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A PRIME SQUARE MODULUS

Abstract. This paper, resulting from two summer programs of Research Experi-
ence for Undergraduates, examines the congruence classes of binomial coefficients to a
prime square modulus as given by a fractal generation process for lattice path counts.
The process depends on the isomorphism of partial semigroup structures associated with
each iteration. We also consider integrality properties of certain critical coefficients that
arise in the generation process. Generalizing the application of these coefficients to ar-
bitrary arguments, instead of just to the prime arguments appearing in their original
function, it transpires that integrality of the coefficients is indicative of the primality of
the argument.

1. Introduction

The general topic of this paper is the investigation of a fractal genera-
tion process for modular binomial coeflicients. Previous work in the area,
more recently from a dynamical systems viewpoint, has most often focussed
on the distinction between zero and non-zero congruences [1] [3] [6] [8] [9],
connecting back to Kummer’s classical results on the divisibility of binomial
coefficients by prime powers [5]. Our concern is rather with an algebraic
fractal generation process for each modulus, exhibiting isomorphisms of to-
tal or partial semigroup structures defined on sets of digits and on sets of
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squares under the Pascal addition or tile sum of Definition 2.3. Throughout
the paper, p will denote a given prime number. Section 2 reviews the case
of modulus p. (Although this case is already well understood, our algebraic
approach will serve as a useful model for the more complex prime square
case.) Theorem 2.4 gives an isomorphism from the (total) additive group
Cp of integers modulo the prime p to a set of p x p tiles appearing in Pas-
cal’s square modulo p. The main theorem of the paper, proved in the final
Section 6, is the corresponding result for modulus p? (Theorem 4.5). This
theorem gives an isomorphism to a set of p x p tiles appearing in Pascal’s
square modulo p? from a partial semigroup structure D, on an indexed set
of digits modulo p? (Definition 3.1). The set of tiles here is the image of
the homomorphism (4.3). The isomorphism, which also functions as the key
iterative step in the fractal generation process (Corollary 4.6), is defined in
terms of certain production coefficients (Definition 4.1) that may be viewed
as modular harmonic sums, or discrete modular versions of the logarith-
mic integral {]dt/¢t = logr. Section 5 generalizes the application of these
coefficients to arbitrary arguments, instead of just to the prime arguments
appearing in their original function. It transpires that integrality of the co-
efficients is indicative of the primality of the argument. Problems 5.5 and
5.6 ask for a determination of exact conditions for this integrality, and for a
combinatorial interpretation of the coefficients in those cases where they are
integral.

A distinguishing feature of our approach is the way we address binomial
coeflicients, using Pascal’s square as partially displayed in Table 1.

z\y |0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 2 3 4 ) 6
2 1 3 6 10 15 21
3 1 4 10 20 35 56
4 |1 5 15 35 70 126
5 1 6 21 56 126 252

Table 1. Pascal’s Square.

Thus the binomial coefficient (I;y) appears in the location with coordi-
nates (z,y). We consider the square as the result of the iterative construction
process initialized by placing an entry of 1 at each location having at least
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one zero coordinate, and then filling in by the linear assembly rule

o ()

at each location with both coordinates positive. Displaying binomial co-
efficients in this form, rather than in the more customary Pascal’s trian-
gle, is well known to identify (z;y) directly as the number of “geodesics”
or minimal-length paths through points of the square lattice from (0,0) to
(z,y). Indeed, each such path arriving at (x, y) previously passed through ei-
ther (z,y—1) or (x —1, y), while points on the border have a unique geodesic
from the origin. In the fractal generation process embodied in Corollary 4.6,
the expansion of each digit of Pascal’s square modulo p?> depends on the
residues of its addressing coordinates x,y modulo p.

2. Prime moduli

We begin by considering an algebraic fractal construction of Pascal’s
square to the prime modulus p.

LEMMA 2.1. There is a p x p block

1 1 11
1 2 3 p—1 0
1 3 0 0
1 p—1 0 0 0
1 0 0 0 O

appearing in Pascal’s square modulo p. In particular, all the elements below
the diagonal are zero.

