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Stanistaw Domachowski

LOCAL BOUNDS AND EXISTENCE OF SOLUTIONS TO
NON-CONVEX DIFFERENTIAL INCLUSIONS

Abstract. Using a global bifurcation theorem for convex-valued completely con-
tinuous mapping we prove an existence theorem for differential inclusions of the form
u” € F(t,u,vu'), where F' admits a convex-valued, weakly completely continuous selector
and u satisfies some nonlinear boundary conditions.

1. Introduction
In this paper we prove an existence theorem for multi-valued boundary
value problem

(1.1) {u"(t) € F(t,u(t),u'(t)) for ae. t€ (a,b)

l(u) € B(w),

where F : [a,b] x RF x RF — cl(R¥), B : C'([a,b},RF) — cf(RF x R¥)
satisfy suitable assumptions, and I : C1([a,b],RF) — R* x R* represents
the Sturm-Lioville boundary conditions. Let us remind that one of the
most used methods to get existence results for second order differential
equations (inclusions), with the Sturm-Lioville boundary conditions is the
topological transversality by A. Granas, for example see [5, 8, 9]. In [12]
S.A. Marano considered convex-valued differential inclusions with the Pi-
card boundary conditions. His approach was based on a recent existence
theorem for operator inclusions, see [18]. In this paper we consider multi-
valued boundary value problems with non-convex multi-valued mappings
F : [a,b] x R* x R¥ — cI(R¥). The assumptions refer to the appropriate
asymptotic behaviour of F(t,z,y) for |z| + |y| close to 0 and to +oo, and
they are independent of these used in [12]. What is more our boundary
conditions are not linear. The approach we present is based on a global
bifurcation theorem for convex-valued completely continuous mappings [4].
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The paper will be divided into three sections. Firstly we will state the
main existence theorem. In the second section the existence theorem will
be proved. Finally some applications of the results given in the previous
section, and selector theorems will be provided.

2. Main theorem

Let E be a real Banach space. By cl(E) we will denote the family of all
non-empty, closed and bounded subsets of E. By cf(F) we will denote the
family of all non-empty, closed, bounded and convex subsets of E. For two
sets A, B € cl(E) we will denote by D(A, B) the Hausdorff distance between
A an B. In particular we put |A| = D(A4, {0}).

Let Ey, Eo be two Banach spaces. A multi-valued mapping ¢ : F1 —
cl(Ey) is called weakly upper semicontinuous (w-u.s.c.), provided for all se-
quences {z,} C F; and {y,} C E; the conditions {z,} — z, {yn} — v and
Yn € p(zy) for every n € N imply y € ¢(z) ({yn} — vy denotes the weak
convergence).

A multi-valued mapping ¢ is called weakly completely continuous if ¢ is
w-u.s.c. and for every bounded subset A of E; the image p(A) = {J,c4 ¥(x)
is a relatively weakly compact subset of Fs.

In this paper we will need the following notations. For z = (z1,...,z%) €
R* we call z non-negative (and write 2 > 0), when z; > Ofori=1,..., k. Let
|- llo be the supremum norm in Cla, b] and || -||x, be the norm in C1({a, b], R¥)
given by [lulle = 5, (Juillo + [4}]o) for w — (u, .., wg) € C([a, b], R¥).
Let p : R* — RF be given by p(z1,...,2x) = (|z1],...,|zx|), and let
P : C'([a,b],R¥) — L!((a,b),R¥) denotes the Nemytskii operator for the
mapping p.

Let us remind that a multi-valued mapping F : [a,b] x R x RF —
cl(R¥) is called integrably bounded if for every R > 0 there exists a function
mp € L'(a,b) such that for every z,y € R¥ with |z| + |y| < R we have
|F(t,z,y)| < mg(t) a.e. on [a,b].

In what follows the multi-valued mapping F : [a,b] x R*¥ x R¥ — cl(RF)
satisfies the condition

(2.1) there exists a weakly completely continuous mdpping ¢ : C'([a, ], R¥)
— cf(L*((a, b), R¥)) such that, for every v € C1([a, b], R¥)

o) C {w e L'((a,b),R*) :  w(t) € F(t,v(t),v'(t)) a.e. on [a,b]}.
The mapping [ : C([a, b], R¥) — R* x R* is given by
Wut, oy ug) = (l(ua), - le(uk))
where

li(uj) = (—uj(a)sin oy + uj(a) cos o, —u;(b) sin B; — uj(b) cos B;),
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with a;,8; € [0,5], o +8; >0, (j = 1,..,k), and B : C'([a,b], R*) —
cf(RF x R¥) is completely continuous.

