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S A M E N E S S B E T W E E N B A S E D U N I V E R S A L A L G E B R A S 

Abstract. This is the continuation of the paper "Transformations between Menger 
systems". To define when two universal algebras with bases "are the same", here we propose 
a universal notion of transformation that comes from a triple characterization concerning 
three representation facets: the determinations of the Menger system, analytic monoid 
and endomorphism representation corresponding to a basis. 

Hence, this notion consists of three equivalent definitions. It characterizes another 
technical variant and also the universal version of the very semi-linear transformations 
that were coordinate-free. 

Universal transformations allow us to check the actual invariance of general algebraic 
constructions, contrary to the seeming invariance of representation-free thinking. They 
propose a new interpretation of free algebras ¿is superpositions of "analytic spaces" and 
deny that our algebras differ from vector spaces at fundamental stages. 

Contrary to present beliefs, even the foundation of abstract Linear Algebra turns out 
to be incomplete. 

0. Introduction 

0.0 The sameness problem. To understand what a universal algebra is 
requires to be able to define when two of them "are the same". Isomorphisms 
and general isomorphisms [3] are examples of such definitions. They seem 
to work when we view such algebras from the outside, viz. through notions 
mainly derived from the homomorphisms between such algebras (and in 
particular homomorphisms from algebras of terms) as in Birkhoff's theorem 
and in applications to Logic. 

This very view focusses on free algebras, viz. the ones that have bases. 
Yet, based algebras open a new intrinsic view, which can be relevant to 
Computer Science applications as the ones in 0.4 of [7]. In fact, 0.5 of 
[9] shows that we can define bases both by the above-mentioned homomor-
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phisms (conventional abstract definition) and by the endomorphisms alone 
(representation dependent definition of 0.2 of [11]). 

These two views are different. Counterexample 3.6 of [11] proved that, in 
spite of the seeming invariance of representation-free thinking, the abstract 
representation-free Algebra of the past century turns out unable to check the 
actual invariance of an elementary notion (about bases) that also concern 
the outside view. On the contrary, the representation of endomorphism 
application by basis dependent Menger systems provided such algebras with 
a transformation notion, the "descriptions", able to perform that check. 

(Ironically, this restriction of the homomorphism category to the endo-
morphism monoid made a groupoid, viz. a category, replace the automor-
phism group, viz. a monoid.) 

Then, descriptions might be able to define algebra sameness. Yet, their 
(generalized) Menger systems merely were one of three set-theoretical facets 
of endomorphism representation. Two others were the analytic monoid and 
the very representation function corresponding to a basis. 

Moreover, [11] hints at a further (algebraic) facet: the generalization of 
scalars or dilatations from vector spaces to based universal algebras. Such 
dilatations form the intersection of two well-known structures of Universal 
Algebra: the endomorphism monoid and the clone of elementary functions. 
As recalled in 0.2 scalars provided Linear Algebra with the sameness notion 
rising from semi-linear transformations: why not to generalize it? 

Therefore, we can conceive too many ways to compare based algebras 
from the inside. One might well fear that no single intrinsic sameness exists. 

0.1 The solution, this paper presents for the problem of intrinsic sameness, 
concerns the class of based algebras, where the above-mentioned abstract 
treatments fail. Hence, it also concerns all free algebras, but for a new 
interpretation of them shown in 3.6. 

(For the class of all universal algebras this merely is a negative hint: as 
free algebras are algebras, Abstract Algebra cannot define such sameness nor 
algebraic invariance. Some affirmative hints might come from providing gen-
eral endomorphism monoids with concrete characterizations, a yet unsolved 
problem [2, 4].) 

The three previous set-theoretical facets of endomorphism representation 
are the three structures that directly rise from the choice of a basis as in 0.2 of 
[11]. Each of them has its general definition of transformation corresponding 
to the structure purposes. Each of them also shares with the semi-linear 
transformations, we know from general vector spaces, the splitting into two 
component bijections, one of which is between carriers. 

After the descriptions, the transformations introduced in [11] for Menger 
systems, in 1.5 we define transformations for analytic monoids. We only 
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require to preserve the units and that the other component bijection, which 
is between universal matrices, can determine the one between carriers. 

A first property of such transformations is their characterization in 1.6 
(A) by a reduced monoid composition involving the generator of constants 
of section 1 of [11]. Another is the preservation of scalar monoids. It uni-
versalizes the preservation of scalar fields that semi-linear transformations 
assume by definition. 

The third structure is the representation of the endomorphism monoid. 
As it concerns (general) dilatations, its transformations in 2.2 require both 
a preservation of endomorphisms and a full preservation of dilatations. This 
means that also the "amounts" of dilatations, which come from elements 
called their indicators, are preserved. Clearly, even semi-linear transforma-
tions did require this, but for the formulation, because their dilatations were 
algebra operations preserved by the field isomorphism. 

From the proof in 3.0 that these three universal transformations are the 
same we get two immediate consequences: a preservation of universal flocks 
and a characterization of the "representation-free" universal transformations, 
called renamings, that transform matrices columnwise. After universalizing 
the semi-linear transformations as below, we use this triple characterization 
also to prove that they are equivalent to the others. 

0.2 Semi-linear transformations provide vector spaces with a general 
sameness notion that differs from the abstract one of an isomorphism. (3.5 
(A) will recall their technical details). Isomorphisms (linear transformations) 
are able to formalize sameness only in a proper subclass of such spaces, 
corresponding to certain underlying fields, as the real, rational and some 
Galois ones. 

With one of such fields we can identify the transformations that formal-
ize sameness either by basis transitions or by carrier bijections (the isomor-
phisms), since the former determine the latter and conversely. With other 
fields, as the complex one recalled in 3.5 of [11], also some bijections that 
are not isomorphisms for vector spaces work as transformations, provided 
that they are coupled with some field auto(/iso)morphism. 

Then, basis transitions cannot identify transformations anymore. One 
transition can have two transformations: this transformation couple and its 
induced isomorphism, which again corresponds to another couple with the 
identity as field isomorphism. Such couples, called semi-linear transforma-
tions, replace isomorphisms when comparing general vector spaces. 

This failure of isomorphisms did not weaken the abstract approach of 
the past century both in Linear Algebra and in Universal Algebra. It merely 
fuelled the idea that vector spaces are fairly peculiar cases of universal alge-
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bras, so that one might split their two theories. The "generalized conception 
of space" and the "uniform method" of A.N. Whitehead (preface of [12]) 
seemed naive wishes. 

