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EXISTENCE OF POSITIVE SOLUTIONS TO BVPS OF 
HIGHER ORDER DELAY DIFFERENTIAL EQUATIONS 

Abstrac t . The paper is concerned with the existence of positive solutions for the 
nonlinear eigenvalue problem with singularity and the superlinear semipositone problem 
of higher order delay differential equations. The main results are obtained by using Guo-
Krasnoselskii's fixed point theorem in cones. These results extend some of the existing 
literature. 

1. Introduction 
Boundary-value problems (BVPs) for higher order delay differential equa-

tions arise in a variety of areas of applied mathematics, physics and varia-
tional problems of control theory. The theory of BVPs of higher order delay 
differential equations provides a general framework for mathematical mod-
elling of many real world phenomena. In recent years, remarked progress has 
been made in the theory of BVPs of second-order delay differential equations 
by the development of the theory of functional differential equations, see, for 
example [2-8, 19] and the references therein. However, there is only a small 
amount of work dedicated to the theory of BVPs for higher order delay 
differential equations. 

In this paper, we considered the existence of positive solutions for the 
following boundary-value problem of the higher order delay differential equa-
tion(BVPs) 

(1.1) u^n\t) + Xg(t, u(t — t ) ) = 0, 0 < * < 1 , r > 0, 

with the boundary conditions 
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J u ( i ) = u ' ( i ) = --- = u( n - 3 ) ( i ) = u("-2)(£) = 0, —r < i < 0, 
( } \ u ( - 2 ) ( i ) = o, 

where A is a positive real parameter. 
Throughout the paper we assume that n > 3 is an integer. 
For the case r = 0, the problem (1-1) and (1-2) is related to multi-point 

BVPs of ordinary differential equations and was studied by Graef and Yang 
in [18]. Particularly, in the case r = 0 and n = 2, the existence of positive 
solutions for BVP (1.1) and (1.2) with singularity has been widely studied 
by many authors, such as Ha and Lee [9] by using the method of upper and 
lower solutions, and Fink et al [10] by using the shooting method. 

Here, we should also mention the recent work by Bai and Xu [19]. In [19], 
the authors considered the case n — 2 for BVP (1.1) and (1.2) and obtained 
the existence of positive solutions to BVP (1.1) and (1.2). 

In present paper, we consider the more general BVP for the higher 
order(n > 3) differential equations (1.1) and (1.2). 

Define G2 : [0,1] x [0,1] —• [0, oo) by 

(1.3) G 2 ( M ) J ( 1 - i ) S ' 
V 7 V 7 \ t ( l - s ) , Q<t<s<l. 

Note that G2{t, s) > 0 for t, s G (0,1). For n > 3, we define 

t 

(1.4) Gn(t,s) = \Gn-1(v,s)dv. 
o 

Then Gn(t, s) is the Green's function for the problem (1.1) and (1.2). More-
over, solving the BVP (1.1)-(1.2) is equivalent to finding a solution to the 
integral equation 

(1-5) u W = { \ 
{X\10Gn(t,s)g(s,u(s-T))ds, 0 < i < 1. 

In section 2 of the paper, we shall present some sufficient conditions with 
A belonging to an open interval of eigenvalues to ensure the existence of pos-
itive solutions to BVP (1.1) and (1.2) by the well-known Guo-Krasnoselskii 
fixed point theorem in cones [11]. We assume that 

(Ai) 0 < r < 1; 

(•^2) g(t,u) = a ( t ) f ( t , u ) , a : (0,1) —> [0, 00) is continuous and / : [0,1] x 
[0,00) is continuous; 

(A3) Jj s( 1 - s)a(s)ds < 00, 39 G [ § , s u c h that \l~2e+T a(s)ds > 0. 
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Here / is neither superlinear or sublinear. Especially, we allow that a(t) has 
some suitable singularity at the ends of (0,1). 

In section 3 of the paper, we also consider the existence of positive solu-
tions with g regular. 

We need the following assumptions 

(B\) g : [0,1] x [0, oo) —> R is continuous; 

(B2) there exists a positive constant M > 0 such that g(t,u) > — M for 
every t G [0,1] and u > 0; 

(B3) there exist 0 < a < ¡3 < 1 such that (3 + r < 1; 

(B4) limu-,«, = 00 uniformly for t G [a, 0\ C (0 ,1) . 