Before we state the existence theorem, we will need some of spectral
properties of the linear problem

u'(t)+ Au(t) =0 fort € (a,b)
l(u)=0.

It is obvious that p € R is an eigenvalue of (2.2) if and only if there exists
j € {1,...,k} such that p is an eigenvalue of the scalar problem

(2.2); {ugl(t) + Au;(t) =0 fort € (a,b)

(2.2)

1(uz) = 0.

It is well known (cf [3, 10]), that there exists exactly one eigenvalue
p; € R of (2.2); , with an eigenvector vy, such that v,,(t) > 0 for t € (a,d),
and then p; > 0. Let us observe that u,; = (0, ...,v,;, ...0) is the eigenvector
of (2.2) associated with the eigenvalue p;. The set of eigenvalues p; of
(2.2), for which there exists non-negative eigenvector u,;, is non-empty and

contains at most k-elements. Let us denote this set by A = {u; : i =
1,2,...,N}, where N < k.

THEOREM 1. Let F : [a,b] x R* x R* — cl(R*) be an integrably bounded
mapping satisfying (2.1), and for every € > 0 there exists R > 0 such that

(2.3) D(F(t,z,y),{-map(z)}) < e(lz| + [yl) for t € [a,8] |z|+|y| > R;
for every e > 0 there exists 6 > 0 such that
(24) D(F(¢,z,y), {—mup(z)}) < e(lz] + [yl) for t € [a,b] [z +|y| <6
with constants my, mg > 0 such that

min{mj, my} < min A < max A < max{my, ma}.
In addition assume that a completely continuous mapping B : C'([a, b], R¥)
— cf(R* x R¥) satisfies
(2.5) Ve>03550Vuect (a8 1ullk < 6 = [B(u)] < &l|ullk;

(2.6) Ve>0IR>0Yuec (ja,,8%) 1ulle = R = |B(u)| < ellullk-

Then there exists at least one non-trivial solution of boundary value problem
(1.1).

3. Proof of Theorem 1

We need some notations to prove Theorem 1. Let ¥: (0, 00) xCY([a, b], R¥)
—  cf(C'([a,b],R*)) be a completely continuous mapping such that
0 € ¥(\0) for every A € (0,00). Let f : (0,00) x C([a,b],RF) —
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cf(C*([a, b], R¥)) be given by

(3.1) fZu)=u—T(\u).

We call (11,0) € (0,00) x C'([a,b],R*) a bifurcation point of f if for each
neibourghood U of (i, 0) in (0, 00) x C1([a, b], R¥) there exists a point (\,u) €
U such that u # 0 and 0 € f(\,u). Let us denote the set of all bifurcation
points of f by By. Let Ry C (0,00) x C1([a, b], R¥) be a closure (in (0, 00) X
C([a, b}, R¥)) of the set of non-trivial solutions of the inclusion 0 € f(X,u),
ie.

Ry = {(M\u) € (0,00) x C([a,b],RF) : u#0 A 0€ f(\u) }.
For each A satisfying (A,0) ¢ By there exists ro > 0, such that for |u|x =
r € (0,79] the relation u ¢ ¥(A, u) holds, so the value deg(f(},-), B(0,7),0)
is defined (where B(0,7) denotes an open ball with the centre at 0 and a
radius r > 0).
Assume that for an interval [a1,b;] C (0,00) there exists § > 0 such that

((far = 6,a1) U by, br +]) x {0}) N By = 0.

Then we may define the bifurcation index s{f, a1, b1] of the mapping f, with
respect to the interval [a;, b1] as

S[f, ai, bl] = hIIl+ deg(f(/\a ')a B(Oa 7‘), O) — lim deg(f(’\’ ')a B(O’ T)’ 0)7

A—by A—ay
where r = r(A) > 0 is small enough.

The main tool used in this section is a global bifurcation theorem for

convex-valued completely continuous mappings called Theorem A, which
is a consequence of the generalization of the Rabinowitz global bifurcation
alternative (see [17]).
THEOREM A. [4] Let f : (0,00) x C([a,b],R*) — cf(C'([a,b],RF)) be
giwen by (3.1). Assume that there exists an interval [a1,b1] C (0,00) such
that By C [a1,b1] x {0} and s[f,a1,b1] # 0. Then there exists a non-compact
component C C Ry satisfying C N By # 0.

