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EXISTENCE OF POSITIVE SOLUTIONS TO BVPS OF
HIGHER ORDER DELAY DIFFERENTIAL EQUATIONS

Abstract. The paper is concerned with the existence of positive solutions for the
nonlinear eigenvalue problem with singularity and the superlinear semipositone problem
of higher order delay differential equations. The main results are obtained by using Guo-
Krasnoselskii’s fixed point theorem in cones. These results extend some of the existing
literature.

1. Introduction

Boundary-value problems (BVPs) for higher order delay differential equa-
tions arise in a variety of areas of applied mathematics, physics and varia-
tional problems of control theory. The theory of BVPs of higher order delay
differential equations provides a general framework for mathematical mod-
elling of many real world phenomena. In recent years, remarked progress has
been made in the theory of BVPs of second-order delay differential equations
by the development of the theory of functional differential equations, see, for
example [2-8, 19] and the references therein. However, there is only a small
amount of work dedicated to the theory of BVPs for higher order delay
differential equations.

In this paper, we considered the existence of positive solutions for the
following boundary-value problem of the higher order delay differential equa-
tion(BVPs)

(1.1) u™M@E) + Mgt ult—7)) =0, 0<t<l, 7>0,

with the boundary conditions
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ut) =u'(t) = =u () =ulD(t) =0, —T<t<0,
(1.2) {u<"—2>(1) o,

where A is a positive real parameter.

Throughout the paper we assume that n > 3 is an integer.

For the case 7 = 0, the problem (1.1) and (1.2) is related to multi-point
BVPs of ordinary differential equations and was studied by Graef and Yang
in [18]. Particularly, in the case 7 = 0 and n = 2, the existence of positive
solutions for BVP (1.1) and (1.2) with singularity has been widely studied
by many authors, such as Ha and Lee [9] by using the method of upper and
lower solutions, and Fink et al [10] by using the shooting method.

Here, we should also mention the recent work by Bai and Xu [19]. In [19],
the authors considered the case n = 2 for BVP (1.1) and (1.2) and obtained
the existence of positive solutions to BVP (1.1) and (1.2).

In present paper, we consider the more general BVP for the higher
order(n > 3) differential equations (1.1) and (1.2).
Define G5 : [0,1] x [0,1] — [0, 00) by

1-t 0<s<t<l1
(1.3) Galtys) = L0 0sssish

t(l—s), 0<t<s<1.
Note that Ga(t,s) > 0 for ¢,s € (0,1). For n > 3, we define

t

(1.4) Gr(t,s) = S Gn-1(v, s)dv.
0

Then G (¢, s) is the Green’s function for the problem (1.1) and (1.2). More-
over, solving the BVP (1.1)-(1.2) is equivalent to finding a solution to the

integral equation

0, -7 <t<0,
(1.5) u(t) = 1

Ao Gn(t,s)g(s,u(s —1))ds, 0<t<1.

In section 2 of the paper, we shall present some sufficient conditions with
A belonging to an open interval of eigenvalues to ensure the existence of pos-
itive solutions to BVP (1.1) and (1.2) by the well-known Guo-Krasnoselskii
fixed point theorem in cones [11]. We assume that

(4) 0<7<1;

(A2) g(t,u) = a(t)f(t,u), a: (0,1) — [0,00) is continuous and f : {0,1] x
[0, 00) is continuous;

(A3) §s(1— s)a(s)ds < oo, 30 € [5, 1) such that {7+ a(s)ds > 0.
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Here f is neither superlinear or sublinear. Especially, we allow that a(t) has
some suitable singularity at the ends of (0,1).

In section 3 of the paper, we also consider the existence of positive solu-
tions with g regular.

We need the following assumptions
(B1) g:[0,1] x [0,00) — R is continuous;

(B2) there exists a positive constant M > 0 such that g(t,u) > —M for
every t € [0,1] and u > 0;

(B3) there exist 0 < a@ < 8 < 1 such that 8+ 7 < 1;

glt,u
(73

(Bs) limy o0 = oo uniformly for ¢ € [a, 8] C (0,1).