Proof. A p x p block bordered on the left and the top by ones appears in
the NW corner {(z,y) | 0 < z,y < p} of the ordinary, non-modular Pascal’s
square. Consider the diagonal {(z,y) | x + y = p} just below the diagonal
from the SW to the NE corner of the block. All the binomial coefficients
appearing on that diagonal are of the form (Z) with 0 < y < p. Now

()=
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In this fraction, all the numbers multiplied together in the denominator are
strictly less than p, so do not cancel the p appearing in the numerator. This
implies that (p) with 0 < y < p is divisible by p. Thus there are zeroes in
the corresponéling places of the modular square, and the rest of the block is
completed by zeroes according to the assembly rule (1.1). =

LEMMA 2.2. For each 0 <r < p, a p X p block of the form

T T T T r
T 2r 3r ... (p—1Lr O
T 3r 0 0
r (p—1r O 0 0
T 0 0 0 0

is assembled according to the rule (1.1) of Pascal’s square modulo p.

Proof. The assembly rule is linear, so the blocks of Lemma 2.2 are obtained
as the multiples by r of the block of Lemma 2.1. =

DEFINITION 2.3 (Pascal sum, tile sum). Given p x p blocks

rnmn Ti2 ... Tip yn Y12 .- Yip
7V z2 21 - Y2

P and y L
Tpl Tp2 PN Tpp Yp1  Yp2 e Ypp

their Pascal sum or tile sum is defined to be the p x p block obtained by
filling in the bottom p x p right-hand corner

211 212 N Z1p

221 ‘- 22p

Zpl  Zp2 .. Zpp
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of the scheme

Yii Y12 .- Yip
Y21 K Y2p
Ypl Yp2 -+ Ypp
r11 12 ... Tip | 211 212 .- 21p
I21 T Top | Z21 T 22p
Tpl Tp2 ... Tpp | 2p1  2p2  --- Zpp

according to the assembly rule (1.1) of Pascal’s square.

THEOREM 2.4. For 0 <r < p, let [r] denote the p x p block

ror r
T 0
r 0 0

from Lemma 2.2. Then there is an isomorphism r — [r] from the additive

group Cy, of integers modulo p to the set of px p blocks under Pascal addition
modulo p.

Proof. For each 0 < r, s < p, consider the modular Pascal addition

s 8 ]
s 0
s O 0
r o7 r|*
T 0
r 0 0

of [r] to [s]. The square marked by x is filled in as r+ s (modulo p). Because
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of the adjoining zeroes, the remaining squares in the same row and the same
column as the marked square are also filled in as r + s. This creates [r + s]
as the Pascal sum of [r] and [s] modulo p. =

COROLLARY 2.5. The Pascal square to a prime modulus p is generated by
the following fractal process:

(1) Start with an initial configuration of 1;
(2) For each iterative step, the output configuration is obtained by applying
the production rule r — [r] to each entry of the input configuration.

For p = 2, the first steps of the process may be illustrated as follows:

2 (00 01 10 11
10 1

olo 0|1 1 1 1

ol — ottt — o010 10

11 0 01 1 0 0

1mj1 0 0 0

Here, each stage of the square is presented together with the addresses of its
entries (in binary notation). The boldface numbers count the steps in the
process. In the Pascal square mod p, the ancestry of the entry addressed
by a given pair (z,y) of natural numbers consists of all those p X p blocks
that expand in the generation process to include the (z,y)-entry, along with
the single entries at each stage that have expanded to these respective p x p
blocks. For example, in the above illustration modulo 2, the ancestry of
the (01, 11)-entry contains the 2 x 2 blocks starting at (0,0) in Step 1 and
(00,10) in Step 2, as well as the (0,0)-entry of Step 0 and the (0, 1)-entry in
Step 1. The ancestry of the (10, 11)-entry contains the 2 x 2 blocks starting
at (0,0) in Step 1 and (10, 10) in Step 2, as well as the (0, 0)-entry of Step 0
and the (1,1)-entry in Step 1.

For each natural number z, let ...zox12¢ be the base-p expansion of x,
so that

o0
(2.1) T = inpi
=0

with integers 0 < x; < p. The following immediate consequence of Corol-
lary 2.5 is a well-known instance of Kummer’s criterion [3] [5].

