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Abstrac t . This paper, resulting from two summer programs of Research Experi-
ence for Undergraduates, examines the congruence classes of binomial coefficients to a 
prime square modulus as given by a fractal generation process for lattice pa th counts. 
The process depends on the isomorphism of partial semigroup structures associated with 
each iteration. We also consider integrality properties of certain critical coefficients that 
arise in the generation process. Generalizing the application of these coefficients to ar-
bitrary arguments, instead of just to the prime arguments appearing in their original 
function, it transpires that integrality of the coefficients is indicative of the primality of 
the argument. 

1. Introduction 
The general topic of this paper is the investigation of a fractal genera-

tion process for modular binomial coefficients. Previous work in the area, 
more recently from a dynamical systems viewpoint, has most often focussed 
on the distinction between zero and non-zero congruences [1] [3] [6] [8] [9], 
connecting back to Kummer's classical results on the divisibility of binomial 
coefficients by prime powers [5]. Our concern is rather with an algebraic 
fractal generation process for each modulus, exhibiting isomorphisms of to-
tal or partial semigroup structures defined on sets of digits and on sets of 
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squares under the Pascal addition or tile sum of Definition 2.3. Throughout 
the paper, p will denote a given prime number. Section 2 reviews the case 
of modulus p. (Although this case is already well understood, our algebraic 
approach will serve as a useful model for the more complex prime square 
case.) Theorem 2.4 gives an isomorphism from the (total) additive group 
Cp of integers modulo the prime p to a set of p x p tiles appearing in Pas-
cal's square modulo p. The main theorem of the paper, proved in the final 
Section 6, is the corresponding result for modulus p2 (Theorem 4.5). This 
theorem gives an isomorphism to a set of p x p tiles appearing in Pascal's 
square modulo p2 from a partial semigroup structure Dv on an indexed set 
of digits modulo p2 (Definition 3.1). The set of tiles here is the image of 
the homomorphism (4.3). The isomorphism, which also functions as the key 
iterative step in the fractal generation process (Corollary 4.6), is defined in 
terms of certain production coefficients (Definition 4.1) that may be viewed 
as modular harmonic sums, or discrete modular versions of the logarith-
mic integral S^dt/t = logr. Section 5 generalizes the application of these 
coefficients to arbitrary arguments, instead of just to the prime arguments 
appearing in their original function. It transpires that integrality of the co-
efficients is indicative of the primality of the argument. Problems 5.5 and 
5.6 ask for a determination of exact conditions for this integrality, and for a 
combinatorial interpretation of the coefficients in those cases where they are 
integral. 

A distinguishing feature of our approach is the way we address binomial 
coefficients, using Pascal's square as partially displayed in Table 1. 

x\y 0 1 2 3 4 5 . . . 

0 1 1 1 1 1 1 
1 1 2 3 4 5 6 . . . 
2 1 3 6 10 15 21 . . . 
3 1 4 10 20 35 56 . . . 
4 1 5 15 35 70 126 . . . 
5 1 6 21 56 126 252 . . . 

Table 1. Pascal's Square. 

Thus the binomial coefficient appears in the location with coordi-
nates (x,y). We consider the square as the result of the iterative construction 
process initialized by placing an entry of 1 at each location having at least 
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one zero coordinate, and then filling in by the linear assembly rule 

at each location with both coordinates positive. Displaying binomial co-
efficients in this form, rather than in the more customary Pascal's trian-
gle, is well known to identify (x^v) directly as the number of "geodesies" 
or minimal-length paths through points of the square lattice from (0,0) to 
(x, y). Indeed, each such path arriving at (x, y) previously passed through ei-
ther (x, y — 1) or (x — 1, y), while points on the border have a unique geodesic 
from the origin. In the fractal generation process embodied in Corollary 4.6, 
the expansion of each digit of Pascal's square modulo p2 depends on the 
residues of its addressing coordinates x, y modulo p. 

2. Prime moduli 
We begin by considering an algebraic fractal construction of Pascal's 

square to the prime modulus p. 

LEMMA 2.1. There is a p x p block 

1 1 1 . . . 1 1 
1 2 3 . . . p - 1 0 

1 3 ' - . 0 0 

1 p - 1 0 . . . 0 0 
1 0 0 . . . 0 0 

appearing in Pascal's square modulo p. In particular, all the elements below 
the diagonal are zero. 