The condition (B;) shows that g(¢,0) need not be non-negative (semiposit-
one).

The existence of positive solutions for semipositone problems has been
extensively studied by Shivaji and co-authors. We refer readers to [12-17]
and the references therein.

The main tool of this paper is the following Guo-Kranoselskii fixed point
theorem in cones [11].

THEOREM K. Let E be a Banach space and K C E be a cone. Assume
Q1,9 are open disks of E with Q1 C Qg, and let T : K((22\ ) — K be
a completely continuous operator such that

(1) |Tu| < ||u| if w e KN O and ||Tu|| > ||lu|| if u € K[ 0Q2; or
(i) [Tl > |lull if w € KN O and ||Tul|| < ||lu|| if u € K ().

Then T has a fired point in K (Q2\Q1).

2. Eigenvalue problem with singularity

In this section, we will establish some existence results for the nonlinear
eigenvalue problem (1.1) and (1.2) with singularity. Firstly, we give the
following definition of positive solution of BVP (1.1) and (1.2).

DEFINITION 2.1. u(t) is called a solution of BVP (1.1) and (1.2) if it
satisfies the following

(1) e C[-7,1]NC™(0,1);
(2) u(t) >0 for all t € (0,1) and satisfies conditions (1.2);
(3) u™(t) = —Ag(t,u(t — 7)) for t € (0,1).
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Let
(2.1) E= {u € C[-1,1] :

ut) = (t) = =u® ) =uDt) =0, —7<t<0, }
u(®=2)(1) = 0,
with the norm || - || given by |lu|| = sup{] u(t) |: —7 <t < 1}, then (E,]| ||
is a Banach space. It is obvious that | - [[o,y = || - || for u € E : u > 0. Here
| - lljo,1) stands for the sup-norm of C[0,1]. One can find that
(2.2) Gr(t,s) < Ga(s,s) = s(1 —s), (¢,8) €[0,1] x [0,1]
and
(2.3) Gn(t, S) _ Gn(t7 S) 971.—1 tc [9, 1— 9].

Ga(s,s) s(l—3s) = ’
Define a cone K C F by

2. = : > i > g1 )
(2.4) K={uckE U(t)_O,VtE[O,l],osrtnSl{l_HU(t)_f) [l }

Let
f(s,u)

min fo, := liminf min ,
u—00 s€[0,1] U

max fp := limsup max
u—0t+ $€[0,1] U

min fp := liminf min ,
u—0+ s€(0,1] U

max f := limsup max
U—00 86[0,1] u

THEOREM 2.1. Let (A;) — (A3) hold and min fo, > 0, max fo < co. Then
there exists at least one positive solution to BVP (1.1) and (1.2) for

(2.5)

1 1
A€ n—1 1-20+T1 ! 1 )
6"—!min fo, - sup §; Gn(t, s)a(s)ds max fo - §_ Ga(s, s)a(s)ds
tel0,1]

Proof. Define the integral operator T" by

0, -7 <t<0,
= {Asé Gu(t, s)a(s)f(s,u(s —7))ds, 0<i<1

for each u € K. It can be verified that for each u € K, Tu € K by (2.3) and
T is a completely continous operator by the Arzela-Ascoli Theorem. Now
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we prove that T" has a fixed point in K by using Theorem K. By (2.5), there
exists a € > 0 such that

1
2.6 <A
(26) 6»—1(min fo, — €) - sup Si_QHT Gn(t, s)a(s)ds
t€[0,1]

< 1 .
T (max fo +€) - L Ga(s, s)a(s)ds

Let ¢ be fixed. By max fy < oo, there exists an H; > 0 such that for
u:0<u< Hy,

(2.7) f(s,u) < (max fo + €)u.