In fact, it turned out that even such general carrier bijections were some 
abstract isomorphisms (between such remarkable algebras as Abelian groups) 
and that no reference frame was necessary. Moreover, in the universal case, 
the general isomorphisms (that Marczewski's caution called weak) general-
ized semi-linear transformations [3], albeit not formally. 

On the contrary our "Segre descriptions", which rely on generalized 
scalars, in 3.3 formally generalize semi-linear transformations to any based 
universal algebra and in 3.4 become equivalent to the previous descriptions. 
Also, they show why abstract notions work in vector spaces while fail in 
general: within such spaces scalars are representation-free contrary to the 
general case. 

While this denies any transformation peculiarity to vector spaces, their 
natural characterizations as universal algebras are simpler than their conven-
tional definitions. E.g., in [10] they merely come out as "dilatation complete" 
Abelian groups with dilatable bases. 

Then, Whitehead was not so naive. (Also, his treatment of Linear Alge-
bra in [12] was representation dependent.) This also hints that some other 
abstract beliefs and notions that appear sound and crystal clear might de-
serve some check. For instance, as 3.5 (A) will show, we still need some 
statements that Linear Algebra failed to state and prove about the very 
semi-linear transformations, on which the "first fundamental theorem of pro-
jective geometry" [1] relies. 

1. Analytic transformations 

1.0 DEFINITION. While the transformations in [11] concerned two Menger 
systems, in 1.5 they will concern two analytic monoids denoted as in 1.2 
ibid.. Here, we introduce some preliminary notions and results. 

Given a bijection t: Ax^yBY, consider the relation g C A x B defined 
for all a G A and b G B by (a, b) G g iff 

(0) t(Loka) = t(L)oKb for all L : X ^ A , 

namely g relates a and b when bijection t isomorphically relates the two 
unary operations on AX and BY of "right product by the corresponding 
constant": x'a a n d C'B-BY BY such that x'a(L) = L o ka and 
£'B(M) = M o Kb for all L: X —> A and M\Y —>B. Such a right product also 
occurred in the axioms of definition 1.0 in [11] for analytic monoids. 

If g relates any a G A with some b G B and, conversely, any b with some 
a, then we say that t totally induces g from A to B or that g is the relation 
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t o t a l l y i n d u c e d b y t f r o m A t o B . Since our functions X • A ~> ( A ) 
and : B ( B Y ) define 

u n a r y algebras on and BY respectively, 
total induction requires that they are g e n e r a l l y isomorphic algebras as in 2 
of [3]. 

When X , Y / 0, t determines A and B . Then, we merely say that g is 
the r e l a t i o n t o t a l l y i n d u c e d b y t and we write g — G t , where we denote the 
function relating the t's to the g ' s by G C ( B Y ) A * x P ( A x B ) . 

The requirement that t is such a bijection again implies that singleton 
carriers coexist as in (31) of [11]. Then, both analytic monoids are trivial 
and total induction by (0) defines g = A x B , where by 1.0 ibid. A and B 
are only required to be either both empty or both nonempty: e.g. it prevents 
that A x = 0® and B y = l 2 , as 3.1 (A) ibid. did. 

This agrees with the behavior of trivial analytic monoids in 1.0 of [11], 
whereas it disagrees with the premise g : A » — > y B of 3.1 (A) ibid.. Yet, the 
corresponding conclusions still hold. Anyway, if one of the monoid carriers 
is not singleton, then both X , Y ^ 0. 
1 . 1 L E M M A T A . I f t : A x ^ y B Y t o t a l l y i n d u c e s a r e l a t i o n f r o m A t o B , 
g C A x B , t h e n 

(A) t r e t y p e s K a s i n 1 . 6 o f [11] a n d , 

( B ) w h e n X , Y ^ 0 , t h e i n d u c e d r e l a t i o n i s a b i j e c t i o n , g = G t '- A n - ^ - B . 

Proof. (A) When the carriers are singleton, it follows from t = t • i c 
as in 1.6 of [11], Otherwise, the dimensions are not trivial and by 1.0 
ibid. A , B 0. Since for every a G A there is some b G B that satisfies 
(0), from axiom (4) of [11], (0) and (8) ibid, we get for all a G A that 
t ( k a ) = t ( U o k a ) = t ( U ) o K b = K^(t(i/)) = Kb> for some b ' = £ b ( t ( U ) ) . 
Conversely, for all b € B from axiom (11) ibid., (0) and (7) ibid, we get 
K b = V o n b = t { t - \ V ) ) O K b = t ( t - \ V ) O k a ) = t ( k X a { t - H v ] ) ) = t { k a , ) for 
some a ' = x a ( i - 1 (^0 ) with ( a , b) G g . 

(B) Let us show that the induced relation is a function, g — G t : A—>B. 
Let ( a , b'), ( a , b") G g . In (0) take L = i _ 1 ( F ) . Then, kv = V o kv = 
t ( L ) o Kb> = t ( L o k a ) = t ( L ) o K b " = V o Kbn = K y i , because of axiom (11) 
of [11]. Hence, (9) ibid, gets b' = b". 

Since g : A - ^ B comes from the total induction assumption, now we only 
have to show that g ~ l too is a function, g ~ l : B —> A . This, follows from 
(4) ibid, and (2) ibid, by the converse of the preceding reasoning. In fact, 
( a ' , b ) , ( a " , b ) G g implies t ( k a > ) = t ( U o k a i ) = t ( U ) o n b = t ( U o k a n ) = t ( k a n ) 
by (0) with L = U . Since t is one to one, k a i = k a » , whence a ' = a " , m 
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1 . 2 COROLLARY. Ift:Ax^>BY totally induces the bijection g of 1.1 ( B ) 
for X, Y 0 and preserves the unit, 

(1) t(U) = V, 

then g is the K-induced bijection in 1.8 of [11]: for all a £ A and every 
y €Y, g(a) = Gt{a) = t(ka){y), namely t(ka) = Kg(ay 

Proof. Take L = U in (0). Then, for every a G A by (4) of [11], (1) and 
(11) ibid, get t(ka) = t(Uo fca) = V o Kb = Kb, where by 1.1 (B) b = g(a). 
Hence, by (9) ibid. t(ka)(y) = Ks(a)(y) = 9(a) for every y G Y. m 

1.3 DEFINITION. Given two analytic monoids as in 1.2 of [11], we say that 
t: Ax in->yBY preserves K-restricted products when 

(2) t(L oka) = t(L) o t(ka) for all L: X A and a G A . 

