

Waldemar Sieg

MAXIMAL CLASSES FOR THE FAMILY OF QUASI-CONTINUOUS FUNCTIONS WITH CLOSED GRAPH

Abstract. In this paper we consider classes of functions $f : \mathbb{R} \rightarrow \mathbb{R}$. The maximal *additive* class for the family \mathcal{QU} of quasi-continuous functions with closed graph is equal to the class of all continuous functions. We also show that the maximal *multiplicative* class for \mathcal{QU} is equal to a class of continuous functions, which fulfil an extra condition.

1. Introduction

Through out this paper \mathbb{R} denotes the set of all real numbers, and we consider \mathbb{R} and $\mathbb{R} \times \mathbb{R}$ endowed with their natural topologies. The symbol $\mathbb{R}^{\mathbb{R}}$ stands for the set of all functions $f : \mathbb{R} \rightarrow \mathbb{R}$, and the symbols \mathcal{C} , *Const*, \mathcal{Q} , \mathcal{D} , \mathcal{B}_1 and \mathcal{U} denote the subsets of $\mathbb{R}^{\mathbb{R}}$ consisting of all continuous, constant, quasi-continuous, Darboux, Baire-one and functions with closed graph, respectively. Moreover, we set

$$\mathcal{C}^* = \{f \in \mathcal{C} : f \equiv 0 \text{ or } f(x) \neq 0, \text{ for all } x \in \mathbb{R}\}.$$

We will also use the following abbreviations.

For \mathcal{F} and \mathcal{G} nonempty subsets of $\mathbb{R}^{\mathbb{R}}$, the symbol \mathcal{FG} denotes the set $\mathcal{F} \cap \mathcal{G}$, and the sets

$$\begin{aligned}\mathcal{M}_a(\mathcal{F}) &= \{g \in \mathbb{R}^{\mathbb{R}} : (\forall f \in \mathcal{F}) g + f \in \mathcal{F}\}, \\ \mathcal{M}_m(\mathcal{F}) &= \{g \in \mathbb{R}^{\mathbb{R}} : (\forall f \in \mathcal{F}) g \cdot f \in \mathcal{F}\}, \\ \mathcal{M}_{\max}(\mathcal{F}) &= \{g \in \mathbb{R}^{\mathbb{R}} : (\forall f \in \mathcal{F}) \max\{g, f\} \in \mathcal{F}\}, \\ \mathcal{M}_{\min}(\mathcal{F}) &= \{g \in \mathbb{R}^{\mathbb{R}} : (\forall f \in \mathcal{F}) \min\{g, f\} \in \mathcal{F}\},\end{aligned}$$

are called *maximal additive*, *multiplicative*, *maximum* and *minimum classes for the family of functions \mathcal{F}* , respectively.

In 1986 Grande and Soltysik [4] showed that

$$(1) \quad \mathcal{M}_a(\mathcal{Q}) = \mathcal{C},$$

2000 Mathematics Subject Classification: 26A15.

Key words and phrases: functions with closed graph, quasicontinuity.

and in 2003 Szczuka [9] proved, that if \mathcal{F} denotes the set of functions that fulfil the so-called Świątkowski condition (or the strong Świątkowski condition), then $\mathcal{M}_a(\mathcal{F}) = \mathcal{M}_m(\mathcal{F}) = \mathcal{M}_{max}(\mathcal{F}) = Const$. It was also shown that

- $\mathcal{M}_a(\mathcal{D}) = Const$ (Radakovič [8], 1931),
- $\mathcal{M}_a(\mathcal{DB}_1) = \mathcal{C}$ (Bruckner [2], 1978),
- $\mathcal{M}_a(\mathcal{DQ}) = Const$ (Natkaniec [7], 1992),
- $\mathcal{M}_a(\mathcal{DB}_1\mathcal{Q}) = \mathcal{C}$ (Banaszewski [1], 1992), (see also [5]).

In 1987 Menkyna [6] considered real functions on a locally compact normal space X and obtained two results, which, for the particular case $X = \mathbb{R}$, take the form

$$(2) \quad \mathcal{M}_a(\mathcal{U}) = \mathcal{C},$$

$$(3) \quad \mathcal{M}_m(\mathcal{U}) = \mathcal{C}^*.$$

In this paper, we prove the following theorem that supplements the above listed results.