Let @ ={u € E : |lu|| < H1}, then for u € K[)9Q1, we have by (2.6) and
(2.7)

[ Tull < )\ng(s, s)a(s)f(s,u(s — 7))ds
< AS)GQ(S, s)a(s)(max fo + €)u(s — 7)ds
— A(max fo + €) i Ga(s, s)a(s)u(s — 7)ds
— A(max fo + €) T Ga(s+ 7,5+ 7)a(s + 7)u(s)ds

1
< A(max fo + ¢€)

T

Ga(s+ 1,8+ 71)a(s + 7)ds||u|

Ot | O e |

1
= A(max fo + €) | Ga(s, s)a(s)ds|ul| < [|ull.

T

Next, by min fo, > 0, there exists an H, > 0 such that f(s,u)
(min foo — €)u for u > Hy. Take Hy = max{H2,2H;} and set Qo
{u € E : ||u|| < Hz}. Then for u € K082, we have by (2.4) and (2.6)

v

1
ITull = X sup_{Gnl(t, s)a(s)f(s,u(s —7))ds
tef0,1]
1
> A sup xGn(t, s)a(s)(min foo — £)u(s — 7)ds
t€(0,1] »
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= A(min foo — €) sup SGn(t, s)a(s)u(s — 7)ds

tefo,1] ~
1-7
= A(min foo — €) sup S Gn(t,s+ T)a(s + 1)u(s)ds
tef0,1] g
1-26
> A(min foo — €) sup S Gn(t,s+ 7)a(s + T)u(s)ds
teo,1] ¢
1-26
> A" }(min fo, — ) sup S Gn(t, s+ 7)a(s + 7)ds||ul|
tel0,1] ¢
1-20+7
= X" (min fo —€) sup | Gt s)a(s)ds||u|| > ||u]|.
te0,1] 5

Therefore, by the first part of Theorem K, T has a fixed point
u € K(M(Q2\Q1), and u(t) is a positive solution of BVP (1.1) and (1.2).
The proof is complete.

THEOREM 2.2. Let (A1) — (A3) hold and min fy > 0, max fs < co. Then
there exists at least one positive solution to BVP (1.1) and (1.2) for
(2.8)

1 1
A€ , .
<9”‘1 min fo - sup S},_%H Grnl(t, s)a(s)ds’ max fo, - §- Ga(s, s)a(s)ds)

tel0,1]
Proof. Suppose that A satisfies (2.8). Let € > 0 be such that
1
2.9 <A
(29) 6" 1(min fy —€) - sup 81_20“ Gr(t, s)a(s)ds
te(0,1]

1
< .
T (max foo 4 €) - L Ga(s, s)a(s)ds
By min fy > 0, there exists a Hy > 0 such that for 0 < u < Hj,
(2.10) f(s,u) > (min fo — €)u.

Let = {u € E : ||u|| < Hi}, then for u € K[)9Q, we have by (2.4),
(2.9) and (2.10)

1
I Tull = A sup {Gult,s)a(s)f(s,u(s —7))ds
t€0,1]
1
> A sup SGn(t, s)a(s)(min fo — €)u(s — 7)ds
t€[0,1] 0
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1
= AMmin fy — €) sup SGn(t, s)a(s)u(s — 7)ds

te[0,1] »
1-71
= A(min fy — €) sup S Gn(t,s + 7)a(s + T)u(s)ds
telo,1] ¢
1-26
> A(min fog — £) sup S Gn(t,s+ 7)a(s + T)u(s)ds
te[0,1] ¢
1-20
> X" L (min fo — €) sup S Gn(t,s+ 7)a(s + 7)ds||ull
tef0,1] ¢
1-20+r
= X" Y(minfo—¢) sup | Gal(t,s)a(s)ds|[ull > ||ull.
telo,1]  »

Again by max fo, < 00, there exists a Hy > 0 such that for u > Ho,
(2.11) f(s,u) < (max foo + €)u.
There are two cases: (i) f is bounded, and (ii) f is unbounded.