1 . 4 L E M M A . If t: Axit—>yBY totally induces a relation from A to B and 
preserves the unit, then it preserves K-restricted products. 

Proof. Trivial for singleton carriers. Otherwise X, Y ^ 0. Then, start from 
(0) and use 1 . 1 (B) and 1 . 2 : for all L :X —> A and a G A, t(L o ka) = 
t(L) onb = t(L) o Kg{a) = t(L) o t(ka). m 

1 . 5 DEFINITIONS. Consider a bijection between the carriers of our two 
analytic monoids, t: Axsv-^By . The conditions of total induction and unit 
preservation are enough to get the preservation of other features between 
such analytic monoids, as we have just shown and we will also find in 1.6. 
Hence, we will say that t is an analytic transformation from the former 
monoid to the latter when it totally induces g from A to B as in 1.0 and 
preserves the unit as in (1). However, even the two preservation properties, 
we have shown in the preceding lemmata, are enough and will allow us to 
use the following characterization 1.6 (A). 

When X, Y / 0, the two analytic monoids identify the two Menger sys-
tems in 1.2 of [11], while t can be the subject of the depiction property (25) 
ibid. Then, we say that g, the bijection If-induced by t as in 1.2, is the 
analytic description of x by £ or from the former monoid onto the latter. 

When Y = 0, both the expression of G in 1.2 and the one of T in (32) 
of [11] fail to express g and t respectively, though both 1.2 and 3.1 (C) ibid, 
are true. Yet, contrary to matrix transformations, analytic descriptions are 
not defined, because of the set-theoretical reason in the note of 1.6 ibid.. 

1 . 6 T H E O R E M S . 
(A) When both dimensions are not trivial, t: Ax»-*yBY is an analytic trans-

formation iff it retypes K as in 1.6 of [11] and preserves K-restricted 
products as in (2). 
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( B ) An analytic transformation t is a monoid isomorphism, namely it pre-
serves the units, t(U) = V, and the matrix product, t(M o L) = t(M) o 

t(L) for all L, M : X A. 

Proofs. (A) (Only if) X-retyping comes from 1.1 (A), while the other 
preservation comes from 1.4. (Hence, this holds even for X = 0 or Y = 0.) 

(If) From (2) and 1.7 (A) of [11] we get t(L o ka) = t(L) o t(ka) = 
i(L)oK9(a) for some g : At*—>yB and all L : X—>A and a G A. Hence, t totally 
induces some relation, which by (0) and 1.1 (B) is this g. For L = U this 
also implies that, for all b = g(a) G B, Kb = t(ka) = t(Uo ka) = t(U)oKb by 
(4) ibid.. Then, by (8) ibid, and (9) ibid. £b{t(U)) = b for all b G B, which 
by 1.4 ibid, and (13) ibid, states that t(U) = r'y{iB) by 0.2 ibid., namely 
t(U) = V. 

(Notice that, when some dimension is trivial, say X = 0, the preservation 
of the unit still comes from (31) of [11] as observed in 1.0, whereas total 
induction fails for A = 0 and fi ^ 0.) 

(B) t preserves the units by definition. It also trivially preserves the 
matrix product in the singleton carrier case. Hence, we can assume X, Y ^ 0 
and, for all L, M: X —> A and y G Y, in order to prove (t(M o L))y = 
(t(M) ot{L))y, we prove K{t{MoL))y = K{t{M)<>t{L))y because of (24) of [11]. 

In fact, we use (10) of [11], 1.1 (A), 1.2, 1.4, (5) ibid., 1.4, 1.2, (10) ibid., 
1.1 (A), (2), (10) ibid., (12) ibid, and (10) ibid, to get, K(t(MoL))y = t(M o 
VjOKy^y) = t(MoL)ot(kv,(y)) = t((MoL)okv,(y)) = i ( M o ( L o f c F , w ) ) = 
¿ ( M o i - ^ L o f c ^ ) ) ) ) = t{Mot-l{t{L)oKV{y]))) = t { M o t ~ l { K { m ) v ) ) = 

t(M) o t ( t ~ l ( K { m ) y ) ) = t(M) o K { m ) y = t(M) o ( t ( L) o KV(y]) = ( t ( M ) o 

t(L))OKV(y) = K.(i(M)oi(L))!/- • 

1 . 7 C O R O L L A R I E S . 

( A ) An analytic transformation t preserves the scalars in both ways: for all 
S : X ^ A 

(3 ) t(S)onb = Kbot(S) for allb £ B i f f S oka = kao S for all a G A , 

according to characterization 2 . 4 (C) of [11]. Hence, t • i p : F^^G is 
an isomorphism between scalar monoids by 2 . 4 (F) ibid, and 1 . 6 ( B ) . 

( B ) When X,Y ^ 0 , t and its analytic description g preserve the derived 
Menger systems as in (36) of [11]. 

Proofs. (A) In case of singleton carriers, the unit scalar is the only matrix 
and the statement is obvious. Otherwise, we only have to prove (3) for 
X , Y ± 0 . B y 1 . 6 ( B ) Soka = kaoS f o r a l l a G A iff t(S)ot(ka) = t(ka)ot(S) 
for all a G A and by 1.2 iff t(S)oKg^ = Kg^ot(S) for all a £ A, which by 
1.1 (B) is equivalent to t(S) o Kb = Kb ° t(S) for all b G B. 
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(B) Take some y G Y. By (9) of [11], 1.2, (7) ibid., 1.6 (A), 1.2, (8) ibid, 
and (9) ibid, we get g{xa(L)) = Kg{Xa(L))(y) = t{kXa{L])(y) = t(Loka){y) = 
(;t(L)0t(ka))(y) = (t(L) o Kg{a))(y) = Kig(a){m)(y) = £g{a)(t(L)) for all 
a e A and L :X^A. m 

1 . 8 L E M M A T A . Let g be the analytic description for t as in 1 . 5 and consider 
the two derived Menger systems, then 

(A) g is a centralizer bijection: for all e: A —• A and f : B —> B such that 
g-e = f -g, 

(4) eeS i f f f e f - , 

(B) c G A is a dilatation indicator (in the former Menger system) i f f g(c) G B 
is (in the latter). 