Proof. A p x p block bordered on the left and the top by ones appears in 
the NW corner {(x,y) | 0 < x, y < p} of the ordinary, non-modular Pascal's 
square. Consider the diagonal {(z,?/) | x + y = p} just below the diagonal 
from the SW to the NE corner of the block. All the binomial coefficients 
appearing on that diagonal are of the form (£) with 0 < y < p. Now 

AA = p! 
w vKP-VV-' 
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In this fraction, all the numbers multiplied together in the denominator are 
strictly less than p, so do not cancel the p appearing in the numerator. This 
implies that with 0 < y < p is divisible by p. Thus there are zeroes in 
the corresponding places of the modular square, and the rest of the block is 
completed by zeroes according to the assembly rule (1.1). • 

L E M M A 2 . 2 . For each 0 <r<p, a p x p block of the form 

r 
2 r 

3 r 

r 
3 r 

r r 
(p - 1 )r 0 

0 

r (p — 1 )r 0 
r 0 0 

0 
0 

0 

0 
0 

is assembled according to the rule (1.1) of Pascal's square modulo p. 

Proof. The assembly rule is linear, so the blocks of Lemma 2.2 are obtained 
as the multiples by r of the block of Lemma 2.1. • 

D E F I N I T I O N 2 . 3 (Pascal sum, tile sum). Given p x p blocks 

£11 X12 . . . X\P 

X21 ' ' ' X2p and 

XPI XP2 X. PP 

2/11 YI2 • • • YIP 

2/21 '' • Y2P 

Upl Up 2 UPP 

their Pascal sum or tile sum is defined to be the p x p block obtained by 
filling in the bottom p x p right-hand corner 

z ii 212 • • • Zip 

221 ' • Z2p 

Zpl Zp2 . • . Zpp 
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of the scheme 

yn 2/12 • • yip 

y 2i yip 

yP i yP2 • y?? 
Xll Xl2 • X\p Zn Z12 • Zip 

«21 Z21 Z2p 

Xp\ XP2 • Zpl Zp2 • Zpp 

according to the assembly rule (1.1) of Pascal's square. 

T H E O R E M 2 . 4 . For 0 < r < p, let [r] denote the p x p block 

r r ... r 

r 0 

r 0 . . . 0 

from Lemma 2.2. Then there is an isomorphism r i—> [r] from the additive 
group Cp of integers modulo p to the set of p x p blocks under Pascal addition 
modulo p. 

Proof. For each 0 < r,s < p, consider the modular Pascal addition 

s s s 

s 0 

s 0 . . . 0 

r r r * 

r 0 

r 0 . .. 0 

of [r] to [s]. The square marked by * is filled in as r + s (modulo p). Because 
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of the adjoining zeroes, the remaining squares in the same row and the same 
column as the marked square are also filled in as r + s. This creates [r + s] 
as the Pascal sum of [r] and [s] modulo p. m 

COROLLARY 2 . 5 . The Pascal square to a prime modulus p is generated by 
the following fractal process: 

(1) Start with an initial configuration of 1; 
(2) For each iterative step, the output configuration is obtained by applying 

the production rule r i-> [r] to each entry of the input configuration. 

For p = 2, the first steps of the process may be illustrated as follows: 

1 
2 00 01 10 11 

1 0 1 00 1 1 1 1 
0 1 1 01 1 0 1 0 
1 1 0 10 1 1 0 0 

11 1 0 0 0 

Here, each stage of the square is presented together with the addresses of its 
entries (in binary notation). The boldface numbers count the steps in the 
process. In the Pascal square mod p, the ancestry of the entry addressed 
by a given pair (x, y) of natural numbers consists of all those p x p blocks 
that expand in the generation process to include the (x, y)-entry, along with 
the single entries at each stage that have expanded to these respective p x p 
blocks. For example, in the above illustration modulo 2, the ancestry of 
the (01, ll)-entry contains the 2 x 2 blocks starting at (0,0) in Step 1 and 
(00,10) in Step 2, as well as the (0,0)-entry of Step 0 and the (0, l)-entry in 
Step 1. The ancestry of the (10, ll)-entry contains the 2 x 2 blocks starting 
at (0,0) in Step 1 and (10,10) in Step 2, as well as the (0,0)-entry of Step 0 
and the (1,1)-entry in Step 1. 

For each natural number x, let . . . X2X1X0 be the base-p expansion of x, 
so that 

00 

(2.1) x = Y J * i P i 

i=0 
with integers 0 < Xi < p. The following immediate consequence of Corol-
lary 2.5 is a well-known instance of Kummer's criterion [3] [5]. 