The condition ( B \ ) shows that g(t, 0) need not be non-negative (semiposit-
one). 

The existence of positive solutions for semipositone problems has been 
extensively studied by Shivaji and co-authors. We refer readers to [12-17] 
and the references therein. 

The main tool of this paper is the following Guo-Kranoselskii fixed point 
theorem in cones [11], 

THEOREM K . Let E be a Banach space and K C E be a cone. Assume 
fii,fi2 are open disks of E with fii C Q.2, and let T : K p|(^2 \ ^1) K be 
a completely continuous operator such that 

(i) ||Tu|| < |M| i f u g KCldfl! and ||Tu|| > |M| if u G Kf)dSl2; or 
(ii) ||T«|| > ||u|| ifu€Kf\dSl 1 and \\Tu\\ < ju|| ifu€ Kf)d(l2-

Then T has a fixed point in K 

2. Eigenvalue problem with singularity 
In this section, we will establish some existence results for the nonlinear 

eigenvalue problem (1.1) and (1.2) with singularity. Firstly, we give the 
following definition of positive solution of B V P (1.1) and (1.2). 

DEFINITION 2 . 1 . u{t) is called a solution of B V P (1.1) and (1.2) if it 
satisfies the following 

(1) u G C[—t, 1] Pi Cn(0,1); 
(2) u(t) > 0 for all t G (0 ,1 ) and satisfies conditions (1.2); 
(3) uW(t) = - A g ( t , u { t - T)) for t G (0 ,1) . 
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Let 

(2.1) E = j u e C [ - T , 1] : 

(t) = u'(t) = -.. = u ( n _ 3 )( i) = u{-n~2\t) = 0, - r < t < 0 u 
u(n-2)(1) = 0 , 

with the norm || • || given by ||u|| = sup{| u(t) |: — r < t < 1}, then (E, || • ||) 
is a Banach space. It is obvious that || • ||[01] = || • || for u € E : u > 0. Here 
II ' II [0,1] stands for the sup-norm of C[0,1]. One can find that 
(2.2) Gn(t, s) < G2(S, S) = s(l — s), {t,s) e [0,1] x [0,1] 
and 

(2.3) ^ M = > 0 n - i 5 t €[9,1-9]. 
G2(S,S) s ( l - s ) 

Define a cone K C E by 

(2.4) if = { u e £ : u ( i ) > 0 1 V t e [ 0 ) l ] I min u(t) > 9n~x ||u||}. 

Let 
. , . , . f(s,u) min/oo :=liminf mm , u-kx) se[o,i] u 

f(s,u) 
max/o := limsup max 

u—>o+ se[0,i] U 
f(s,u) min/o := liminf min 

u-+o+ se[o,i] u 
t v f(s,u) max joo := limsup max . 

u-»oo se[0,l] u 
T H E O R E M 2.1. Let (Ai) - (A3) hold and min/oo > 0,max/ 0 < oo. Then 
there exists at least one positive solution to BVP (1.1) and (1.2) for 

(2.5) 
XJ 1 1 

G V0"-i min/oo • sup ^ _ 2 e + r G n ( i , s ) a ( s ) d s ' m a x / o • S^G2(s,s)a(s)iis 
te[o,i] 

Proof. Define the integral operator T by 

Tu(t) = { 0 , ~r<t< 0, 
[\\lGn(t,s)a(s)f(s,u(s-T))ds, 0 < i < 1 

for each u 6 K. It can be verified that for each u € K, Tu G K by (2.3) and 
T is a completely continous operator by the Arzela-Ascoli Theorem. Now 
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we prove that T has a fixed point in K by using Theorem K. By (2.5), there 
exists a e > 0 such that 

(2.6) —z—53T < A 
0n-1(min/oo - e) • sup \l~29+T Gn(t, s)a{s)ds 

te[ o,i] 
1 < 

(max/o + e) • $r G2{s, s)a(s)ds 

Let e be fixed. By max/o < oo, there exists an Hi > 0 such that for 
u : 0 < u < Hi, 

(2.7) f(s, u) < (max /0 + £)u. 