COROLLARY 2.6. If there is a natural number i such that x; +y; > p, then

(m : y) =0 (mod p).
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Proof. The (z, y)-entry of Pascal’s square modulo p includes an (z;, y;)-entry
of a tile [r] in its ancestry. By Lemma 2.2, this entry is 0, which expands to
an all-zero tile at each subsequent step. = '

3. The partial semigroup

Definition 3.1 of this section specifies the partial semigroup structure
Dy, involving residues modulo p?, that for the prime square case plays a
role analogous to that played by the cyclic group Cp, of residues modulo p in
Theorem 2.4. The modular locations of the definition will correspond to the
modulo p residues xg, yo of coordinates z,y of absolute locations in Pascal’s
square, according to the notation of (2.1). This modular addressing is a key
feature of our fractal generation process.

DEFINITION 3.1. The algebra of located residues modulo p is defined to be
the set D, of all elements ryy with r € Z/p?Z, z,y € C, such that
.’L'I + !

' y) =7 (mod p?).

The residues z, y modulo p are known as the modular locations. The partial
addition on Dy is defined by

(31) 32’ =z (modp). Iy =y (modp). (

(3.2) Toy-1) T S(z—1)y = (r+ S)zy
if and only if 3z’ = z (mod p). Jy' =y (mod p).
' +y -1\ _ 2 o —1+y" _ 2
( -1 ):r (mod p?), y =s (mod p*).
From the discussion of Remark 3.3 below, it will transpire that the alge-
bra structure defined on D), by (3.2) is a partial semigroup.

EXAMPLE 3.2. Table 2 gives the partial addition table for Dy. The columns
have been labelled in a different order to the rows, so that transposition of
Pascal’s square modulo 4 corresponds to transposition of the table. Note
that 11; and 373 do not appear in Ds, according to Corollary 2.6.

REMARK 3.3. One might choose to extend the partial addition (3.2) on
the set D, to a total addition

(3.3) Tzz + 8ty = (T + 8)ay
on the set
T, = Z/p*Z x Z/pZ x L/pZ = {rsy | r € Z/D*Z, z,y € Z/pL}.
Note that the subset
(3.4) {Ony | 7,y € Z/pZ}



30 D. Doan, B. Kivunge, J. J. Poole, J. D. H Smith, T. Sykes, M. Teplitskiy

0o 010 Oo1 011 |loo 110 lo1]200 210 201 211|300 310 301

000 001
0oz 0Ooo 1go 200 300
010 011
011 | 010 1o 210 310

1o 101 301
1o oo 200 300 Ooo
1 10 211 011

200 201
2m 200 300 0oo oo
210 011
211 310 1o

300 3o1 lo1
301 300 Ooo loo 200
310 011 211

Table 2. Partial addition on Ds.

is a subalgebra of T}, that forms a so-called rectangular band [7, §1.3]. It
is apparent that the operation (3.3) is associative, making T, a semigroup,
namely the product of the cyclic group Z/p?Z with the rectangular band
(3.4). However, T, is certainly not a group, since for example Ogg + Ogp =
0po = Oo1 + Ogo-

4. The fractal process

Just as in the modulo p case, the fractal generation process for Pascal’s
square modulo p? expands digits into p x p blocks. The expansion process
involves multiplication of the modular locations of the digit by certain coef-
ficients that may be viewed as modular harmonic sums, or discrete modular
versions of {] dt/t = logr.

DEFINITION 4.1. For each positive integer r less than p, define the produc-

tion coefficient

1 1 1
4.1 =4+ 4.4
(4.1) M=gHo s

as a residue modulo p (recalling that the non-zero residues 1,2,...,r are
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invertible modulo p). By convention for r = 0, the production coefficient Ag
is defined to be zero.

For odd primes, the production coeflicients are symmetrical.
LEMMA 4.2. For odd p and 0 <r < p/2, one has Ap = Ap_1_r.