It is well known that with a boundary value problem

u”(t) = h(t) for a.e. t € (a,b)

I(u) =0,
we may associate continuous mappings Py : C([a,b],R¥) — C([a,b], RF),
i: Rk x RF — C'([a,b],RF) and T : L!((a,b),R¥) — C*([a,b], R¥) given by
formulas
(3.3) Pi(u)(t) = u(a) + u'(a)(t — a)
(3.4) iz, y)(t) =z +y(t—a)

(3.2)
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u(r)drds.

2ty 0

(3.5) =
il

Let us observe that u = Pj(u) + i(l(u)) + T(h) iff u € C([a,b],R¥),
v : [a,b] — R* is absolutely continuous and u is a solution of (3.2).
We will also need the following results.

(3.6) (Maximum principle cf [14]) If the mappings u € C?([a,b], R¥) and
h € C([a, b],R¥) satisfy

{u”(t) =h(t) for tc (a,b)

and h <0 then v > 0.
According to the property of Green'’s function for (3.2) (cf {3, 10}) we
obtain the following property.

(3.7) Let us assume that yu; € A and let u,, be an eigenvector of (2.2)
associated with p; such that u,, > 0, moreover assume that A > max A then
for 7 € (0,1] the problem
u”(t) + Mu(t) + Tpiug (t) =0 for t € (a,b)
{ l(uy=0
u>0
has no solutions.

Proof of Theorem 1. Let us denote m = min{m;,me} and M =
max{mi, mo}. Let v > m—inx—A be fixed constant. Let g1,¢2 : (0,+00) —
[0, 1] be continuous mappings forming the partition of unity associated with
the open cover {(0,2v), (v,+00)} of the interval (0,+o0). By assumption
(2.1) there exists a weakly completely continuous multi-valued mapping
¢ : Cl([a, b],R¥) — cf(L'((a,b),R¥)) such that

(3.8)  (u) C{we LY((a,b),R¥):  w(t) € F(t,u(t),u'(t)) a.e. on [a,b]}
for each u € C([a, b], R¥). In virtue of (2.1), and the integrably bounded of
F the composition T o ¢ : C'([a,b],R¥) — cf(C'([a,b],R¥)) is completely
continuos (cf [16]). Let f : (0,00) x C'([a,b],R¥) — cf(C1([a,b], R¥)) be
given by the formula

Fu) =u — Pi(u) = i(l(w) + Aqr (N)i(B(w)) — T(Aq1(A)p(u)
— Aq2(A)maP(u)).

Since v > 1 then if 0 € f(1,u) then u is a solution to (1.1). So it is enough
to show that there exists u € C'([a, b], R¥) such that 0 € f(1,u). To prove

this we apply Theorem A.
The proof will be given in three steps.
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Step 1. We are going to show that By C {(£%,0) : ; € A}. Let us take
a sequence {(An,un)} C (0, +00) x C([a, b],R¥) of non-trivial solutions to
the inclusion
un € Pi(un) 4 i(l(un)) — Angi(An)i(B(un)) + Ang1(An) T (p(un))
—Ang2(An)meT (P(un))
such that A, — Ao € [0,4+00) and u, — 0. Thus we have
Un € Pi(un) +i(l(un)) — Ang1(An)i(B(un))+
+Arq1(An)T(p(un) + m1P(un)) — An(mig1(An) + maga(An))TP(un).

Let us denote v,, = ”Tﬂ”—k, therefore we have
n

v € Po(un) +i(l(vn)) = Ant(An)i (f(nn))m L ()T

—An(m191(An) + mage(An))T P(vn)).

. (un P(un B(un
By (2.4) and (2.5) we obtain |&% )Ir;"llk (un)| _, 0, and |Tﬁ%| — 0.
Since the sequence {(m1q1(An) +m2g2(An))P(vn)} is bounded there exists a
subsequence of {v,} convergent to vg € C*(a,b], R¥), where ||vo||x = 1. So

letting n — +o00 we obtain
vo = P1(vo) +i(l(v0)) — Ao((m1g1(Aa) + magz2(Xe))TP(vo))

