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ON ALMOST NORMALITY 

A b s t r a c t . A topological space X is called almost normal if for any two disjoint 
closed subsets A and B of X one of which is regularly closed, there exist two open disjoint 
subsets U and V of X such that A C U and B C V. We will present an example of a 
Tychonoff almost normal space which is not normal. Almost normality is not productive. 
We will present some conditions to assure that the product of two spaces will be almost 
normal. 

We investigate in this paper a weaker version of normality called almost 
normality. We will prove that almost normality is a property which lies 
between mild normality and normality. We will present an example of a 
Tychonoff almost normal space which is not normal. We will show that 
almost normality is not productive and we will present some conditions to 
assure that the product of two spaces will be almost normal. 

We will denote an order pair by (x,y), the set of positive integers by N 
and the set of real numbers by R. A T4 space is a T\ normal space. And 
a Tychonoff space is a T\ completely regular space. The interior of a set A 
will be denoted by intyl, and the closure of a set A will be denoted by A. 

DEFINITION 1. A subset A of a topological space X is called regularly closed 
(called also, closed domain) if A = int A. A subset A is called regularly open 
(called also, open domain) if A = int (A). Two subsets A and B in a 
topological space X are said to be separated if there exist two disjoint open 
subsets U and V such that A C U and B C V. 

DEFINITION 2. A topological space X is called mildly normal (called also 
K-normal) if for any two disjoint regularly closed subsets A and B of X , 
there exist two open disjoint subsets U and V of X such that A C U and 
BCV. 

Key words and phrases: «-normal, mildly normal, almost normal, regularly closed, 
normal. 
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DEFINITION 3 (Singal and Arya). A topological space X is called almost 
normal if for any two disjoint closed subsets A and B of X one of which is 
regularly closed, there exist two open disjoint subsets U and V of X such 
that A C U and B C V. 

It is clear from the definitions that any normal space is almost normal 
and any almost normal space is mildly normal. The converse is not always 
true. The space u\ x ui\ + 1 is mildly normal, see [2] and [3], but not almost 
normal because the closed subset A = u>i x {wi} is disjoint from the regularly 
closed subset B = {(A, A) : a < LO\} and they cannot be separated by two 
disjoint open subsets, see [1]. 

In [4], Singal and Arya introduced a finite space which is almost normal 
but not normal nor T\. Since a T\ finite space is discrete, the question, now, 
is the following: Is there a Tychonoff space which is almost normal but not 
normal? We will answer this below. 

The following theorem, see [4], gives a characterization of almost nor-
mality which we will use. 

T H E O R E M 4 (Singal and Arya). For a space X, the following are equivalent 

1. X is almost normal. 
2. For every closed set B and every regularly open set A containing B, 

there exists an open set U such that B C U C U C A • 

We will present an example of a Tychonoff space which is almost nor-
mal but not normal. But first we need to give a property which implies 
almost normality. Recall that a space X is extremally disconnected if it is 
T\ and the closure of any open set is open. Many topologists required T\ in 
the definition of extremally disconnected. So, we give the following weaker 
condition. 

DEFINITION 5. A space X is called weakly extremally disconnected if the 
closure of any open set is open. 

It is clear that any extremally disconnected space is weakly extremally 
disconnected. The converse is not always true. For example, let T/^ = 
{0} U {U C l : y/2 6 £/}, then (R, 7 ^ ) is not Ti, as any open set containing 
0 must contains y/2, but the closure of any non-empty open set is R, as 
{^2} is dense in (R, T ^ ) . Thus (R, T ^ ) is weakly extremally disconnected 
but not extremally disconnected. 

The next theorem is clear because in weakly extremally disconnected 
spaces any regular closed set is clopen. Note that we do not assume any 
separation axiom. 

T H E O R E M 6. Any weakly extremally disconnected space is almost normal. 
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Now, we will verify that example 3.6.18 of [1] is an example of a Tychonoff 
space which is almost normal but not normal. 

EXAMPLE 7. Arrange all rationals of the closed unit interval I = [0,1] 
into a sequence {51,92,93, ••• }• Let t £ / , then there is a subsequence 
{9ni ,Qn2jQn3, • • •} that converges to t in the usual topology. Let Nt = 
{ni, n2, n 3 , . . . }. It is clear that Nt ^ Nt> for all t,t' e I with t ± t'. The 
family {Ut : t G I}, where Ut = (fM \ N) n N~t, where ¡3N is the Stone-Cech 
compactification of N with the discrete topology, has cardinality continuum 
c and consists of non-empty subsets of /3N \ N. For every t ^ t' G / , we have 
Nt> = FuM, where F C N is a finite set and MC\Nt = 0. Thus, see [1,3.6.4], 
we have MnWt = 0_Since F = F C N^then Utf}Utf_= ( / 3 N \ N ) n W t -
(,m\N)nNtn(FuM) = (/3N\N)n((AT tnF)U(A^ tnM)) C (/3N\N)nN = 0. 