Proof. For 0 < s < p, there is a congruence

1 1 1 1
s<—+ ):s——(p—s) =1-1=0
s p-—s s p—s

modulo p, so that % + zﬁ = 0 [4, §7.8]. The statement of the lemma is
proved by downward induction: it is trivially true for r = (p—1)/2. Suppose
/\s = )\p—l—s- Then ()\s - )\p—l—s) - ()\3_1 - )‘p—l—(s—l)) = % + % = 0, SO

As—1 — Ap_1—(s—1) = O as required. = P
COROLLARY 4.3. Ifp is odd, then Ap_1 = Ao = 0.

Note that A\p,_; = 1 for p = 2. The key role of the production coefficients
appears in the following:

DEFINITION 4.4. Suppose r € Z/p*Z, xz,y € Cp. Then the located block
[r]zy is defined to be the p x p array of Z/p?Z-elements

T r(l+phiz) r(1+prox) ... r(1+pA1z)
r(1+phiy) :
(42) 1 r(1 4+ proy)

T(l +p)‘p—1y)

completed according to the assembly rule (1.1) modulo p?. (Since Ag = 0, the
top left-hand entry may also be written in the equivalent forms r(1+pAgz) =
r(1 4+ pAoy), consistent with the remaining first row and column entries
respectively.)

The main theorem may now be stated as follows, along with its imme-
diate corollary yielding the fractal generation process for Pascal’s square
modulo p?.

THEOREM 4.5. There is a homomorphism
(4.3) Ty ['f']z:y

from the partial semigroup D, of located residues modulo p? to the algebra
of located p x p blocks under Pascal addition modulo p?.
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The proof of Theorem 4.5 is given in Section 6. (The homomorphism
concept used in the statement of Theorem 4.5 is that of {2, 2.1.1(i)] —
compare the beginning of Section 6.)

COROLLARY 4.6. The Pascal square to a prime square modulus p? is gen-
erated by the following fractal process:

(1) Start with an initial configuration of loo;

(2) For each iterative step, the output configuration is obtained by applying
the production rule rzy +— [r]zy to each modularly located entry of the
input configuration.

REMARK 4.7. The homomorphism of Theorem 4.5 cannot extend to the
total semigroup T}, of Remark 3.3, since it would take associative additions
of T, to non-associative “unlocated” tile additions.

5. Generalized production coefficients

In this section, we digress from the context of Theorem 4.5 to consider
the generalized production coefficients

(5.1) )\T(q)zl{(“T) _1} =—%—!{(q+7‘)(Q+T—1)...(q+1)—r!}

q q q
for arbitrary positive integers ¢ and 0 < r < q. For q prime, the generalized
production coefficients reduce to the modular production coeflicients of Def-
inition 4.1 (see Corollary 5.2 below). Our concern is the question of when
the generalized production coefficients take integral values. The following
propositions suggest that integrality of the coefficients A.(¢) is an indicator
of the primality of g. We use Landau’s “big O” notation in an algebraic

sense, to identify a certain integral multiple O(n) of an integer n (contrast
with [4, §1.6]).

PROPOSITION 5.1. Suppose that r is a prime divisor of a composite positive
integer q. Then the generalized production coefficient A.(q) is not integral.

Proof. The generalized production coefficient (5.1) expands as

(5.2) Ar(g) = ﬁ{o(q2)+q-r![%+%+---+ﬂ}
OQ)+r+ 5+ + =g+ (r—1)

rl ’

a fraction in which all the terms in the numerator and denominator are
positive integers. Recalling that r divides g, it is apparent that the prime
r is a divisor of each summand in the numerator except the last. Thus the
numerator, not being congruent to 0 modulo r, does not contain a factor of
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r that would cancel the prime factor r of the denominator. In other words,
the coefficient A,(g) is not integral in this case. =

COROLLARY 5.2. If q is prime, then the generalized production coefficients
reduce modulo q to the production coefficients of Definition 4.1.

Proof. Equation (5.2) shows that (5.1) is congruent to (4.1) when ¢ is the
prime p of Section 4. =

REMARK 5.3. For a prime r, the non-integrality condition of Proposi-
tion 5.1 is necessary for r to divide ¢, but not sufficient. For example, A5(27)
is not integral (although A7(27) is).