(un) + M1 P(un)
llunllk

and
{”(')/(t) + Ao(m1g1(Xo) + m2g2(Xo))p(vo(t)) =0 for ae. t € (a,b)
l(vo) =0,

Since Ag(miqi1(Ao) + maga(Xo))p(ve(t)) > 0, then by (3.6) vo > 0 in conse-
quence (miq1(Ao) + m2g2(Ao)) Ao € A. No matter what is the value of A9 we
have miq1(Ao) + mag2(Xo) € [m, M|, so

max A
)‘O < <v,
m

that implies miAg € A completing the proof of Step 1.
Step 2. We will now show that s[f, RioA maxAy _ _ 1 PBirgt let us observe

that for A & {£- : u; € A} there existgur > 7(Tlusuch that, according to (2.4),
(2.5) the mapping f(},-) : B(0,7) — cf(C([a,b],R¥)) is homotopic to a
mapping f(},-) : B(0,r) — C*([a,b], R¥)) given by

fOuu) = u— Pr(u) —i(l(w) + AM(miqr(A) + maga(N))TP(u).
We can also see, that the mapping f(,-) : B(0,r) — C([a, b], R¥) for A > v,
may be joined by homotopy with a mapping fo(}, ) : B(0,7) — C([a, b], R¥)
given by

fohu) =u— Pi(u) —i(l(u)) + AmiTP(u).
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Let the homotopy A : [0,1] x B(0,7) — C*([a, b], R¥) be given by
h(r,u) = u— Pi(u) —i(l(u)) + A(rmigi(A) + 7maga(A) + (1 — 7)ma )T P(u).

Similarly to what we showed in Step 1 of this proof, for any non-trivial zero
of the homotopy A there must be

A(rmaqi(A) + Tmaga(A) + (1 — 7)ma) € A,
that implies A < 22XA 514 contradicts A > v. On the other hand for A < v

m
we have f()\,©) = fo(A,"). Let 7 > 0 and )\ € (O,%“l’\) be fixed, then
the mapping fo(Xo,:) : B(0,7) — C'([a,b],R¥) may be joined by homo-
topy with the identity mapping. Hence, by the homotopy property of the
topological degree, we have deg(fo(Xo, ), B(0,7),0) = 1. Assume now that
Ao € (%’ +00). Choose any ¢ € {1, ..., N} and denote by u,,, a non-trivial
mapping, such that .

up, = Pr(uy,) +il(uy,) — piTuy,
and wu,,(t) > 0, for t € (a,b). We will show that the mapping fo(Ao, ) may
be joined by homotopy on B(0,r) with f; : B(0,7) — C([a, b], R¥), given
by

fi(u) = fo(ro, u) + piTuy,.
A homotopy h : [0,1] x B(0,r) — C([a, ], R¥) is given by
h(T’ u) = fO(/\O, U) + TuiTuM.

Assume now that for ||ullx < 7 and 7 € (0, 1] the equality h(r,u) = 0
holds, so we have

{ u”(t) + domap(u(t)) + Tuiu,, (t) =0 for ae. t € (a,b)

l(u)y=0.

Then by (3.6) and (3.7) we obtain contradiction, so for 7 € (0,1] and
llulle <0 h(r,u) # 0. If 7 =0, then h(0,u) = 0 if and only if fo(Xo,u) = 0.
Since miAo ¢ A, the condition fo(Ag,u) = 0 implies v = 0. Hence the
homotopy h has no non-trivial zeroes, and h(1,-) has no zeroes at all and
that is why

deg(fo(Xo,"), B(0,7),0) = 0.

Step 3. Let us observe that by Theorem A there exists a non-compact
component C C Ry. Now we are going to show that there exists a sequence
{(Ansun)} C C, such that |[us|lx — +00 and An — Ao € {£% : p; € A}
Since the set C is not compact there exists a sequence {(An,un)} C C
such that A, — 0 or A, — 400 or ||ug||x — +00. We are going to show that
there must be ||uy|lx — +o00. First let us assume that A, — 0 and {||un||x}
is bounded. Since Ty, B are completely continuous, and A, — 0 there
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exists a subsequence of {u,} convergent to zero in the space C1([a, b, R¥).

In this case, as we showed in Step 1 u, — 0 and A\, — Ag implies that

Ao € {£: : i € A} what contradicts A, — 0. Now let us consider the case

An — +00. Then for almost all n € N there must be g2(\,,) = 1, u, # 0 and
Un = Pi(un) + il(up) — AnTmaeP(uy).

By (3.6) us > 0, so we have A, € {£5 : u; € A} what contradicts A, — +o0.