THEOREM. *With the above notations, we have*

$$(a) \quad \mathcal{M}_a(\mathcal{QU}) = \mathcal{C},$$

$$(b) \quad \mathcal{M}_m(\mathcal{QU}) = \mathcal{C}^*,$$

$$(c) \quad \mathcal{M}_{max}(\mathcal{QU}) = \mathcal{M}_{min}(\mathcal{QU}) = \emptyset.$$

Our terminology and notations are standard. The symbols $\mathcal{F} + \mathcal{G}$ and $\mathcal{F} \cdot \mathcal{G}$ denote the respective sets $\{f+g : f \in \mathcal{F}, g \in \mathcal{G}\}$ and $\{f \cdot g : f \in \mathcal{F}, g \in \mathcal{G}\}$. Notice that $\mathcal{F} \cdot \mathcal{G} \neq \mathcal{F}\mathcal{G}$. For $f \in \mathbb{R}^{\mathbb{R}}$ the symbol $C(f)$ denotes the set of all *continuity points* of f and $G(f) \subset \mathbb{R} \times \mathbb{R}$ denotes the graph of f .

2. Definitions and useful lemmas

DEFINITION 1. A function $f \in \mathbb{R}^{\mathbb{R}}$ is *quasi-continuous* at $x_0 \in \mathbb{R}$ if for every neighbourhood (a, b) of x_0 and every $\epsilon > 0$, there is an interval $(c, d) \subset (a, b)$ such that $|f(x) - f(y)| < \epsilon$, for each $y \in (c, d)$.

In the proof of the Theorem we will use the following characterization of quasi-continuity (see [3], p. 526)

LEMMA 1. *A function $f \in \mathbb{R}^{\mathbb{R}}$ is quasi-continuous if and only if for every $x_0 \in \mathbb{R}$ there is a sequence $(x_n) \subset C(f)$ with $\lim_{n \rightarrow \infty} x_n = x_0$, such that $\lim_{n \rightarrow \infty} f(x_n) = f(x_0)$.*

We will also use the following properties (their easy proofs are left to the reader):

$$(4) \quad \text{if } 0 \in \mathcal{F} \text{ then } \mathcal{M}_a(\mathcal{F}) \subset \mathcal{F},$$

$$(5) \quad \text{if } 1 \in \mathcal{F} \text{ then } \mathcal{M}_m(\mathcal{F}) \subset \mathcal{F}.$$

$$(6) \quad \mathcal{C} \cdot \mathcal{Q} \subset \mathcal{Q},$$

$$(7) \quad \mathcal{C} + \mathcal{U} \subset \mathcal{U}.$$

For $g \in \mathcal{QU}$ discontinuous at some $x_0 \in \mathbb{R}$ we have

$$(8) \quad \begin{aligned} \lim_{x \rightarrow x_0^-} g(x) &= g(x_0) \text{ and } \left| \lim_{x \rightarrow x_0^+} g(x) \right| = +\infty, \text{ or} \\ \lim_{x \rightarrow x_0^+} g(x) &= g(x_0) \text{ and } \left| \lim_{x \rightarrow x_0^-} g(x) \right| = +\infty. \end{aligned}$$

3. The proof of the Theorem

Part (a) By (1) and (7) we obtain $\mathcal{C} + \mathcal{QU} \subset \mathcal{QU}$, so $\mathcal{C} \subset \mathcal{M}_a(\mathcal{QU})$. Now we shall show this inclusion can be reversed. Let $g \in \mathcal{M}_a(\mathcal{QU})$ be arbitrary fixed. We claim that $g \in \mathcal{C}$. If this were not so, g would be discontinuous at some $x_0 \in \mathbb{R}$. Notice that $g \in \mathcal{QU}$. Consider the first condition in (8). For the function $f_1 : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula

$$f_1(x) = \begin{cases} \frac{1}{x_0 - x} ; x < x_0, \\ 0 ; x \geq x_0, \end{cases}$$

we have $f_1 \in \mathcal{QU}$ and $|\lim_{x \rightarrow x_0^-} (g + f_1)(x)| = +\infty = |\lim_{x \rightarrow x_0^+} (g + f_1)(x)|$. Hence, by Lemma 1, function $g + f_1$ is not quasi-continuous, a contradiction. For the second condition in (8) we use similar arguments and we obtain a contradiction too. Thus $g \in \mathcal{C}$, as claimed.

Part (b) By (3) and (6) we obtain $\mathcal{C}^* \cdot \mathcal{QU} \subset \mathcal{QU}$, so $\mathcal{C}^* \subset \mathcal{M}_m(\mathcal{QU})$. Now we shall show this inclusion can be reversed. Let $g \in \mathcal{M}_m(\mathcal{QU})$ be arbitrary fixed. We claim that $g \in \mathcal{C}^*$. Assume this is not so. We shall prove first that g is continuous. In the opposite case there is $x_0 \notin C(g)$. Observe that $g \in \mathcal{QU}$. We will consider the first condition in (8). Let us assume that $\lim_{x \rightarrow x_0^+} f(x) = +\infty$. Let $x_1 > x_0$ be a point such that $f(x) > 0$, for every $x \in (x_0, x_1]$. We define $f_2 : \mathbb{R} \rightarrow \mathbb{R}$ as a function given by the formula

$$f_2(x) = \begin{cases} \frac{1}{x - x_0} ; x < x_0, \\ 0 ; x = x_0, \\ \frac{1}{g(x)} ; x \in (x_0, x_1), \\ \frac{1}{g(x_1)} ; x \geq x_1. \end{cases}$$