For case (i), we can choose N > 0 such that f(s,u) < N for s € [0,1]
and 0 < u < oco. Let Hy = max{2H;, AN {} Ga(s,s)a(s)ds} and Qp =
{u € E : ||u|| < H2}. Then for u € K[) 982, we have

1
| Tul| < A S Ga(s,s)a(s)f(s,u(s —1))ds

0
1

< /\NSGz(s,s)a(s)ds < Hp = ||ul.
0
For case (ii), we can choose Hy > max{2H;, Ha} such that f(s,u) <
f(s,Hy) for s € [0,1] and 0 < u < Hy. Let Qg = {u € E : ||u]| < H2}, then
for u € K0, by (2.11), we have

|Tu|l < A\ Ga(s,s)a(s)f(s,u(s — 7))ds

A

IA

Ga(s, s)a(s)f(s, Ho)ds

O e 2 O e

1
< Mmax foo + €) | Ga(s, s)a(s)dsHz < Hy = |ul].
0
Thus by the second part of the theorem K, we deduce that T" has a fixed
point u € K N (Q2\Q4) and it is a positive solution of BVP (1.1) and (1.2),
completing the proof of Theorem 2.2.
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3. Semipositone problem

In this section we consider the existence of positive solutions for BVP
(1.1) and (1.2) with g superlinear and semipositone. We still denote that

(31) E= {u € Cl-r,1}:
ut) =v/(t)=...=u™I(t) =u () =0, —7<t<0, }
u=3(1) =0,

with the norm || - || given by ||u|| = sup{} u(¢) |: —7 <t < 1}.

THEOREM 3.1.  Let (By) — (B4) hold. Then there exists at least one
positive solution of BVP (1.1) and (1.2) for A > 0 sufficiently small.

In order to prove Theorem 3.1, we need the following lemmas that provide
us with some useful information.

LEMMA 3.1. Let u satisfy
—u™@t)=ht), 0<t<l,7>0,
u(t) =u(t) =... =) =u () =0, —r<t<0,
u"=2(1) =0,
where h € C[—7,1], h > 0. Then
u(t) > |lullp,y - 9(t),t € [0,1],
t‘n.—2 t’n—l

here Q(t) = m — m, te [0, 1]

Proof. It's obvious that Ga(t,s) > min{t,1 — $}Ga(s, s), then

t
Gs(t,s) = SGQ(’U, s)dv > (t — g)Gg(s, s),
0
t t ’02 t2 t3
Gu(t, s) =\ Gs(v, s)dv > Ga(s, s v—— Jdv> | = — = ) Gaos, s),
09 = G o2 0 i(o-5) @z (5-5) 0t
t tn_2 tn—l
Gr(t,s) = (S)Gn_l(v,s)dv > [(n— 3 " no 1)!} Ga(s, s),

so we have
1

1
u(t) = [ Galt, 5)h(s)ds > q(t) { Ga(s, s)h(s)ds > u [|jp) -q(t)-
0 0
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LEMMA 3.2. Let w be the solution of
—uMt)=1,0<t<1,7>0,
ut) =d'@) =...=u® D) = D@) =0, —7<t<0,
w2 (1) = 0.
Then w(t) < g(t),t € [0,1].
Proof. In fact, for t € [0,1], @W(t) = S(l) Gr(t,s)ds. For n = 2, we have
1

w(t) = | Ga(t, s)ds = St =) <q(®).
0
If for n = k, we have
_ 1 =2 =1
3(t) = | Grlt,9)ds < a(t) = g~ Gy

0
then when n = k 4+ 1, we can get

1 1/t
D(t) =\ Gry1(t, s)d S <S Gi(v, s)dv) ds
0 \0

0

(Jorcom)orei [ 2
= Gk dv < [ ] dv

o \o oLk — N (k-1)!

tk—l tk:
(k—1)! K
So for t € [0,1], ©(t) < ¢(t) and [|w(|p,y) < 1.

