
—• cl(Mn) satisfying some of the following properties: 

1 v f F : [a, b] x Rk cl(Rn ) is £ <g> B measurable 
[ ' ' \ F(t, •) : Mfe -»• cl(Rn) is l.s.c. for a.e. t G [a, b]. 

(Let us recall that A C [a, 6] x is C <8> B measurable if A belongs to 
the cr-algebra generated by all sets of the form N x B where N is Lebesgue 
measurable in [a, b] and B is Borel measurable in 

«\ i F(-, x) : [a, b] —> cl(Rn) is measurable for all x G Rk 

^ ' ' \ F(t, •) : Rfc cl(Mn) is continuous for a.e. t G [a, 6], 
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(4.3) F : [a, b]xRk ^ cl(R") is l.s.c. 

.s j F(-, x) : [a, b] -> cf(Rn) is measurable for all x G Rfc 

{ ' } \ F(t, •) : Rfe -» cf(Rn) is u.s.c. for a.e. t G [a, 6]. 

Let us recall that with the mapping F : [a, 6] x Rfc —> cl(Rn) we can associate 
the Niemytskii operator T : C([a,b},Rk) -» c ^ L ^ a , 6), Rn)) given by 

^•(u) = {«, e L1((o,6),Rn) w(t) G F(t,u(t)) for a.e. t € (a, 6)}. 

Now we state without proof the following Proposition, and next applying 
Theorems 1 we would obtain the existence theorems for boundary value 
problems. 
P R O P O S I T I O N 1 . (cf. [1, 2, 6 , 7, 11, 13, 15, 16].) If F : [A, 6] xR* -» cl(Rn) 
is an integrably bounded multi-valued mapping satisfying one of the conditions 
( 4 . 1 ) , ( 4 . 2 ) , (4 .3 ) , or ( 4 .4 ) then the Nemytskii operator T : C([a,6],Rfc) -> 
cl(L1((a, b), R")), associated with F, admits a convex-valued weakly com-
pletely continuous selector 

From Proposition 1 and Theorem 1 we obtain the followin theorem. 
T H E O R E M 2 . Let B : Cl([a, 6],Rfe) —> cf(Rfe x Rfe) be a completely continu-
ous mapping satisfying (2.5) and (2.6) and let F : [a, 6] xRfc xRfc —> cl(Rfc) be 
an integrably bounded multi-valued mapping such that one of the hypotheses 
(4.1), (4.2), (4.3), or (4.4) holds. I f , moreover F satisfies (2.3) and (2.4) 
with constants mi,rri2 > 0 such that min{mi,m2} < minA < max A < 
max{mi,m2}, then there exists at least one non-trivial solution of boundary 
value problem ( 1 . 1 ) . 

In [12] the author proved that if F : [0,1] x Rfc x Rfc cf(Rfe) is the 
Caratheodory multi- valued mapping and satisfies suitable assumptions then 
the problem 
, . f u"(t) G F(t, u(t),u'(t)) for a.e. t G (o, b) 

\ u ( 0 ) = u(l) = 0, 
has at least one solution (see Theorem 2.1 [12]). 
Below we will give an exampel of the Picard problem, which does not satisfy 
all assumptions of Theorem 2.1 in [12], but all assumptions of Theorem 1 
are satisfied. 
Example. Let a mapping F : [0,1] x R x R —> cl(R) be given by the formula 

„ , . , / —9|x| if |z| < 1 

Then there exists at least one non-trivial solution of problem (4.5). 
Let us observe that the mapping F dose not satisfy all assumptions of 

Theorem 2.1 in [12], but assumptions of Theorem 1 are satisfied. 
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