PROPOSITION 5.4. The generalized production coefficient A.(q) is integral
for all positive integers r that are less than the smallest prime divisor p of q.

Proof. For r < p, there is an integer

g+r\_,_(g+r)...(g+1)
(77) -

where P(q) is a polynomial in g with integer coefficients. For any positive
integer m < r < p, the number m does not divide g, and so r! is coprime to
g- Thus r! cancels with P(q) in the final term of (5.3), and

o= H(117) )20

Propositions 5.1 and 5.4 suggest the following:

1290
r! r!

(5.3)

bl

is also integral. =

ProBLEM 5.5. For each positive integer ¢, determine exactly which values
of r make the generalized production coefficient A.(q) integral.

PRrROBLEM 5.6. Is there a combinatorial interpretation of the coefficient
Ar(g) in those cases for which it is integral?

6. Proof of the main theorem

This section is devoted to the proof of Theorem 4.5. The proof demon-
strates the preservation of the located partial addition

(6.1) Ta(y-1) T S@-1)y = (1 + $)ay
from D, under the production rule (4.3). It depends on a local version of
the transposition symmetry of the modulo p Pascal square.

LEMMA 6.1. In the context of (6.1), there is a congruence

(6.2) rz = sy (mod p).
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Proof. For natural numbers z,y, one has
z+y—1 (z+y-—1)! r—1+y
6.3 = = .
(63 ( z )x (z - Dy - 1)! y )*
The desired result (6.2) is then just the modulo p reduction of (6.3). =

In view of the anomalous behavior of A\,_; for p = 2, it is convenient to
treat that case separately.

PROPOSITION 6.2. There is a homomorphism rgy — [r|gy from the algebra
Dy of located residues modulo 4 to the algebra of located 2 x 2 blocks under
Pascal addition modulo 4.

Proof. For p = 2, the block (4.2) completes to

r r(1+ 2z)

ey = r(1+2y) 2r(l+z+y) .

Corresponding to the partial addition (6.1) in Dg, one then has the tile sum
s s[1 4 2(z — 1)]
s(1+ 2y) 2s(z +y)
T r(1+2z) | r+s+2(rz + sy) (r+s)(1+2z)
rll+2(y—1)] 2r(z+y)| (r+s)(1+2y) 2(r+s)(1+z+vy)
To verify the homomorphic property, it remains to establish that

re+sy=0 (mod 2).

But this follows immediately by the case p = 2 of Lemma 6.1. =

EXAMPLE 6.3. The case p = 3 of Theorem 4.5 is also sufficiently direct
that it is worth exhibiting explicitly. The block (4.2) now completes to

T r(1+ 3x) T
[Mley= | r(14+3y) 2r+3r(c+y) 3Ir(Ql+z+y) -
T Irl+z+y) 6r(l+z+y)

The tile sum corresponding to the partial addition (6.1) in Dj is

L‘q 35(x‘+ Y) 63(1:'+ )

r+s (r+s)+3s(z+vy) r+s
r(z+y) | r+s+3r(z+y)
6r(z +y) T+s
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To verify the homomorphic property, it remains to establish
3s(z+y)=3(r+s)z and 3r(z+y) =3(r+s)y.

These equations follow immediately by the case p = 3 of Lemma 6.1, namely

rz = sy (mod 3).

For the proof of Theorem 4.5 in the general odd prime case, a fuller
description of [r];, is provided by Proposition 6.7 below. The proposition
depends on three lemmas. The reciprocals on the right hand sides of the
equations (6.4), (6.5) and (6.6) in the statements of the lemmas are inter-
preted as in Definition 4.1.

LEMMA 6.4. For an odd prime p and 0 < y < p, there is a congruence

-1+ _
(6.4) (p ) y)z py! (mod p?).
Proof.
(p—1+y>:(p+y—1)(p+y—2)---(p+1)p
Yy yly—1)...2-1
W-D@-2)...2-.1-p_ 2
= = mod p°). =
yly—1)...2-1 Py ( P’)
LEMMA 6.5. For an odd prime p and 0 < y < p, there is a congruence
2p—-1+ -1+ _
(6.5) (p y y)_(p y y)Epyl (mod p?).