P r o o f s . (A) By (14) of [11] and (15) ibid, we can prove that, when 

(5) S(e(a)) = f{g{a)) for all a € A, 
for each L : X ^ A , such that 
(6) e(a) = Xa{L) for all a G A, 

there is an M : Y —>B, such that 
(7) &(M) = f(b) for all b G B , 

and — conversely — for each such an M there is such an L. Since g : A^B, 
we can replace (6) by g(e(a)) = g(xa(L)) for all a £ A. Since g: A—$~B, we 
can replace (7) by £g(a)(M) = f(g(a)) for all a G A. 

Therefore, because of (5), we only have to prove that for each L there is 
an M and for each M there is an L such that g(Xa(L)) = £9(a)(M) for all 
a G A. This is what our relation t: AX^>BY does by 1.7 (B), when we set 
M = t(L) in (36) of [11]. 

(B) By 2.3 of [11] any c is a dilatation indicator iff there is L : X —• A such 
that Xc(ka) = Xa{L) for all a G A. As g: A\t-^-B, this occurs iff g{Xc(ka)) = 
g(Xa(L)) for all a G A, namely by 1 . 7 (B) and 1 . 2 iff £ s ( c ) (« f l (a ) ) = € g ( a ) ( * ( £ ) ) 
for all a G A. Since both t: AX»-^>BY and g: A-^>B, we can set M — t(L) 
a n d b = g(a) t o r e w r i t e i t a s £ s( c)(Kb) = £ b ( M ) for al l b G B. 

Hence, c is a dilatation indicator iff there is M :Y -^B such that the last 
condition holds. By 2.3 of [11] this occurs iff d = g(c) G B is a dilatation 
indicator. • 

2. Geometr ic descriptions and transformations 

2.0 DEFINITION. Consider two representations for based algebras as in 
(13) of [11] that derive our Menger systems x a n d £ by 0.2 ibid.. Given any 
g : A—>B, let g denote the function that indexes relations by endomorphisms, 
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g :£—+P{B x B), de f ined for all e G £ C A x A b y 

(8) ge = {{g(a'),g(a"))\{a',a")ee}. 

Namely, ge is the "image" of e under g. We will call it the g-image of e. 

2 . 1 L E M M A T A . Ifg:A»-^B, then 

(A)g:£^BB, 

( B ) every g-image of an endomorphism is its "g-transformed", i.e. ge = 
g • e • , for all e G £, which implies that 

(C) ge(g(a)) = g(e(a)) for all a G A, and that 

( D ) g-images preserve compositions, ge».ei = ge" • ge' , for all e ' , e " G £ , 

( E ) and identities, = %b • 

Proofs . (B and A) As e : A—> A, set a' = a in (8) to rewrite it as 

ge = {{g(a),g{e{a))) \ a G A}. 

It follows that ge-g = g-e. Since : B»-»-A, we get g-e-g~l = <?e-(<7-<7_1) = 
ge. Hence, ge. B —> B for all e G £, because compositions of functions are 
functions. This also shows that g has to be one to one, because ge> = ge" by 
the bijectivities of g and g~l implies e! = e". 

(C) It follows from ge :B^B and from ge • g = g • e as above. 
(D) Trivial computations: ge».e/ = g• e" • e' • g~l = g-e"• g~l - g-e'• g~x = 

ge" • ge> for all e', e" G £ . 
(E) Immediate from g : A - ^ B and (8). • 

2 . 2 D E F I N I T I O N S . We say that a bijection g:A\-^fB fully preserves di-
latations when the g-images preserve all dilatations in both ways, ge is a 
dilatation of £ iff e is of x, while g preserves the "amount" of the dilatation 
involved by preserving the indicators in both ways, viz. Xc • k = e G £ iff 
9e = $g(c) • 

We say that g: A n i s a geometric description of x by £ or from the 
representation of £ by U to the one of T by V, when g fully preserves di-
latations, Xc • k G £ iff £9(c) • k = gXc.k G F, while the g-images preserve all 
endomorphisms in both ways, The adjective "geometric" refers to 
the next property 2.4 and to its corollaries 3.1 (C) and (D) (used in 3 .2 to 
show that in vector spaces descriptions induce projectivities). 

In such a case g : £ \ b y 2 . 1 (A) . We call it a geometric transformation 
from the representation of £ by U to the one of T by V, as in (13) of [11], 
As shown in 6.8 (D) of [6], it is not necessary to assume two algebras. We 
can well start only from two composition submonoids on certain £ C AA 

and T C Bb . 
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2 . 3 C O R O L L A R Y . Let g : A^yB be a geometric description as above. Then, 
the two trivial dimensions must coexist, X = 0 i f f Y = 0, or both A and B 
are singleton. Hence, (31) of [11] holds and, when the sets of matrices are 
singleton, every bijection from A onto B is such a g. 

Proof. The coexistence of singletons comes from g : A**->yB. Then, con-
sider dimension triviality without singletons. Since by (13) of [11] r'y • g • 
r'y1 : Axii-^yBY, trivial dimensions must coexist. In this case, any g : A^yB 
is a geometric description, because the only dilatations and endomorphisms 
are the two identities, both with or both without indicators as in 2.0 ibid, 
or 2.2 ibid, respectively. • 

2 . 4 T H E O R E M . A geometric description preserves flock combiners in both 
ways: c G i f f g(c) G 

Proof. Let c be a flock combiner of x, Xc • k = M- As G £, g^A G T 
is a dilatation of £ and g(c) is one of its indicator, because g fully preserves 
dilatations. By 2.1 (E) it has to be an indicator of the identity, £s(c) = 
Hence, g(c) is a flock combiner of Conversely, since g : we can start 
with any such flock combiner g(c) and, since g : S^yJ-, we can reverse the 
above passages to get that c is a flock combiner of x- By 2.1 (C) of [11] we 
can also says that g preserves reference flocks in both ways. • 

3. The triple characterization 

3 . 0 T H E O R E M . When the bases or units are not trivial, all three notions 
of description, as well as of transformation, are the same, namely g is a 
description i f f it is analytic and i f f it is geometric, while the corresponding 
matrix and analytic transformations t are the same and correspond to the 
geometric one: t(e • U) = ge • V, for all e G £. In the trivial case this holds 
for the two descriptions and for the three transformations. 