Now, for each t € I, choose a point xt G Ut and define X = N U 
{xt : t G I}. Since N is locally compact and dense in X, then, see [1, 
3.3.9], N is open in X, hence X \ N is closed in X consisting of isolated 
points. Thus, by Jones's Lemma, X is not normal. Since X is a subspace 
of /3N and /3N is Hausdorff and compact, then X is Tychonoff. Since /3N is 
extremally disconnected and X is dense in /3N, as N C X and N is dense 
in any compactification of it, then X is extremally disconnected (extremal 
disconnectedness is hereditary with respect to both open subsets and dense 
subsets, see [1]). Therefore, X is almost normal Tychonoff space which is 
not normal. • 

Any T4 space which is not extremally disconnected is an example of an 
almost normal space which is not weakly extremally disconnected. It is 
natural to ask the following problem. "Is there a Tychonoff space which is 
almost normal but not weakly extremally disconnected nor normal?" The 
answer is yes. Take the space X of Example 7 and consider the free sum 
X © M, where R is considered with its usual metric topology. 

Now, we will verify that example 113 of [5] is an example of a Hausdorff 
almost normal space X which is not regular nor normal. First, let us recall 
some basics of the notion of filters. A filter on a set X is a collection F of 
subsets of X with the following properties: 

1. Every subset of X which contains a set of F belongs to F. 
2. Every finite intersection of sets of F belongs to F. 
3. The empty set is not in F. 

If a filter F on X has the property that there is no filter F' on X such that 
F C F' and F / F', then F is called an ultra filter on X. Equivalently, F 
is an ultrafilter if and only if for every two disjoint subsets A and B of X 
such that A U B G F, then either A E F or B G F. If a point x is in all sets 
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of a filter we call it a cluster point. Clearly an ultrafilter can have at most 
one cluster point. An ultrafilter with a cluster point p is just the set of all 
sets containing p and is called a principal ultrafilter. An ultrafilter with no 
cluster point is called nonprincipal or free ultrafilter. 

For more details about the next example, see [5]. 

EXAMPLE 8. Let M be the collection of all free ultrafilters on N . Let 
X = N U M. Let the topology T on X be generated by the neighbourhood 
system { B ( x ) : x G X } where B(x) = {{x}} for each x G N, i.e., points of N 
are isolated, and B(x) = {A U {F} : A G F G M] for each x = F G M. 

X is Hausdorff because any two members F and G of M., being ultrafil-
ters, are incomparable. So, there exist A G F\G, B G G\F. Then since F 
is an ultrafilter, N \ B G F, so A n (N \ B) = A \ B. Similarly, B\A £ G. 
Thus (A\B)U {F} and (B\A)L> {G} are disjoint open neighbourhood of F 
and G. Note that F € M can be separated from any y G N precisely since 
no y can be contained in all sets of F because F can have no cluster points. 

For extremal disconnectedness, suppose p is a limit point of an open set 
U which does not belong to U. Since each point of N is open, p G X \ N = M.. 
So p is an ultrafilter, say F, and every neighbourhood A U {F} of p = F 
(where A G F) intersects U. But since F itself does not belong to U, this 
intersection is contained in N. Thus, U fl N intersects every member of the 
ultrafilter F, but it is a property of ultrafilters that for every subset S c N , 
either S or its complement belongs to the ultrafilter. Since U fl N does not 
intersect its own complement, U fl N itself must belong to the ultrafilter F. 
That is, (17 n N) G p. Thus (U n N) U {F}, or equivelantly, {U n N) U {p}, is 
open. Thus UU{p} — C/U((C/nN)U{p}) is open, and sincep was an arbitrary 
limit point of U, U must be open. Thus X is extremally disconnected. 

Now, any basic open set of the form A U {F} has a limit point every 
ultrafilter G which contains A as an element, for if B G G and A G G, then 
A n B ± 0, so B U {G} fl A U {F} + 0. So, if B c A, the set B U {F} 
contains all ultrafilters which contain B, which means that B U {F} is not 
contained in A U {F}. Thus X cannot be regular. 

THEOREM 9. If X is almost normal countably compact and M is paracom-
pact first countable, then X x M is almost normal. 

P r o o f . Let A and B be any two disjoint non-empty closed subsets o f l x M 
where B is regularly closed. Let p\ : X x M —> X be the natural projection. 
For each m G M and each M-open neighbourhood U(m) of m, define the 
following subsets of X: 

A-U(m) = G X : there exists y G U(m) such that (x, y) G A} 
= Pi{{X x U(m))nA). 
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Bu(m) = {x £ X : there exists 2 G U(m) such that (x, z) G intB} 
= p i ( ( X x U(m)) fl int.B). 