COROLLARY 2 . 6 . If there is a natural number i such that Xi + yi > p, then 

^ + ^ = 0 (mod p). 
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Proof. The (x, y)-entry of Pascal's square modulo p includes an (xi, y^-entry 
of a tile [r] in its ancestry. By Lemma 2.2, this entry is 0, which expands to 
an all-zero tile at each subsequent step. • 

3. The partial semigroup 
Definition 3.1 of this section specifies the partial semigroup structure 

Dp, involving residues modulo p2, that for the prime square case plays a 
role analogous to that played by the cyclic group Cp of residues modulo p in 
Theorem 2.4. The modular locations of the definition will correspond to the 
modulo p residues XQ, yo of coordinates x, y of absolute locations in Pascal's 
square, according to the notation of (2.1). This modular addressing is a key 
feature of our fractal generation process. 

D E F I N I T I O N 3 . 1 . The algebra of located residues modulo p is defined to be 
the set Dp of all elements rxy with r G Z/p2Z, x,y G Cp such that 

/x' + y'\ 
(3.1) 3x'= x (modp). 3y' = y (modp). I I = r (modp2). 

\ V J 
The residues x, y modulo p are known as the modular locations. The partial 
addition on Dp is defined by 

( 3 - 2 ) rx(y-l) + s(x-l)y = ( r + s)xy 

if and only if 3a:' = x (mod p). 3y' = y (mod p). 

fx' + y'- 1\ _ 2 f x ' - l + y'\_ 2 ^ j = r (mod p), j = s (mod p). 

Prom the discussion of Remark 3.3 below, it will transpire that the alge-
bra structure defined on Dp by (3.2) is a partial semigroup. 

E X A M P L E 3 . 2 . Table 2 gives the partial addition table for The columns 
have been labelled in a different order to the rows, so that transposition of 
Pascal's square modulo 4 corresponds to transposition of the table. Note 
that I n and 3n do not appear in Z?2, according to Corollary 2.6. 

R E M A R K 3 . 3 . One might choose to extend the partial addition (3.2) on 
the set Dp to a total addition 

(3.3) rxz + sty = (r + s)xy 

on the set 

Tp = Z/p21 x Z/pZ x Z/pZ = {rxy | r G Z/p2Z, x, y G Z/pZ}. 

Note that the subset 

(3.4) {0X2/ | x, y G Z/pZ} 
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Ooo Oio Ooi On loo lio loi 2oo 2io 2oi 2 n 3oo 3io 3oi 

000 

001 
Oio 
On Oio 

Ooo 
On 

Ooi 

lio 

loo 

2io 

2oo 

3io 

3oo 

100 
101 
lio 

loo 
loi 

2oo 
2 n 

3oo 

3oi 

Ooo 
On 

200 
201 
2io 
2 n 

2oo 
2oi 

3io 

3oo Ooo 
On 

lio 

loo 

300 
301 
3io 

3oo 

3oi 

Ooo 
On 

loo 
loi 

2oo 
2 n 

Table 2. Partial addition on £>2-

is a subalgebra of Tp that forms a so-called rectangular band [7, §1.3]. It 
is apparent that the operation (3.3) is associative, making Tp a semigroup, 
namely the product of the cyclic group Z /p 2 Z with the rectangular band 
(3.4). However, Tp is certainly not a group, since for example Ooo + Ooo = 
Ooo — Ooi + Ooo-

4. T h e fractal process 
Just as in the modulo p case, the fractal generation process for Pascal's 

square modulo p2 expands digits into p x p blocks. The expansion process 
involves multiplication of the modular locations of the digit by certain coef-
ficients that may be viewed as modular harmonic sums, or discrete modular 
versions of dt/t = logr. 

DEFINITION 4 . 1 . For each positive integer r less than p, define the produc-
tion coefficient 

(4.1) A r = i + i + . . . + I 

as a residue modulo p (recalling that the non-zero residues 1,2, . . . , r are 
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invertible modulo p). By convention for r = 0, the production coefficient Ao 
is defined to be zero. 

For odd primes, the production coefficients are symmetrical. 

L E M M A 4 . 2 . For odd p and 0 < r < p/2, one has \y — Ap—i—7*. 