Proofs. At first, we consider X, Y ^ 0. 
(description =>• analytic) Let us show that, given a description g : As^yB, 

its matrix transformation t is an analytic transformation between the derived 
analytic monoids. We use characterization 1.6 (A). By 3.1 (B) of [11] it is 
a bijection t : Ax\\->yBY. It also retypes K by 1.7 (A) ibid.. In fact, by 3.1 
(C) ibid., 3.4 (A) ibid., (26) ibid, and (9) ibid. t(ka)(y) = g(xv'{y)(ka)) = 
g (a) = Kg(a)(y), f° r all y G F and a G A, i.e. (25) ibid, holds. Moreover, 
this shows that t /^-induces our description. 

Lastly, the preservation of /^-restricted multiplications comes from prop-
erties and equations of [11]: (Monoid to Menger) and (Menger loop) in 1.4, 
(7), (25), (36), (8) and (25) again. In fact, for all a G A and L : X A, 
t(L O ka) = t(kXa(L)) = Kg(Xa(L)) = Kig{a)(m) = t(L) o Kg(a) = t(L) o t(ka). 
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As t is an analytic transformation that /^-induces g, a description has to be 
an analytic one. 

(analytic => geometric) Since the units are not trivial, by 1.2 of [11] there 
only is one pair of based algebras x with basis U and £ with V, which are 
derived from the two analytic monoids as Menger systems. Keep g and 
notice that by 2.1 (B) we can rewrite the premise g • e = f • g in lemma 1.8 
(A) as ge = / , since g : A ^ y B . Hence this lemma tells us that g preserves 
all endomorphisms in both ways. 

To check the full preservation of dilatations, let us start with a dilatation 
e = Xc • k: A —> A of x> f° r any dilatation indicator c € A. Consider 
9\c k = / • Since g-.A^^B, by 2 . 1 (B) g • Xc • k = / • g. Then, for all 
a G A, f ( g ( a ) ) = ( / • g)(a) = (g • Xc • k)(a) = g(Xc(ka)) = t9(c)(t(ka)) = 
£ff(c) (Kg(a)) because of 1 .7 (B) and 1.2. As g :A—*~B, we can rewrite it as 
f ( b ) = £9(C)(«&) = (f9(c) • «)(&) for a11 b <E B. Hence, / = £ff(c) • k, where 
g(c) = d has to be a dilatation indicator because of 1.8 (B), namely / is a 
dilatation of 

Conversely, given any dilatation / = • k of we can set d = g(c), 
since g :A-^yB. By reversing the above passages we can use 1.8 (B) again 
to find that c is a dilatation indicator defining the above dilatation e of x 
with ge = / . 

Lastly, let us check that the geometric transformation g : we 
found, is the one corresponding to our starting analytic transformation 
t:Axi*—>yBY. Namely, when e denotes the endomorphism of x correspond-
ing to a matrix L = e • U: X —> A, i.e. by (14) of [11] e(a) = Xa(L) for all 
a £ A, the endomorphism ge of £ has to correspond to t(L), i.e. t(L)= ge • V 
or by (15) ibid. ge(b) = t(L)) for all b G B. This immediately comes 
from 1.7 (B). In fact, by (14) ibid, and (36) ibid. ge(b) = = 
g(x9-Hb)(L)) = (6))(i(£)) = &(*(£)) for all b G B. 

(geometric =>• description) Keep g and the derived Menger systems. By 
2.1 (C) of [11] and 2 .4 we only have to show that g totally induces some t 
and that g corresponds to t. We can do it first by defining a t': AX^>BY, 
such that it corresponds to g, and then by checking that i ' C i (which implies 
t' = t by 3.1 (B) ibid.). 

This correspondence is t'(e • U) = ge • V, for all e G £. As ge G J-, this 
serves to define a t': Ax —> BY , since we can rewrite it as i ! ( f j j ) — ge' V — 
r'y(ge) f o r a l l e G £ a n d g e t t' = • <jr • r'^1 b y ( 1 3 ) of [11]. 

By that (13) and 2.2 this t' = r'y • g • r'^J1 is a bijection onto 
t'\Ax\y^BY. Let us show that all pairs (L, M) G t' satisfy (29) of [11], 
Any such a pair is in t' when there is an e G £, such that L = e • U and 
M = ge-V. By (14) ibid, and (15) ibid, it satisfies (29) ibid, when such an 
e and ge satisfy g(e(a)) = ge(g(a)) for all a G A. They do by 2 .1 (C). 
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(Trivial case) To check that a geometric description is a description be-
tween the derived Menger systems and conversely, note that the derivation 
of a Menger system from a based algebra preserves the trivialities X = 0 or 
Y = 0 and the carriers in both ways. Then, both 3.3 of [11] and 2.3 give 
us the same set of all bijections g : A^>B. (Note also that the above proof 
(geometric =>• description) holds even for such dimensions.) 

To check the three transformations, note that all derivations preserve any 
dimension triviality, each of which implies singletons as in (31) of [11], that 
1.5 and 3.3 ibid, give us the same t = {(U,V)} by 3.1 (A) ibid, and 1.0 
and that t(e • U) = ge • V, for all e G S = {M } , by 2.3 and (geometric 
description). This also ensures that the two descriptions corresponds to their 
two transformations. • 

3 . 1 COROLLARIES. 
(A) A description is a renaming iff the former basis is the converse basis, 

U = V. 
(B) When the former basis and the converse one are co-indexed, X — Y, the 

converse basis is a basis, r'v, : £*]>-*~Ax. 
(C) A geometric description preserves flocks in both ways: a G iff g {a) G 

®t(L) for A and L:X^A. 
(D) A matrix transformation induces a flock inclusion isomorphism, namely 

it preserves inclusion among flocks in both ways: for all L, M : X —> A, 
<t>'r C iff <t>", , C <&", , L - ^M lJJ t(L) - t(M) • 

Proofs. (A) (If) Trivial for X = Y = 0. Otherwise, assume that U = 
g~i • V = V :X A. Then, by (32) of [11] and (16) ibid. t(M)(x) = 
g(x9-Hv{x))(M)) = g(xu(x)(M)) = g(M(x)) = (g • M)(x) for all M-.X-+A 
and x G X. Hence, (33) ibid, holds. 