Then we may assume that ||uy||x — +00 and A, — Ag € (0, +00). We
can see that

Up € Pl (’Un)+i(l(’0n)) —)\nql()\n)i (fé:ﬁi) +)\nq1(/\n)T‘P(Un) ”":L:ﬁip(un) —
~AnmaTP(vp)),

where v, = ”T“:”—k From (2.3), (2.6) and integrably bounded of the mapping

F there exists a subsequence of {v,} convergent to vy € C'([a, b], R¥), where
lvollx = 1. So letting n — 400 we obtain

vo = P1(vo) + il(vo) — AT meP(vp),

what results in \g € {4‘7;—’2 : 4y € A}. As a consequence of Step 1 and Step 3
of this proof, we can see that the connected set C contains pairs (A1, u) and
(A2, u) with A\; < 1 and A2 > 1. By connectedness of C there exists u with
(1,u) € C . For such solution of inclusion 0 € f(\,u) there must be u # 0,
because (1,0) € Ry. So the proof is completed. =

4. Examples

In the first part of this section we will give a class of multi-valued map-
pings which admits a convex-valued weakly comletely continuous selectors.
The problem concerning the existence of a continuous selector and a weakly
completely continuous selector have been studied by many authors for ex-
ample see: Antosiewicz and Cellina[l|, Lojasiewicz [11], Pli§ [13], Pruszko
[15, 16], Fryszkowski [7], Bressan and Colombo [2], Frigon and Granas [6].

In what follows we will consider integrably bounded mappings F : [a, b] X
RF — cl(R™) satisfying some of the following properties:

F : [a,b] x R¥ — cl(R™) is £ ® B measurable
F(t,-) : RF — cl(R™) is Ls.c. for a.e. t € [a,].
(Let us recall that A C [a,b] x R¥ is £ ® B measurable if A belongs to
the o—algebra generated by all sets of the form N x B where N is Lebesgue
measurable in [a,b] and B is Borel measurable in R¥).
F(.,z): [a,b] — cl(R™) is measurable for all z € R¥
F(t,-) : R - cl(R") is continuous for a.e. t € [a, b].

(4.1)

(4.2)
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(4.3) F:[a,b] x RF = cl(R™) is Ls.c.

(4.4) { F(-,z): [a,b] — cf(R™) is measurable for all z € R¥

F(t,) : R¥ = cf(R") is u.s.c. for a.e. t € [a,b].

Let us recall that with the mapping F : [a, b] x R¥ — cl(R") we can associate
the Niemytskii operator F : C([a, b], R¥) — cl(L!((a, b),R™)) given by

F) = {w e L*((a,b),R™) w(t) € F(t,u(t)) for a.e. t € (a,b)}.

Now we state without proof the following Proposition, and next applying
Theorems 1 we would obtain the existence theorems for boundary value
problems.

PRrRoPoOSITION 1. (cf. [1,2, 6,7, 11, 13, 15, 16].) If F : [a,b] x RF — cl(R")
s an integrably bounded multi-valued mapping satisfying one of the conditions
(4.1), (4.2), (4.3), or (4.4) then the Nemytskii operator F : C([a,b],RF) —
cl(LY((a,b),R™)), associated with F, admits a convez-valued weakly com-
pletely continuous selector

From Proposition 1 and Theorem 1 we obtain the followin theorem.

THEOREM 2. Let B : C*([a,b],R¥) — cf(R* x R¥) be a completely continu-
ous mapping satisfying (2.5) and (2.6) and let F : [a, b] x R¥ x R¥ — cl(RF) be
an integrably bounded multi-valued mapping such that one of the hypotheses
(4.1), (4.2), (4.3), or (4.4) holds. If, moreover F satisfies (2.3) and (2.4)
with constants mi,mg > 0 such that min{m;,me} < minA < maxA <
max{mi, ma}, then there ezists at least one non-trivial solution of boundary
value problem (1.1).

In [12] the author proved that if F : [0,1] x R* x R*¥ — cf(R¥) is the
Caratheodory multi- valued mapping and satisfies suitable assumptions then
the problem

(4.5) w(0) = u(1) = 0,
has at least one solution (see Theorem 2.1 [12]).
Below we will give an exampel of the Picard problem, which does not satisfy
all assumptions of Theorem 2.1 in [12], but all assumptions of Theorem 1
are satisfied.
Example. Let a mapping F : [0,1] xR xR — cl(R) be given by the formula
| 9|z if jz| <1

Ft,z,y) = {—18|:c| +9 if |z > L.

Then there exists at least one non-trivial solution of problem (4.5).

Let us observe that the mapping F' dose not satisfy all assumptions of
Theorem 2.1 in [12], but assumptions of Theorem 1 are satisfied.

{u”(t) € F(t,u(t),u'(t)) for a.e. t€ (a,b)
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