Proof. For 0 < s < p, there is a congruence 

s(- + —!— | = s - - ( p - s)—— = 1 - 1 = 0 
\s p — s J s p — s 

modulo p, so that ^ + ^ ^ = 0 [4, §7.8]. The statement of the lemma is 
proved by downward induction: it is trivially true for r = (p —1)/2. Suppose 

= Ap_i_s. Then (As — Ap_i_s) — (As_i — Ap_i_(s_i)) = ^ + = 0 
As_i — Ap_i_(s_i) = 0 as required. • 

C O R O L L A R Y 4 . 3 . If p is odd, then AP_I = AO = 0 . 

Note that Ap_i = 1 for p = 2. The key role of the production coefficients 
appears in the following: 

D E F I N I T I O N 4 . 4 . Suppose r e "LI-¡Pit, x,y e Cp. Then the located block 
[r]xy is defined to be the p x p array of Z/p2Z-elements 

p- - - s o 

(4.2) 

r r ( l + p A i x ) r(l+p\2x) . . . r(l+p\p-ix) 

r(l+p\iy) ... : 

r ( l + p A 2 y ) . . . : 

r(l+pXp-iy) 

completed according to the assembly rule (1.1) modulo p2. (Since Ao = 0, the 
top left-hand entry may also be written in the equivalent forms r(l+pAox) = 
r ( l + pXoy), consistent with the remaining first row and column entries 
respectively.) 

The main theorem may now be stated as follows, along with its imme-
diate corollary yielding the fractal generation process for Pascal's square 
modulo p2. 

T H E O R E M 4 . 5 . There is a homomorphism 

(4.3) rxy H-> [r]xy 

from, the partial semigroup Dp of located residues modulo p2 to the algebra 
of located p x p blocks under Pascal addition modulo p . 
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The proof of Theorem 4.5 is given in Section 6. (The homomorphism 
concept used in the statement of Theorem 4.5 is that of [2, 2.1.1 (i)] — 
compare the beginning of Section 6.) 

C O R O L L A R Y 4 . 6 . The Pascal square to a prime square modulus p2 is gen-
erated by the following fractal process: 

(1) Start with an initial configuration of loo; 
(2) For each iterative step, the output configuration is obtained by applying 

the production rule rxy [r]xy to each modularly located entry of the 
input configuration. 

R E M A R K 4 . 7 . The homomorphism of Theorem 4.5 cannot extend to the 
total semigroup Tp of Remark 3.3, since it would take associative additions 
of Tp to non-associative "unlocated" tile additions. 

5. Generalized production coefficients 
In this section, we digress from the context of Theorem 4.5 to consider 

the generalized production coefficients 

(5.1) Ar(q) 

for arbitrary positive integers q and 0 < r < q. For q prime, the generalized 
production coefficients reduce to the modular production coefficients of Def-
inition 4.1 (see Corollary 5.2 below). Our concern is the question of when 
the generalized production coefficients take integral values. The following 
propositions suggest that integrality of the coefficients Ar(q) is an indicator 
of the primality of q. We use Landau's "big O" notation in an algebraic 
sense, to identify a certain integral multiple O(n) of an integer n (contrast 
with [4, §1.6]). 

P R O P O S I T I O N 5 . 1 . Suppose that r is a prime divisor of a composite positive 
integer q. Then the generalized production coefficient Ar(q) is not integral. 

Proof. The generalized production coefficient (5.1) expands as 

(5.2) Xr(q) = -^{0(q2)+q 

0(q)+r\ + r4 + ... + ^ + (r-l)\ 
r! 

a fraction in which all the terms in the numerator and denominator are 
positive integers. Recalling that r divides q, it is apparent that the prime 
r is a divisor of each summand in the numerator except the last. Thus the 
numerator, not being congruent to 0 modulo r, does not contain a factor of 

1 1 1 
1 2 r 
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r that would cancel the prime factor r of the denominator. In other words, 
the coefficient Ar(q) is not integral in this case. • 

COROLLARY 5.2. If q is prime, then the generalized production coefficients 
reduce modulo q to the production coefficients of Definition 4-1-

Proof. Equation (5.2) shows that (5.1) is congruent to (4.1) when q is the 
prime p of Section 4. • 

R E M A R K 5 . 3 . For a prime r, the non-integrality condition of Proposi-
tion 5.1 is necessary for r to divide q, but not sufficient. For example, As(27) 
is not integral (although Az(27) is). 

PROPOSITION 5.4. The generalized production coefficient Ar(q) is integral 
for all positive integers r that are less than the smallest prime divisor p of q. 