(Only if) Prom 3.0, 1.5 and (33) of [11] V = t(U) = n-U. This implies 
U = n _ 1 • V = V', since n : A\^>B. 

(B) Consider the function Bg-i :BX->AX such that Bg-i(M) =g~1-M 
for all M-.X^B. Prom g~l : Bw-^-A we easily get Bg-i : BX^^AX. Then, 
for all e e j , rv,(e) = e • g"1 • V = g~l • (g • e • g-1) • F = s " 1 • t*(ge) = 
Bg-1(rvÎ9e)) = (B9-I -ry-g)(e), namely r'v, = • r'{r -g : £^>AX as in 
(0) of [11], since by 3.0 it is a composition of bijections also because of (13) 
ibid, and 2.2. 

(C) Let a G namely a = Xc(L) for some c € Then, by 3.0 
and (36) of [11] g (a) = g{Xc(L)) = Çg{c)(t(L)), namely by 2.4 g (a) G 
Clearly, we can reverse this implication by 3.4 (D) (Symmetry) ibid.. 

(D) (Only if) By (C) we can merely show that g(a) G f° r a £ 
Since <É>'L Ç $'m , a G and by (C) g(a) G for all such a's. (If) By 
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symmetry: by (C) the premise becomes g(a) G ^t(M) a ^ while 
the conclusion a G again follows from (C) for all such a's. • 

3.2 EXAMPLE. Within vector spaces descriptions share some properties of 
the semi-linear transformations, which we will recall in 3.5 (A). Here, we 
recall that a projectivity is an inclusion isomorphism p: «Sii—»-T between the 
sets of subspaces S and T of two vector spaces, 

(9) A' C A" iff p{A') C p(A") , for all A', A" G S . 
Let A and B respectively denote the carriers of the vector spaces. Then, 
we say that a bijection g: Att—s^B induces p, when p is the corresponding 
restriction of the image function of g, 

(10) p(A') = {g(a) | a G A'} , for all A! G S C PA . 

We prove that, when the Menger systems or analytic monoids come from 
vector spaces, any description g: induces a projectivity. 

Proof. Consider the vector-space flocks, defined as in 1.1 of [1], that are 
not the whole space. By the lemma in VII .7 ibid, such proper flocks are 
all and only our flocks with respect to its Menger system (its vector times 
matrix multiplication), since a vector space has one dimension only. By the 
recalled definition the proper subspaces are all and only the flocks containing 
0. Therefore, given x a n d £> w e c a n define an injection p: S ^ P B from 
g: A ^ B by (10) and also get p: <S»—. 

In fact, by 3.1 (C) p(A') = for all L:X—>A such that A' = and 
for all \ {^4}. The flock must contain 0, because by 3.0 and 1.8 
(A) g commutes with the two null endomorphisms, the only constant valued 
ones in vector spaces. {A' = A is a trivial case.) Conversely, by symmetry 
for every B ' E T \ { 5 } we get an M: Y^B with B' = <&"M and an L with 
M = t(L), such that B' = p(A') for some A' E S ^ by 3.1 (B) of [11]. 

Finally, we get (9) by restricting 3.1 (D) to <S. • 
An immediate corollary of this statement is that within vector spaces 

descriptions preserve subspace dimensions, since projectivities do. 

3.3 DEFINITIONS. Let two algebras with our bases U and V define the 
Menger systems x a n d £ respectively. A bijection q': A\\-̂ B is called a 
Segre description between our Menger systems or analytic monoids or based 
algebras, when it is a centralizer one as in 1.8 (A) that preserves the reference 
flocks and there is a surjection q" : F ^ - G between scalars such that 

(11) *'(Xa(S))=£? ' (a)(s"(S)) for all a G A and 5 G F. 

The requirement q": F->)-G is equivalent to merely require a relation 
p C F x G with {e | (e, /) G p} = F and { / | (e, /) G p} = G that con-
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tains q". Anyway, as the next proof will show, q' and the bases make q" 
an isomorphism between scalar monoids, which we call the scalar isomor-
phism. 

Such descriptions involve both centralizer notions: the bijection one in 
1.8 (A) and the sub-monoid one in 2.4 (C,F) of [11]. Note the definition 
symmetry: q' is a Segre description between % and £ with p iff <i/_1 is a Segre 
description between £ and x with p~l. 

3 . 4 THEOREM. Any description is a Segre description and conversely. 

Proof , (description =>• Segre) Take q" = t • i p , which by 3 .0 , 1 . 7 (A) a n d 
1.6 (B) is an isomorphism between scalar monoids. Then, (11) with q' = g 
is a restriction of (36) of [11]. Hence, any description (which preserves the 
reference flocks) is a Segre description, because by 3.0 and 1.8 (A) q' = g is 
the required centralizer. 

(Segre => description) The same triviality cases for a geometric description 
in 2.3 also occur for a Segre description. In fact, in that proof we only have 
to disregard dilatation indicators outside the reference flocks. Then, our 
statement is obvious and we assume X, Y ^ 0. 

Any Segre description with non trivial dimensions is a geometric descrip-
tion, because a centralizer bijection q' = g preserves all endomorphisms, 
q': £ — a s we observed in the proof (analytic geometric) of 3.0, and 
because (11) and the reference flock preservation imply the full preservation 
of dilatations, as we are going to show. 

In fact, for each e G A we have S = e • U G F, q"(S) G G and the 
corresponding dilatation / G T, r ' y ( f ) = q"{S), such that by (11), (14) of 
[11], and (15) ibid. <r'(e(a)) = f(q'{a)) for all a G A, namely q' • e = f • 
Conversely, since q" : F—^G, given any / G T we have such an e G A. Hence, 
by 2 . 1 (A) 

(12) q' • i A : Aii-»-r and r'y • q'• = q" • r'v • iA-

Moreover, for each consider the endomorphism ha G £ defined by 
(14) of [11] as ha{c) = Xc(ka) for all c G A. Since q' is a centralizer bijection, 
q': £n—for each a by (15) ibid, there is an endomorphism £a G T and a 
matrix Ma:Y^B such that q'(Xc(ka)) = c'(/ia(c)) = 4(? '(c)) = &(c)(Ma) 
for all c G A. Given any y G Y, take c = <i'_1(V^) and get Xc(ka) = a for 
each a G A, since c G by 2.1 (A) of [11] and the preservation of reference 
flocks. Then, by (11) and (19) ibid, ^(a) = ^(Xc(feo)) = Sv(y)(Ma) = Ma(y) 
for each a G A and every y &Y, namely by (9) ibid. Ma = K.c'(a). 