Of course $f_2 \in \mathcal{QU}$ and $(x_0, 1) \in cl(G(g \cdot f_3)) \setminus G(g \cdot f_3)$. Hence $g \notin \mathcal{M}_m(\mathcal{QU})$, a contradiction. By similar arguments, we obtain a contradiction for the case with $\lim_{x \rightarrow x_0^+} f(x) = -\infty$, and for the second case of (8). Hence $g \in \mathcal{C}$. Now we have to show that $g \in \mathcal{C}^*$. If this were not so, there would exist

- a point $x_0 \in g^{-1}(0) \setminus \text{int}(g^{-1}(0))$ with $g(x_0) = 0$, and
- $\delta > 0$ such that $g(x) \neq 0$, for every $x \in [x_0 - \delta, x_0)$ (or $x \in (x_0, x_0 + \delta]$).

Let $I = [x_0 - \delta, x_0)$ and $a = g(x_0 - \delta)$. We define $f_3 : \mathbb{R} \rightarrow \mathbb{R}$ as a function given by the formula

$$f_3(x) = \begin{cases} \frac{1}{g(x)} & ; x \in I, \\ \frac{1}{a} & ; x < x_0 - \delta, \\ 1 & ; x \geq x_0, \end{cases}$$

Of course $f_3 \in \mathcal{QU}$ and $(x_0, 1) \in cl(G(g \cdot f_3)) \setminus G(g \cdot f_3)$. Hence $g \notin \mathcal{M}_m(\mathcal{QU})$, a contradiction. The contradiction shows that we must have $g \in \mathcal{C}^*$, as claimed.

Part (c) Let $g : \mathbb{R} \rightarrow \mathbb{R}$. Choose $x_0 \in \mathbb{R}$ for which there is a sequence $(x_n)_n$ such that $x_n \nearrow x_0$ and $\lim_{n \rightarrow \infty} g(x_n) = g(x_0)$ (the set of the points $x_0 \in \mathbb{R}$ for which there is no sequence with the latter property is countable). We define $f_4 : \mathbb{R} \rightarrow \mathbb{R}$ as a function given by the formula

$$f_4(x) = \begin{cases} \frac{1}{x-x_0} & ; x < x_0, \\ g(x_0) + 1 & ; x \geq x_0. \end{cases}$$

Of course $f_4 \in \mathcal{QU}$ and $h = \max(f_4, g) \notin \mathcal{U}$ (because $(x_0, g(x_0)) \in cl(G(h)) \setminus G(h)$.) Hence $\mathcal{M}_{\max}(\mathcal{QU}) = \emptyset$.

With similar argumentation we can show that $\mathcal{M}_{\min}(\mathcal{QU}) = \emptyset$. ■

References

- [1] D. Banaszewski, *On some subclasses of \mathcal{DB}_1 functions*, Problemy Mat. 13 (1993), 33–41.
- [2] A. M. Bruckner, *Differentiation of Real Functions*, Lecture Notes in Math. no. 659, Springer Verlag, Berlin-Heidelberg-New York (1978).
- [3] Z. Grande, T. Natkaniec, *Lattices generated by \mathcal{F} -quasi-continuous functions*, Polish Acad. Sci. Math. 34 (1986), 525–530.
- [4] Z. Grande, L. Soltysik, *Some remarks on quasi-continuous real functions*, Problemy Mat. 10 (1990), 79–86.
- [5] J. M. Jastrzębski, J. M. Jędrzejewski, T. Natkaniec, *On some subclasses of Darboux functions*, Fund. Math. 138 (1991), no. 3, 165–173.
- [6] R. Menkyna, *The maximal additive and multiplicative families for functions with closed graph*, Act. Math. Univ. Com. 52/53 (1987), 149–152.
- [7] T. Natkaniec, *On quasi-continuous functions having Darboux property*, Math. Pannon. 3 (1992), 81–96.

- [8] T. Radaković, *Über Darbouxsche und stetige Funktionen*, Monatsh. Math. Phys. 38 (1931), 117–122.
- [9] P. Szczuka, *Maximal classes for the family of strong Świątkowski functions*, Real Anal. Exchange 28 (2) (2003), 429–438.

CASIMIRUS THE GREAT UNIVERSITY
DEPARTMENT OF MATHEMATICS
Plac Weyssenhoffa 11
85-072 BYDGOSZCZ, POLAND
E-mail: waldeks@ukw.edu.pl

Received April 3, 2008; revised version June 2, 2008.