Proof. For r < p, there is an integer 

(5.3) ( Q + r ) - 1 = (g + r ) - - - ( 9 + 1 ) _ ! = 
\ q J r\ r\ ' 

where P(q) is a polynomial in q with integer coefficients. For any positive 
integer m < r < p, the number m does not divide q, and so r! is coprime to 
q. Thus r! cancels with P(q) in the final term of (5.3), and 

^ { ( T H ^ 
is also integral. • 

Propositions 5.1 and 5.4 suggest the following: 

P R O B L E M 5 . 5 . For each positive integer q, determine exactly which values 
of r make the generalized production coefficient Ar(q) integral. 

P R O B L E M 5 . 6 . Is there a combinatorial interpretation of the coefficient 
Ar(q) in those cases for which it is integral? 

6. Proof of the main theorem 
This section is devoted to the proof of Theorem 4.5. The proof demon-

strates the preservation of the located partial addition 

(6-1) rx(y-l) + s(x-l)y = (r + S)xy 

from Dp under the production rule (4.3). It depends on a local version of 
the transposition symmetry of the modulo p Pascal square. 

L E M M A 6 . 1 . In the context of (6.1), there is a congruence 

(6.2) rx = sy (mod p). 
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Proof. For natural numbers x, y, one has 

(6.3) 
x + y — I 

x — (x + y-1)1 x 1 + y 
y-x J (x — l)!(y — 1)! V y 

The desired result (6.2) is then just the modulo p reduction of (6.3). • 

In view of the anomalous behavior of Ap_i for p = 2, it is convenient to 
treat that case separately. 

P R O P O S I T I O N 6 . 2 . There is a homomorphism rxy t—> [r]xy from the algebra 
D-2 of located residues modulo 4 to the algebra of located 2 x 2 blocks under 
Pascal addition modulo 4. 

Proof. For p = 2, the block (4.2) completes to 

r\xy — 
r r ( l + 2x) 

r(l + 2y) 2r(l + x + y) 
Corresponding to the partial addition (6.1) in Z?2, one then has the tile sum 

s s[l + 2(x - 1)] 
s{l + 2y) 2 s(x + y) 

r r ( l + 2x) r + s + 2(rx + sy) (r + s)(l + 2x) 
r[l + 2(y — 1)] 2 r(x + y) (r + s)(l + 2y) 2(r + s)(l + x + y) 

To verify the homomorphic property, it remains to establish that 

rx + sy = 0 (mod 2). 

But this follows immediately by the case p = 2 of Lemma 6.1. • 

E X A M P L E 6 . 3 . The case p = 3 of Theorem 4 .5 is also sufficiently direct 
that it is worth exhibiting explicitly. The block (4.2) now completes to 

r\xy — 
r r ( l + 3x) r 

r ( l + 3y) 2r + 3r(x + y) 3r(l + x + y) • 
r 3r(l + x + y) 6r( l + x + y) 

The tile sum corresponding to the partial addition (6.1) in £>3 is 

s 3 s(x + y) 6s(a; + y) 

r r + s (r + s) + 3 s(x + y) r + s 
... 3r(x + y) r + s + 3r(x + y) 

6 r(x + y) r + s 
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To verify the homomorphic property, it remains to establish 

3s(x + y) = 3(r + s)x and 3r(x + y) = 3(r + s)y. 

These equations follow immediately by the case p = 3 of Lemma 6.1, namely 
rx = sy (mod 3). 

For the proof of Theorem 4.5 in the general odd prime case, a fuller 
description of [r]xy is provided by Proposition 6.7 below. The proposition 
depends on three lemmas. The reciprocals on the right hand sides of the 
equations (6.4), (6.5) and (6.6) in the statements of the lemmas are inter-
preted as in Definition 4.1. 

L E M M A 6 . 4 . For an odd prime p and 0 < y < p, there is a congruence 

P - 1 + V\ _ _ -l / „ i (6.4) ^ y (mod p ). 

Proof . 
f p - l + y\ (p + y-l)(p + y-2)...(p + l)p 

V J 2/(2/ - 1 ) . . . 2 • 1 
_ (y — l)(y — 2 ) . . . 2 • 1 • p _ 2 

= y(y - 1 ) . . . 2 • 1 = P V ( m o d P ) " -

L E M M A 6 . 5 . For an odd prime p and 0 < y < p, there is a congruence 

2 p - l + y \ f p - l + y\_ 2 (6.5) ^ y - ' " J " ^ y {m°dp)-

Proo f . 
2p - 1 + y \ _ f p - 1 + yN 

y ) V y 
= (2p + y - l ) ( 2 p + y - 2 ) . . . ( 2 p + l ) 2 p 

y{y — i ) . . . 2 • l 
_ (y + y - i)(p + y - 2 ) . . . ( p + i )p 

y(y — i) • • • 2 • l 
(y — l)(y — 2 ) . . . 2 • 1 • 2 (y - l)(y - 2 ) . . . 2 • 1 