Since Ma is constant with respect to any c, we got that q'(Xc(ka)) = 
?i'(c)(Ki'(a)) f° r c € A. By the former of (12) this implies the full preser-
vation of dilatations: q'(Xc • = £q'(c) • K G T for all dilatation indicators c 
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and conversely by the definition symmetry in 3.3. Notice that the latter of 
(12), together with 2.4 (G) of [11], implies that the isomorphism <;" — t • if 
is the only surjection between scalars satisfying (11). • 

3.5 Missing proofs in Linear Algebra. 
(A) The three main definitions of a description and their characterization 

in 3.0 define what means to say "descriptions are a general universal notion" 
from a theoretical point of view. Their Segre variant serves more technical 
purposes: it shows how universal scalars work. 

However, from a concrete point of view, also Segre descriptions serve 
to assess generality. In fact, (B) will show that they are a formal exten-
sion of the semi-linear transformations of vector spaces, whereas the general 
isomorphisms were not. 

Conversely, one might like to check theoretically that the semi-linear 
transformations are the most general ones for vector spaces by proving that 
in vector spaces all descriptions have to be semi-linear transformations. Un-
fortunately, in spite that in (B) we will give a characterization, one cannot 
directly use it to prove this. In fact, we will show the lack of the proof of 
a renaming condition that Linear Algebra considered self-evident. Even the 
proofs of weaker conditions are missing. 

The general condition for semi-linear transformations as in I I I . l of [1] 
requires that, for any vector-space scalar s £ F and any vector v € A, 

(13) a'(sv) = a"{s)a'(v), 

where a ' : Ait—>yB denotes an isomorphism between the groups of the vector 
sums, a " : F u — a n isomorphism between the fields concerned and, as usual 
for vector spaces, the two juxtapositions denote two different products of a 
scalar times a vector. 

Semi-linear transformations relate two vector spaces regardless their ref-
erence frames. They can also relate their representations, after assuming 
X = Y, since they are projectivities and preserve dimensions, by setting 

(14) V = a' • U, 

as we do for renamings by 3.1 (A). To focus this choice of Linear Algebra, we 
will call such transformations semi-linear transformation between renamed 
reference frames. 

In 3.5 (A) of [11] F = G was the set of complex numbers and A = B, 
while a " was conjugation and a ' = g was vector conjugation. Notice that the 
only difference between (13) and (11) is the notation for the product scalar 
times vector, which in (13) is juxtaposition both on the left and on the right. 
Again, we have symmetry: a ' and a " define a semi-linear transformation iff 
a 1 ' 1 and a " ' 1 do. 
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Semi-linearity replaces the simple notion of a vector space as a universal 
algebra by a split one that concerns two algebraic structures, each of which 
undergoes its transformation. Moreover, the latter structure, the field as a 
division ring, is not a total (homogeneous) algebra. 

On the contrary, our descriptions do not split universal algebras, though 
2.4 (F,G) of [11] show that still an auxiliary (total) algebra always rises. 
This only occurs in the transformations: <;' = g is a Segre description only 
when there also is some <;" = t • If for a matrix transformation t = Tg. 

No partial algebra occurs in a Segre description: our scalars in F C Ax 

or G C By merely form Abelian monoids as in 2 .6 (B) of [11]. Neither 
sums (of scalars or vectors) nor their distributivities are needed, as scalars 
analytically represent certain endomorphisms. 

Within Linear Algebra, the assumption (14) is not completely specified, 
because in V = t(U) one should define what t is. Here, on the contrary, we 
have such i's by (32) of [11]. Then, through the above characterization 3 .4 
we can specify (14) as: "if a Segre description is a semi-linear transformation, 
then it is between renamed reference frames". 

Yet, a possible proof of such a statement will not fully prove the gen-
erality of semi-linear transformations. To save the abstract coordinate-
free approach within Linear Algebra, its birth niche, we need a stronger 
statement: "if a Segre description concerns vector spaces, then it is a re-
naming". 

In fact, the latter proof could complete the next one in (B). Perhaps, we 
could get it by proving that "the preservation of vector subspace dimensions, 
found at the end of 3.2, implies the renaming condition". 

After counterexample 3 .6 (A) of [11] and the uniqueness of 3.1 (C) ibid, 
the generality of renaming is untenable. Besides, in Linear Algebra, even 
the proof of the logical independence of the renaming condition is miss-
ing and one cannot get it as a new axiom. Once linear transformations 
(isomorphisms) were discarded, keeping their renaming feature needs some 
explanation. 

(B) We prove that every semi-linear transformation between renamed ref-
erence frames is a Segre description between the two corresponding based vec-
tor spaces. Conversely, whenever a Segre description is a renaming between 
two based vector spaces with dimensions greater than 1, it is a semi-linear 
transformation between the corresponding renamed reference frames. 

Proof. Since U: X —> A is a vector-space basis, we have its coordinating 
function cu : A n — s u c h that, for each v E A, v = ^2xv[x]Ux, where v[x\ 
denotes the coordinate (cu{v)) x . Given V:X—>B, we define (cy(v))x like-
wise. Then, by (13) and (14) a'(v) = = Ex MV'^x) = 
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a"(v\x\)Vx, since a' preserves such (finite-range) sums, namely 

(15 ) (c V{<r'(v)))x = a"{v[x]), f o r a l l 

a ' is a centralizer bijection, because for each e G £ by (14) of [11] and (13) 
there is L : X - > A such that a'(e(v)) = a'(xv{L)) = c ' E x v[x]L(x)) = 
= Zx«'(v[x}L(x)) = J2xa"(v[x])a'(L(x)) = J2x(cv(a'(v)))x(a' • L)(x)) = 
= tv>(v)(M) = f(a'(v)) for all v € A, where M = a'• L: X B by (15) ibid, 
represents / G T. Conversely, since a': A\^yB, given any such an / and M, 
there is L and e G £ such that a' • e = f • a' as required by (4). 