Let g1(t,u) = g(t,u) + M,w(t) = AMw(t).

LEMMA 3.3. u(t) is a positive solution to BVP (1.1) and (1.2) if and only
if u =u+ w is a solution of
(32) W)+ At ult—7)—w(t—7)=0, 0<t<1l, 7>0,

u®) =u'(t) = ... =u @) =u D) =0, —-7<t<0,
(3.3) w2 (1) = 0,
with u(t) > w(t), t € (0,1). Here
N _Jai(tu), u>0,
(3.4) g(t,u) = {91(t,0), v <0,

Proof of Theorem 3.1. Let )\ satisfy

(3.5) 0<)\<m1n{é ]\14}
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where C = sup{gi(s,u) : 0 < s < 1,0 < u < 1}. BVP (3.2)-(3.3) is
equivalent to

u(t):{o,1 i 7 <t<0,

AfoGn(t,s)g(s,u(s —7) —w(s—7))ds, 0<t<1,
=: Tu(?).

Define a cone K C F by

(36) K ={ucE:ut) lulpy -alt).t € [0,1]).

It can be verified that TK C K. In fact, for u € K, ||Tul]| = ||Tu||,y,
1Tullp,;) < A 8(1) Ga(s,8)9(s,u(s — 1) — w(s — 7))ds, which implies that

g2 gn—1 1 N
m—2)! (n—1)! [ Ga(s, 8)3(s,u(s — 7) —w(s — 7))ds
! 1)
> g Tullpy,  Vt€[0,1].

On the other hand, one can find that T is a completely continuous operator
by the Arzela-Ascoli Theorem. We shall prove that T has a fixed point in
K by using Theorem K.
Let @ ={u€ E: |u|| < 1}. For u € K9,
1
Tu(t) =\ S Gn(t,s)g(s,u(s — 7) —w(s — 7))ds
0

Tu(t) > A

1
< XC S Gr(t, s)ds
0

=ACw(t) <1, te[0,1].
Since 0 < 4 —w < u < 1. Thus ||[Tu| < ||Ju|| for v € K N 0Q;.
Now we choose a constant M > 0 such that
1, ~
(3.7) EAJM sup S Gr(t,s)ds > 1,

0<t<1 o) r

where § = min{q(t) : @ <t < B}. By (B4), there is a constant L > 0, such
that

(3.8) §t,u) > Mu, Yu>L,t€lo,f)
Set
(3.9) R=1+ma.x{2/\M,%}

and define Qg = {u € E : ||u|| < R}. For u € K92, we have from (3.6)
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and Lemma 3.2 that
_ AM
wlt) = AMB(t) < AMg(t) < “u(t), 10,1,
which implies that

(3.10) u(t) — (1 - —) (t) > %u(t) > %q(t)llull
1

2 Rq(t) > R6 t€lo,p).
Therefore by (3.8)-(3.10), for u € KﬂOQQ, we have
(311) Gt ult—7) —w(t—1)) > M(u(t — 7) — w(t — 7))
> l]/\\/.I'/Ré, tela+r,0+7).
Combining (3.7) and (3.11) ,we get

)
1

|Tu|| = A sup X g(s,u(s —7) —w(s —71))ds
1o

f47
> A sup S Gr(t,8)g(s,u(s —7) —w(s — 7))ds
0<t<1oyr
B+T
> A(SMR sup S Gr(t,s)ds > R = ||u]|

0<t<lgyy,

for each u € K 09Qs.

Thus by the first part of Theorem K, T has a fixed point u with 1 <
lz|| < R. It follows that u(t) > q(t) > AMq(t) > w(t), t € (0,1), and so
u = U —w is a positive solution of BVP (1.1) and (1.2), completing the proof
of Theorem 3.1.
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