Proof.

() -07")

=(2p+y—1)(2p—+—y—2)...(2;0—%—1)2;0
yy-1)...2-1

_(p+ty-Dp+y-2)...(p+1)p
yly—1)...2-1

Ep(y—l)(y—2)--.2~1-2_1[)(y—1)(y—2)...2-1

yly—1)...2-1 yly—1)...2-1
-1 y-2)...2-1 9
=p Wy —1)...2-1 = py (mod p*). =

LEMMA 6.6. For an odd prime p and 0 < y < p, there is a congruence

p+y+p—1 p—1+y -1 2
6.6 — = .
(6.6) ( p—1 ) ( p1 ) py~ (mod p°)
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Proof.

p+y+p—1
( p—1 )
Cp+y—-1D(2p+y—2)...2p+1)2p(2p—-1)...(p+ 1)p
P+y)p+y—-1) ...+ plp—-1)...2-1
(2p+y—-1(2p+y—2)...(2p+1)2p
yly—1)...2-1
E(2p—1+y) (mod p?).
Yy
The desired result then follows by (6.5). =

PROPOSITION 6.7. If p is odd, then the located block [r|qy of (4.2) com-
pletes to

r r(1+pAjz) r
(6.7) r(1+phy) ... coe mpiTHl+2z+y)
r coo i Yl +z+y) ... —rp(l4+z+y)
Proof. By the linearity of the assembly rule (1.1), it suffices to prove that
1 v 1+ p)\jm cee 1
(6.8) 14+phy ... . .o pTl 4z +y)
1 oo o pi M4+ z+y) ... —p(l+z+y)

is correctly completed from its left-hand column and top row according to
(1.1) modulo p?. By linearity and the symmetry of Pascal’s square, it suffices
in turn to prove that
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and
0 ... pX\ ... 0
(6.10) 0 ... ... ... pi!
0 ... pi/' ... —p

are correctly completed from their left-hand columns and top rows according
to (1.1) modulo p?. Now the form of (6.9) in the top left hand corner of
Pascal’s square modulo p? follows by Lemma 6.4. On the other hand, the
tile (6.10) is bordered on the left hand column and top row by the difference

1 ... l+py ... 1 1 ... 1 .1
(6.11) 1 -1
1 1

By (5.1) with ¢ = p and r = j, it is apparent that the completion of the
left-hand term of (6.11) occupies the locations

{(z,y) | p<z<2p, 0<y<p}

in the modulo p? Pascal square. The completion of the right-hand term
occupies the locations {(z,y) | 0 < z,y < p} in the modulo p? Pascal
square. That (6.10) completes as indicated then follows by Lemmas 6.5 and
66. =

REMARK 6.8. On dividing the tile (6.10) by p, one obtains a curious natural
example of the emergence of a symmetrical output (the right hand column
and bottom row) from an asymmetrical input (the left hand column and top
row) under the assembly rule (1.1) modulo p. For instance, the p = 5 case
yields

o O O O O
e e
W NN~ O
N SN =
=N W = O
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The proof of the main theorem is now readily concluded along the lines
exhibited for p = 3 by Example 6.3.

PROPOSITION 6.9. For an odd prime p, there is a homomorphism ryy —
[Flzy from the algebra D, of located residues modulo p? to the algebra of
located p x p blocks under Pascal addition modulo p?.

Proof. Using Proposition 6.7, the top row of the tile sum [r];,_1) +[5](z—1)y
is computed as follows:

| s . pG-) s +y) i~ s(z +y)
r’r+s...(r+s)+p)\j—18($+y)(T+S)+P)\j3($+y)---

(recall A\; = 171). By Lemma 6.1 (local symmetry), the typical entry
(r+s)+p\s(z+y)
of the top row of the tile sum reduces to
(r+s)(1+prz),
since the sy term may be replaced by rz. The top row of the tile sum is thus

of the required form. By symmetry, the left hand column also appears in
the required form, so that [r];¢,_1) + [8](z—1)y is indeed given by [r + s]zy. =
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