It preserves the reference flocks, because any v G has the form v = 
^Zx

cxUx , where cx G F for all x G X and ^2xcx = 1. Hence, by (15) 
cr'(v) = ^xcr"(cx)Vx, where again 52x(t"(cx) = cr"{Y,x cx) = 1) since a" is 
a field isomorphism. Conversely, any v' G is a v' = <r'{v) and we can 
reverse these implications to get v G Then, we can set <;' = a'. 

Finally, let us define ^": Fh—Consider the diagonal matrix isomor-
phism in 2.5 of [11], D:F»-+yF. Likewise, consider D': Then, 
q" = D' • cr" • D~l is a surjection onto G as required. By (13) it also sat-
isfies (11), because for every S G F there is s G F with S = Ds such 
that by (27) ibid. <;'(Xa(S)) = a'(sa) = a"{s)a'{a) = ta,{a){D>a„{s)) = 
^<T'(a)(^»(o-i(5))) = £<;>{a)W(S)) for all a G A, since (27) ibid, concerns 
the latter Menger system too. 

(Conversely) As the dimensions are the same by 3.2, we take Y = X. To 
prove that <;': A ^ y B is an isomorphism between the groups of the vector 
sum, we define an endomorphism application that performs sums in our space 
of dimension greater than 1. Take two different x, y G X, their "sum vector" 
u = Ux + Uy and, for all a,b G A, the matrices L.X^A and M :X —> B 
such that L(x) = a, M(x) = <;'(a), L(y) = b, M(y) = s'(b) and L(z) = 0, 
M(z) = 0 elsewhere. 

Notice that the latter matrix comes from the former by «^'-images, M = 
c' • L, because <,' commutes with the null endomorphisms. Hence, by 3.4 and 
the renaming assumption M = Tq> (L). 

Then, ?'(a + 6) = s'(Xu(L)) = L) = 6 ; » ( M ) by 3.4 and (34) of 
[11]. Consider two coordinates of <,'(u) with respect to V: cx = c v ( $ ' ( u ) ) ) x 
and cy = cv{s'{u)))y. Then, <j'(a + b) = cxMx + cyMy. In particular this 
holds for a = Ux and b = 0 as well as for a = 0 and b = Uy. Therefore, 
cx = cy = 1 by 3.1 (A) and 

(16 ) q'(a + b)= + <r'(b) , for all a, b G A . 

Also, a' = <;' satisfies (13) with a" = D'~l • q" • D as above. In fact, 
by (27) of [11], (11) and (27) ibid. a'(sv) = s'(Xv(Ds)) = (?"(£>*)) = 
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£ f>)(L>'(L>'-V(£>S)))) = &(v)(K»( s )) = for all v € A and 
s e F . 

Such a a" : F i i — a l s o is a field isomorphism. In fact, it preserves mul-
tiplications, because, in addition to <j", both D and D'~l trivially do. More-
over, once we have defined sums on F and G by columnwise vector sums, we 
also easily find both that such sums are (universal) scalars and that D and 
D'~l preserve sums. Hence, to prove that a" preserve sums, we only have 
to prove that q", or also <;" • D, does. 

By the bijective representation of scalars as dilatations in 2.4 (G) of [11] 
this is to prove that, given any s', s" G F, for all b — q'{a) G B, + 
*"))) = Zbk"(D(s')) +q"(D(s"))), namely by (11) that ^ ( x a W + *"))) = 
&(s"(D(s')) + q"(D(s"))). In fact, the field distributivity gets q'(xa(D(s' + 
»"))) = + = ^(s'o + s"a) = <;'(s'a) + q'(s"a) = q'(xa(D(s'))) + 
,'(Xa(D(s"))) = CbW'(D(s'))) + = q"(D(s'))b + ,"(D(s"))b = 
tf'{D(s,))W(D(s")))b = ZbW'(D{s'))WW))) by (27) ibid., (16), (27) 
ibid, again, (11) and (27) ibid, twice again. • 
3.6 Analytic spaces. Counterexample 3.6 of [11] denies universal general-
ity to the abstract representation-free approach of Algebra. Then, one might 
look for a subclass of algebras, where such an abstract Algebra works. 

This subclass is the one where all descriptions are renamings. Safely, 
it deserves further studies. Yet, its lack of proper descriptions does not 
save all conventional wisdom. The following example, a sort of converse of 
3.6 (B) of [11], shakes the very notion of an algebra as a single concrete 
object. 

Consider an algebra that has singleton bases as well as bases of n > 1 
reference elements. The one of B. Jonsson & A. Tarski in [5] is the simplest 
non trivial one. Given a singleton basis U :1—>A, any matrix transformation 
from U has to reach other singleton bases only. In fact, by characterization 
1.6 (A) it has to be a bijection t: Al\\—>yAY that retypes K as in 1.6 of [11]. 
This is impossible unless Y too is singleton, as shown in 1.7 (B) ibid.. 

Therefore, by 3.1 (A) any description from U is a renaming, because the 
reference flocks are singleton. Hence, we stay in our comfortable subclass, 
e.g. now we can say to have 1 as a dimension. The trouble is that this 
one-dimensioned space is not the whole algebra: its self-descriptions cannot 
reach invariant properties that need larger bases to be formalized. In spite 
of the common carrier and operations it cannot sense higher dimensions. 

(Besides, to focus on an abstract algebra only is hopeless: even when we 
disregard representations, abstract representation-free properties can lack 
invariance. In 6.11 of [6] some well-known abstract properties of Universal 
Algebra fail after performing mere automorphisms.) 
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Then, from a concrete point of view, this algebra is not a single mathe-
matical object, but a superposition of this one-dimensioned space with other 
space(s). Our analytic monoids or Menger systems, which formalize such "an-
alytic spaces" together with the equivalence of 3.4 (D) of [11] or the category 
of 3.7 ibid., can peer at them. Yet, nothing can melt them to get such a 
thing as a free "algebra without the choice of a basis". 

One might well dismiss our based algebra as a "paradoxical" one. Yet, 
some preliminary results in [8] show that its one-dimensional space provides 
both a word catenation monoid and a binary tree algebra with a natural 
common extension and hint that it can improve one of the best computer 
memory organization so far known. Its other spaces, as well as the dimen-
sionless space of 3.6 (A) of [11], could likely provide us new methods for 
memory addressing. 
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