Let fii = {u £ E : ||u|| < Hi}, then for u G Kf]dfii, we have by (2.6) and 
(2.7) 

l 
||Tu|| < A \ G 2 ( S , s)a(s)f(s, u(s - r))ds 

0 
1 

a(s) (max/o + £)u(s — r)ds 
o 

l 
= A(max/o + s) j G2(s, s)a(s)u(s — r)ds 

T 

1-T 
= A(max/o + £r) j G2(s + r, s + r)a(s + r)u(s)ds 

0 
1 —T 

<A(max/o + e) j G2(s + r, s + r)a(s + r)ds||u|| 
0 

1 

= A(max/o + e) J G2(s, s)o(s)ds||u|| < ||u||. 
r 

Next, by min/^ > 0, there exists an H2 > 0 such that f(s,u) > 
(min/oo — £)u for u > ii2• Take H2 = max.{H2,2Hi} and set il2 = 
| « £ j E : ||u|| < H2}. Then for u G Kf]dQ2, we have by (2.4) and (2.6) 

1 

||Tu|| = A sup \Gn(t,s)a(s)f(s,u(s — T))ds 
tel 0,1] 0 

1 

> A sup j Gn(t, s)a(s)(mmf<x — e ) u ( s — r)ds 
te[o,i] r 
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1 
= A(min/00 — e) sup ^Gn(t,s)a(s)u(s — r)ds 

«€[0,1] T 

1—T 

= A(min /oo — e) sup J Gn(t, s + r)a(s + r)u(s)ds 
te[o,i] o 

1 — 2 0 

>A(min/oo — e) sup J Gn(t,s + r)a(s + r)u(s)ds 
te[o,i] o 

1 - 2 0 

> \0n~1(minfoo - s) sup \ Gn(t, s + r)a(s + r)ds||it|| 
te[o,i] o 

1-20+r 
= XO™'1 (min FX, - E) sup j Gn(t, s)a(s)ds||«|| > ||u||. 

te[o,i] T 

Therefore, by the first part of Theorem K, T has a fixed point 
u € Kn( i i 2\iii ) , and u(t) is a positive solution of BVP (1.1) and (1.2). 
The proof is complete. 

T H E O R E M 2 . 2 . Let (J4I) - (A3) hold and min/ 0 > 0 , m a x < 00. Then 
there exists at least one positive solution to BVP (1.1) and (1.2) for 
(2 .8) 

X e ( d n - 1 m m f 0 - sup ^- 2 0 + T G n ( i , s )a (s )ds 'max/ o o -S^G 2 ( s , s )a (s )ds ) ' 
te[ 0,1] 

Proof. Suppose that A satisfies (2.8). Let e > 0 be such that 

(2.9) 1 - . < A 
0 n - 1 (min/o — s) • sup Gn(t, s)a(s)ds 

te[ 0,1] 
1 < 

(max/oo + e) • G^s, s)a(s)ds 

By min/o > 0, there exists a Hi > 0 such that for 0 < u < Hi, 

(2.10) f(s,u) > (min/o - e)u. 

Let Q,i = {u e E : ||u|| < #1} , then for u € Kf]dQi, we have by (2.4), 
(2.9) and (2.10) 

1 
||Ttt|| = A sup \Gn(t,s)a(s)f(s,u(s — r))ds 

[0,1] O 
1 

> A sup \Gn(t,s)a(s)(minf0-£)u(s-r)ds 
[0,1] O 
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1 
= A(min/o — e) sup J Gn(t, s)a(s)u(s — r)ds 

te[o,i] T 

1—r 
= A ( m i n / o — e ) s u p j Gn(t,s + r)a(s + r)u(s)ds 

te[o,i] o 
1—20 

> A(min /o — E) sup ^ Gn(t, s + r ) a ( s + r)u(s)ds 
te[o,i] o 

1 - 2 0 

> A 0 n _ 1 ( m i n / o - e ) s u p \ Gn(t,s + r)a(s + r)ds\\u\\ 
<€[0,1] o 

1-2 e+r 

= A0 n _ 1 (min/ o - e) sup $ Gn(t, s)a(s)ds||u|| > ||u||. 
te[0,l] r 

Again by max/oo < oo, there exists a H2 > 0 such that for u > H2, 

( 2 . 1 1 ) f(s,u) < (max/oo + e)u. 

