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MAXIMAL CLASSES FOR THE FAMILY OF
QUASI-CONTINUOUS FUNCTIONS WITH CLOSED GRAPH

Abstract. In this paper we consider classes of functions f : R — R. The maximal
additive class for the family QU of quasi-continuous functions with closed graph is equal
to the class of all continuous functions. We also show that the maximal multiplicative
class for QU is equal to a class of continuous functions, which fulfil an extra condition.

1. Introduction

Through out this paper R denotes the set of all real numbers, and we
consider R and R xR endowed with their natural topologies. The symbol R¥
stands for the set of all functions f : R — R, and the symbols C, Const, Q,
D, By and U denote the subsets of R® consisting of all continuous, constant,
quasi-continuous, Darboux, Baire-one and functions with closed graph, re-
spectively. Moreover, we set

C'={feC: f=0or f(z)#0, forall xz € R}

We will also use the following abbreviations.
For F and G nonempty subsets of ]RR, the symbol FG denotes the set F NG,
and the sets

My(F)={geRR : (VfeF)g+feF}
Mn(F)={geR® : (VfeF)g-feF}
Moo F) = {g €R® : (Vf € F) maz{g, f} € F},
Mumin(F) = {g €RY® : (Vf € F) min{g, f} € F},
are called mazimal additive, multiplicative, mazimum and minimum classes

for the family of functions F, respectively.
In 1986 Grande and Soltysik [4] showed that

1) Ma(Q) = C,
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and in 2003 Szczuka [9] proved, that if F denotes the set of functions that
fulfil the so-called Swiatkowski condition (or the strong Swiatkowski condi-
tion), then My(F) = Mp(F) = Mpea(F) = Const. It was also shown
that

o(D) = Const (Radakovi¢ [8], 1931),

o(DBy) = C (Bruckner [2], 1978),

o(DQ) = Const (Natkaniec [7], 1992),

o(DB1Q) = C (Banaszewski [1], 1992), (see also [5]).

In 1987 Menkyna [6] considered real functions on a locally compact nor-
mal space X and obtained two results, which, for the particular case X = R,
take the form

(2) Ma(u) = Ca

(3) Mam(U) = C*.

In this paper, we prove the following theorem that supplements the above
listed results.

THEOREM. With the above notations, we have

(a‘) Ma(gu) = C,
(b) Mm(QU) =C*,
(C) Mmaa:(gu) = Mmm(gu) = @

Our terminology and notations are standard. The symbols F+G and F-G
denote the respective sets {f+¢g : f€F, g€ Gand{f-g : f € F, g€ G}.
Notice that F -G # FG. For f € RR the symbol C(f) denotes the set of all
continouity points of f and G(f) C R x R denotes the graph of f.

2. Definitions and useful lemmas

DEFINITION 1. A function f € RR is quasi-continuous at zo € R if for every
neighbourhood (a, b) of zp and every € > 0, there is an interval (c,d) C (a,b)
such that | f(x) — f(y) |< €, for each y € (¢, d).

In the proof of the Theorem we will use the following characterization of
quasi-continouity (see [3], p. 526)

LEMMA 1. A function f € RR s quasi-continuous if and only if for every
zo € R there is a sequence (x,) C C(f) with limp_,0o T, = xo, such that
lim, f(zn) = f(zo).
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We will also use the following properties (their easy proofs are left to the
reader):

(4) if 0 € F then Mo(F) C F,
(5) if 1€ F then Mm(F) C F.
(6) C-2CQ,
(7 C+UCU.

For g € QU discontinuous at some xg € R we have

lim g(z) = g(zo) and | lim_ 9(z) |= +o0, or

(8) 1}—?2}0 .'D—NEO
lim g(z) = g(zo) and | lim g(z) |= +oo.
z—mg Ty

3. The proof of the Theorem

Part (a) By (1) and (7) we obtain C+ QU C QU, so C C M,(QU). Now
we shall show this inclusion can be reversed. Let g € M,(QU) be arbitrary
fixed. We claim that g € C. If this were not so, g would be discontinuous at
some zg € R. Notice that g € QU. Consider the first condition in (8). For
the function f; : R — R defined by the formula

1 .
fl(x) — { To—T , T < Ig,

0 ;2?21?0,

we have f1 € QU and |limm_,zg (g+ fLi)(z)| =40 = [me—»zg (g + fr)(z)]-
Hence, by Lemma 1, function ¢+ f; is not quasi-continuous, a contradiction.
For the second condition in (8) we use similar arguments and we obtain a
contradiction too. Thus g € C, as claimed.

Part (b) By (3) and (6) we obtain C* - QU C QU, so C* C M, (QU).
Now we shall show this inclusion can be reversed. Let g € My, (QU) be
arbitrary fixed. We claim that g € C*. Assume this is not so. We shall prove
first that g is continuous. In the opposite case there is z¢g ¢ C(g). Observe
that g € QU. We will consider the first condition in (8). Let us assume that
limx_,zau f(z) = +o00. Let 1 > x¢ be a point such that f(z) > 0, for every
z € (zo,x1]- We define f; : R — R as a function given by the formula

1
T—xo

0 ;& = Zo,
1 .
m ,.1:6 (130,131),

1.
g(-’tl) 3 x 2 .'1:1.

3 T < o,

fa(z) =
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Of course fy € QU and (zg,1) € cl(G(g- f3))\G(g- f3). Hence g ¢ M,,(QU),
a contradiction. By similar arguments, we obtain a contradiction for the case
with limm_,zar f(z) = —o0, and for the second case of (8). Hence g € C. Now

we have to show that g € C*. If this were not so, there would exist
e a point zo € g71(0) \ int(g~1(0)) with g(zo) = 0, and
e 6 > 0 such that g(z) # 0, for every x € [zg — J, z9) (or x € (z0,zo + I]).

Let I = [zg — §,z0) and a = g(zg — §). We define f3 : R — R as a function
given by the formula

g(lz),:cel,
fs@)=91 sz<z-34,
1 ;IL'}IL'(),

Of course f3 € QU and (zo,1) € cl(G(g-f3))\ G(g-f3). Hence g ¢ My, (QU),
a contradiction. The contradiction shows that we must have g € C*, as
claimed.

Part (c) Let g : R — R. Choose zg € R for which there is a sequence
(zn)n such that z,  z¢ and lim,_,o g(zn) = g{zo) (the set of the points
zo € R for which there is no sequence with the latter property is countable).
We define fy : R — R as a function given by the formula

1 .
fa(z) = { z—z0 ) T < o,

g(zo) +1;z > xo.

Of course fs € QU and h = max(fs,g) ¢ U (because (zo, g(zo)) € cl(G(h))\
G(h).) Hence Mpq,(QU) = 0.
With similar argumentation we can show that M, (QU) = 0. =
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