P y{y — 1 ) . . . 2 • 1 P y(y — 1 ) . . . 2 • 1 
(y — l)(y — 2 ) . . . 2 • 1 , , , 

= " , ( , - ! ) • • • 2 . 1 ( m ° d i > ) " 
LEMMA 6.6. For an odd prime p and 0 < y < p, there is a congruence 

p + y + p - l \ ( p - l + y\_ _x 2 (6.6) p - i 
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Proof. 
p+y+p- 1N 

p- 1 
= (2p + y - l)(2p + y - 2 ) . . . (2p + l)2p(2p - 1 ) . . . (p + l)p 

(p + y)(p + y - l ) . . • (p + l)p(p - l ) . . . 2 • l 
_ (2p + y — l)(2p + y — 2)... (2p + l)2p 

y(y — i ) . . . 2 • l 
2p -1 + y 

y (mod p2). 

The desired result then follows by (6.5). • 

PROPOSITION 6 . 7 . If p is odd, then the located block \v\Xy of (4.2) com-
pletes to 

(6.7) 

r ( l +pXjx) 

r(l+p\iy) ... rpi l(\-\-x + y) 

r ... rpj 1 ( l + x + y) . . . — rp(l + x + y) 

Proof. By the linearity of the assembly rule (1.1), it suffices to prove that 

(6 .8) 

1 + p\jX 

1 + pXiy .. 

1 pj (1 + x + y) 

... pi 1 ( l + x + y) 

-p(l + x + y) 

is correctly completed from its left-hand column and top row according to 
(1.1) modulo p2. By linearity and the symmetry of Pascal's square, it suffices 
in turn to prove that 

1 . . . 1 . . . 1 

(6.9) pi - l 

1 ••• PJ 1 - 1 
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and 

p\j 

(6.10) pi 

0 PJ -P 

are correctly completed from their left-hand columns and top rows according 
to (1.1) modulo p2. Now the form of (6.9) in the top left hand corner of 
Pascal's square modulo p2 follows by Lemma 6.4. On the other hand, the 
tile (6.10) is bordered on the left hand column and top row by the difference 

(6.11) 

1 . . . 1 + pXj . . . 1 1 . . . 1 . . . 1 

By (5.1) with q = p and r = j, it is apparent that the completion of the 
left-hand term of (6.11) occupies the locations 

{(z, y) I P < x < 2p, 0 < y < p) 

in the modulo p2 Pascal square. The completion of the right-hand term 
occupies the locations {(x,y) | 0 < x, y < p} in the modulo p2 Pascal 
square. That (6.10) completes as indicated then follows by Lemmas 6.5 and 
6.6. • 

REMARK 6 . 8 . On dividing the tile (6.10) by p, one obtains a curious natural 
example of the emergence of a symmetrical output (the right hand column 
and bottom row) from an asymmetrical input (the left hand column and top 
row) under the assembly rule (1.1) modulo p. For instance, the p = 5 case 
yields 

0 1 4 1 0 

0 1 0 1 1 

0 1 1 2 3 -

0 1 2 4 2 

0 1 3 2 4 
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The proof of the main theorem is now readily concluded along the lines 
exhibited for p — 3 by Example 6.3. 
P R O P O S I T I O N 6 . 9 . For an odd prime p, there is a homomorphisrn rxy i—> 
[r]Xy from the algebra Dp of located residues modulo p2 to the algebra of 
located p x p blocks under Pascal addition modulo p2. 
Proof. Using Proposition 6.7, the top row of the tile sum [r]a.(J/_1) + [s](x_i)3/ 

is computed as follows: 

s . . . p(j -1) 1s(x + y) pj ls(x + y) 

r r + s... (r + s) + p\j-is(x + y) (r + s) + p\js(x + y) ... 

(recall Ai = 1 By Lemma 6.1 (local symmetry), the typical entry 
(r + s) +p\js(x + y) 

of the top row of the tile sum reduces to 
(r + s)(l +p\jx), 

since the sy term may be replaced by rx. The top row of the tile sum is thus 
of the required form. By symmetry, the left hand column also appears in 
the required form, so that [r]x(!/_1) + [s](x_1)J/ is indeed given by [r + .s]xy. • 
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