There are two cases: (i) / is bounded, and (ii) / is unbounded. 
For case (i), we can choose N > 0 such that f(s,u) < N for s G [0,1] 

and 0 < u < 00. Let H2 = max{2i/i , AiV G2(S, s)a(s)ds} and 0,2 = 
{u€ E : || -u || < H2}. Then for u € Kf|<9i72, we have 

1 
||TU|| < A \ G 2 ( S , s)a(s)f(s, u{s - r))ds 

0 
1 

< AN\G2{s,s)a(s)ds < H2 = |M|. 
0 

For case (ii), we can choose H2 > m a x { 2 i i i , H 2 } such that f(s,u) < 
f(s, H2) for s € [0,1] and 0 < u < H2. Let = {u € E : ||u|| < H2}, then 
for u E K{\dSl2 , by (2.11), we have 

1 

||TU|| < A \ G2(S, s)a(s)f(s, u{s - r))ds 
0 
1 

< A\G2(s,s)a(s)f(s,H2)ds 
0 

1 
< A(max/oo + e) J G 2 (s , s)a(s)dsH2 < H2 = ||u||. 

0 
Thus by the second part of the theorem K, we deduce that T has a fixed 
point u € K fl (il2\f2i) and it is a positive solution of B V P (1.1) and (1.2), 
completing the proof of Theorem 2.2. 
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3. Semipositone problem 
In this section we consider the existence of positive solutions for BVP 

(1.1) and (1.2) with g superlinear and semipositone. We still denote that 

with the norm || • || given by ||u|| = sup{| u(t) |: —r <t < 1}. 

T H E O R E M 3 . 1 . Let (Bi) — (B4) hold. Then there exists at least one 
positive solution of BVP (1.1) and (1.2) for A > 0 sufficiently small. 

In order to prove Theorem 3.1, we need the following lemmas that provide 
us with some useful information. 

L E M M A 3 . 1 . Let u satisfy 

-u^n){t) = h(t), 0 < i < 1, r > 0, 

u(t) = v!(t) = ... = u(n~3)(t) = = 0, -T < t < 0, 

u{n~2)(l) = 0, 

where h G C[-T, 1], h > 0. Then 

(3.1) E = g C[-T, 1] : 

u(t) = u'{t) = ... = u(n-V(t) = u(n-2Xt) = 0, - r < t < 0, 
u («- 2 ) ( l ) = 0, 

u(t) > |M|[0,i] • q(t),t e [0, l], 

here q(t) = ^ J y - t € [0,1]. 

Proof. It's obvious that G2(t,s) > min{i, 1 — J}G2(S,S), then 

0 

0 0 

Gn(t, s) = \ Gn-i(v, s)dv > 
tn-2 tn-1 

G2(s,s) 
0 

so we have 

( n - 2 ) ! (n — 1)! 

u(t) = \Gn(t,s)h(s)ds > q(t)\G2{s,s)h(s)ds >|| u ||[0il] -q{t). 
0 0 
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L E M M A 3 . 2 . Letto be the solution of 

t) = 1,0 < t < 1,T > o, 

m t(t ) = u'{t) = ... = u ( n - 3 ) ( i ) = u^n~2)(t) = 0, - r < t < 0, 

u ( " - 2 ) ( l ) = 0. 

Then U(t) < g(t),te [0 ,1 ] . 

P r o o f . In fact , for t G [0 ,1] , co(t) = j J G n ( i , s)<is. For n = 2, we have 

l 
S7(t) = J G 2 ( t , s)ds = -t{ 1 - f ) < g ( i ) . 

o 
I f for n = k, we have 

Î ~ , x ^ tk~2 i*"1 
w e " ' ' ' ' ( f ) = \Gk{t,s)ds < q(t) = ¿yy - (fcTTi)?' 

t h e n when n = fc + 1, we can get 

1 1 (* \ u ( t ) = j G f c + i ( i , s)cis = \ \Gk(v, s)dv ds 
o o \o 

= j l G t ( v ) < i s dv<\ 
0 \0 / 0 

tk-1 tk 

vk 2 vk 1 

( f c - 2 ) ! ( f c - 1 ) ! . 
dv 

( f c - 1 ) ! fc!' 

So for t G [0 ,1] , S7(t) < g ( t ) and |M| [0,i] < 1. 

Le t ( t , « ) = g(t,u) + M,u(t) = A M w ( t ) . 