For each m G M , fix a countable decreasing local base {Un(m) : n G lu} 
for M at m. We will write Ajjn instead of AUn^ and Bjjn instead of BUn (m). 

For each n G lj and each m £ M , we have Ajjn n B u n D A(jn+1 f l Bun+1 • Thus 
the family {Aun fl B\jn : n G o>} is a decreasing sequence of closed subsets 
of X. If Aun H Bun 0 for each n G u>, then by countable compactness 
of X, there exists an x G X such that x G Dneu>(A-un ^ Bun)- So, if W 

is any X-open neighbourhood of x, then W fl Ajjn / I / W i l Bun for 
each n G uj. We will show that (x,m) G An B. Let W x U be any basic 
open neighbourhood of (x, m) in X x M. Then there exists an n G u such 
that (x, m) G W x Un C W x U. Now, W n BUn ^ 0 implies that W n 
{x G X : there exists z G Un(m) such that (x ,z ) G intS} ^ 0, thus there 
exists a G W and a G {x G X : there exists z G Un(m) such that (x,z) G 
inti?}. That is, a G W and there exists 2 G Un(m) such that (a,z ) G 
intB, thus {a,z) G {W x Un(m)) fl intB. Thus (W x Un(m)) n int5 ^ 0. 
Therefore, {x, m) G int B = B. Also, W D AUn / 0 implies W n {x G 
X : there exists y G U(m) such that (x,y) E i } / I , thus there exists 
a G W and a G {x G X : there exists y G U(m) such that (x, y) G ^4}, 
which means a G W and there exists y £ Un such that (a,y) G A. Thus 
(a, y) G (W x Un) n A, i.e., (W x Un) n A ± 0. Thus (x,m) G A = A. 

Thus A fl B ^ 0 which is a contradiction. Therefore, we conclude that 
for each m G M there exists an open neighbourhood U (m ) of m such that 
A-u{m) ^ BU(m) = 0- Since the natural projection is an open function, then 
for each m G M we have that -Bf/(m) is a regularly closed subset of X. 

Since X is almost normal, then for each m G M , there are open disjoint 
subsets Gm and Hm of X such that ^4[/(m) C Gm and B j j ^ C Hm. Now, 
{U(m) : m G M} is an open cover of M. Since M is paracompact, then 
there is a locally finite open cover {Vm : m G M} such that for each m G M , 
we have Vm C Vm C Um = U(m), see [1, 5.1.7]. 

CLAIM L . B C \JmeM{Hm x Vm). 

Let (x, y) G B be arbitrary, then there is an m' E M such that y G 
Kn' ^ Kn' Q Umi. Suppose that x £ Bu^i then there exists an open 
neighbourhood G of x such that G fl Bum, = 0. By the definition of B{jm,, 
we have G fl Um> = 0 . It means that for each z G Um> and each x' G G, 

we have {x',z) 0 int B. Therefore, (G x Um>) n B = 0. Since x G G 
and y G C i/m', then ^ intS = B, a contradiction. Therefore, 

z G BUm, C hence {x,y} G Hm> x C ( J m e M ( ^ x V^) and hence 
Claim 1 is proved. 
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CLAIM 2. An ( H m x Vm) = 0 for each m€ M. 

Suppose that there exists an m G M and (x, y) G X x M such that 
(x,y) G A n (Hm x Vm) = A n (H^ x T Q . Then y G Vm- Since Vm C Um, 

then i f l ( l x Vm) C Af](XxUm) C .An ( X x Um). So, by continuity of pi, 

we have P l ( ^ n ( X x T Q ) C P l ( A f l ( X x Um)) C Pl (A n(X x [/m)) = 
Since y <E Vm and (x,y) G A, then x £ pi(An (X x F m ) ) C AUm C G m . 
But x is also in Hm, thus Gm fl Hm 0 which is a contradiction, and hence 
Claim 2 is proved. 

Now, since {Vm : m G M } is locally finite, then {Hm xVm • m G M } is a 
locally finite family of open subsets of X x M. By Claim 1 , B C UmeM i^m x 

V^) where the later set is open. By Claim 2, Af]{JmeM(Hm x V^) = 0, 
because \J m e M (H m x F m ) = UmeM ( H ™ x Kn) by locally finiteness. 

Therefore and B can be separated by disjoint open sets, thus X x M 

is almost normal. • 

The space wj x u\ + 1 shows that neither paracompactness nor first 
countable can be dropped from the hypotheses on the second factor, see [1, 
5.1.40]. 

COROLLARY 10. If X is almost normal countably compact and M is metriz-

able, then X x M is almost normal. • 

We still do not know if the Sorgenfrey line square is almost normal nor 
if the Niemytzki (the Moore) plane is almost normal. 

Now, let Q denote the set of rational numbers and P denote the set 
of irrational numbers. Let M denote the Michael line. So, M = R, the 
irrational points are isolated, and a basic open neighbourhood for a rational 
point is the same as in R with the usual topology. It is well known that 
M x P is not normal, where the topology on P is the usual topology, see [1], 
5.1.32. We are going to show that M x P is not almost normal. 

PROPOSITION 11. The product space M x P is not almost normal. 

P r o o f . Let U = {{x,y) : x G R, y G P, x > y} and V = { (x , y ) : x G M, y G 
P, x < y}. Then U and V are two disjoint open sets in M x P, and 

M x P = f / U F U {(p,p) : p G P } . 

Consider L = { (x , x) : x G M} as a subspace of R2 considered with its usual 
metric topology, so, L is a complete metric space. Then, 

L n ( M x P ) = {(p,p) : p G P } . 

Hence U \ U = { (p,p) : p G P } , because if (x,y) G V, then (x,y) 0 U as U 

and V are disjoint open sets, and any basic open neighbourhood of (p,p), 

where p G P, must intersect U. 
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Since the closure of any open set is regularly closed, then A = U = 
U U {{p,p) : p G P} is a regularly closed set. Now, let B = (Q x P) n V. We 
want to show that B is a closed subset in M x P or equivalently, ( M x P ) \ B 
is an open set. Let (x,y) G M x P and (x,y) £ B we have the following 
cases: 

Case (1): (x, y) G U. Since U n V = 0, then U f ) B = 0. Since U is an 
open set contains (x,y), then there exists open neighbourhood W C U of 
{x, y) such that W C ( M x P ) \ B . Hence (x, y) G int{{ M x P) \ B). 

Case (2): (x,y) G L. Then x, y G P and x = y. Since the subset 
P x P = { (x , y) :,x,y G P } is open set, there exist open neighbourhood W 
of (x, y), such that I f C P x P . So, W n (Q x P) = 0. Since B C ( Q x P), 
then W C ( M x P ) \ B . Hence (x,y) G m i ( ( M x P) \ B). 

Case (3): (x,y) e V \ B . Since V \ B C P x P, then similarly case(2) 
there exists open neighbourhood W of (x, y) such that W C P x P. So, 
W C ( M x P ) \ B . Hence {x, y) G int(( M x P) \ B). 

Prom the above we have ( M x P) \ B is open set. Hence B is a closed 
set. Since U n V = 0, and B C V, then U(lB = 0 i.e. AnB = 0, where A 
is a regularly closed set and B is a closed set. 

Now, for any point (x,y) G M x P we shall let D((x,y),r) denote the 
basic open neighbourhood of (x, y) with center (x,y) and radius r define as 
follows: when x G Q let 

D((x, y),r) = {(x - r,x + r ) x (y - r,y + r)) n ( M x P ) . 

When x G P, let 

D({x, y),r) = ( { x } x (y-r,y + r))C\ ( M x P). 

Now, let W\ and W2 be any two open sets such that A C W\ and B C W2. 
We will prove that W\ fl W2 0. Now, for each (p,p) G A C W\, there exists 
a basic open set D({p,p),rp), where rp > 0 such that (p,p) G D((p,p),rp) C 
W\. Now, define Sn = {(p,p) : p G P, rp > 1/n}. It is clear that Sn C A for 
all n G N. It is obvious that 

\JSn = \J{(p,p):p&V}-
ne N 

Now, we have L = {(x,y) : x,y G M, x = y} = (UneN sn) U({ (9> l ) 
q G Q}) is a closed subset in (R2,ZY). Hence L is a complete metric space 
as subspace in (R2,W), where U is the usual metric topology on the plane 
M2. Since {{q,q) : q G Q } is countable set and {(q, q)} is nowhere dense 
for each q G Q in L as subspace in (R2,ZY). By Baire Category Theorem, 
there exists no G N such that Sno is no nowhere dense, i.e. there exists basic 
open set I C L such that Sno = {(p,p) • p G P, rp > 1/no} is dense in I 
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as subspace in L, i.e., I C SnoL. It is well known that I is on the form 
I = ((a, b) x (a, b)) D L, where a, b G M. Now, let q G Q such that (q, q) G I 

and let mo G N such that 0 < 1/mo < 1 /2uq . It is obvious that every open 
neighbourhood of each (q,p) G B, where p G (q,q + 1/mo), must intersect 
W\. So, W\ and W2 cannot be disjoint. Hence we cannot separated A and 
B by tow disjoint open sets. Thus M xP is not almost normal space. • 

It is still unknown if the Michael product M x P is mildly normal or not, 
[3]. Also, whether the Dowker theorem version for almost normality is true 
or not, which is the following problem: If X is almost normal countably 

paracompact and Y is compact second countable, is then X x Y almost 

normal? 
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