L E M M A 3 . 3 . u(<) zs a positive solution to BVP (1 .1) and (1 .2 ) and only 
i f u = u + uiisa solution of 

(3 .2 ) u ( n ) ( i ) + A 5 ( i , n ( i - r ) - w ( i - r ) ) = 0, 0 < t < 1, r > 0 , 

u{t) = u'(t) = ... = u(n-V(t) = u(n-2Xt) = 0, - T < t < 0, 

( j ^ " 2 ) ( 1 ) = 0, 

with u(t) > u(t), t G ( 0 , 1 ) . Here 

(3 .4 ) g(t,u) = i9l{t>U)> 

P r o o f o f T h e o r e m 3 . 1 . Let A satisfy 

(3 .5 ) 0 < A < min i n { è ' i } ' 
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where C = sup{31 (a, u) : 0 < s < 1,0 < u < 1}. BVP (3.2)-(3.3) is 
equivalent to 

m /O, —t <t<Q, 
u(t) = < , 

\\y0Gn(t,s)g(s,u{s-r)-u(s-T))ds, 0 < t < 1, 

=: Tu(t). 

Define a cone K C E by 
(3.6) K = {ueE: u(t) > ||u||[0,i] • q(t),t € [0,1]}. 

It can be verified that TK C K. In fact, for u G K, \\Tu\\ = ||Tu||[0)i], 

ll-^ l̂l [0,1] < ^ So (s>  s)d( si  u ( s ~  T) ~ k^s —  T))ds, which implies that 

Tu(t) > A 
t n - 2 ¿ n - 1 

(n — 2)! (n — 1)! 

1 
j G 2 ( s , s)p(s, u ( s - r ) - u(s - r))ds 
0 

^(/(iJHTullp,!], V i e [0,1]. 

On the other hand, one can find that T is a completely continuous operator 
by the Arzela-Ascoli Theorem. We shall prove that T has a fixed point in 
K by using Theorem K. 
Let Oi = {u G E : ||u|| < 1}. For u G K 

1 
Tu{t) = A \ Gn(t, s)g(s, u(s - r ) - - r))ds 

0 
1 

< XC\Gn(t,s)ds 
0 

= XCu(t) < 1, t e [0,1]. 

Since 0 < « — u ; < u < l . Thus ||Tu|| < ||u|| for u G K n 
Now we choose a constant M > 0 such that 

1 _ P + T 

(3.7) -X8M sup \ Gn(t, s)ds > 1, 
2 o < t < i a + T 

where <5 = min{^(i) : a < t < /?}. By ( -64), there is a constant L > 0, such 
that 

(3.8) g(t, u) > Mu, Vu > L, t G [a, /?]. 

Set 

(3.9) R= l + m a x | 2 A M , ^ | 

and define CI2 = {u £ E : ||u|| < i?}. For u G Kf\dQ2, we have from (3.6) 
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and Lemma 3.2 that 

u(t) = A Mu{t) < A Mq(t) < ^ ¡ f u ( t ) , t G [0,1], 
R 

which implies that 

(3.10) u{t) - W(t) > ( l - ) u(t) > \u{t) > ±q(t)\\u\\ 

> \ R q { t ) > \ m , t€[a,0\. 

Therefore by (3.8)-(3.10), for u G K f ) d Q 2 , we have 

(3 .11) g(t, u{t - r ) - u(t - r ) ) > M ( u ( t - r ) - u{t - r ) ) 

>^MR6, t e [ a + T,P + R]. 

Combining (3.7) and (3.11) ,we get 
l 

||T«|| = A sup \ Gn(t, s)g(s, u(s — r) — CJ(S — r))ds 
o < i < i 0 

/3+r 
> A s u p \ Gn(t,s)g(s,U(s — r ) — CJ(S — R))ds 

0 < i < l a + r 

1 _ 
> -XSMR s u p \ Gn(t, s)ds >R = | |u|| 

2 o < t < i a + T 

for each u G K P| dQ,2. 
Thus by the first part of Theorem K, T has a fixed point u with 1 < 

||u|| < R. It follows that u{t) > q{t) > AMq{t) > u{t), t G (0,1), and so 
u = u — u> is a positive solution of BVP (1.1) and (1.2), completing the proof 
of Theorem 3.1. 
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