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ON ALMOST NORMALITY

Abstract. A topological space X is called almost normal if for any two disjoint
closed subsets A and B of X one of which is regularly closed, there exist two open disjoint
subsets U and V of X such that A C U and B C V. We will present an example of a
Tychonoff almost normal space which is not normal. Almost normality is not productive.
We will present some conditions to assure that the product of two spaces will be almost
normal.

We investigate in this paper a weaker version of normality called almost
normality. We will prove that almost normality is a property which lies
between mild normality and normality. We will present an example of a
Tychonoff almost normal space which is not normal. We will show that
almost normality is not productive and we will present some conditions to
assure that the product of two spaces will be almost normal.

We will denote an order pair by (x,y), the set of positive integers by N
and the set of real numbers by R. A Ty space is a 77 normal space. And
a Tychonoff space is a 77 completely regular space. The interior of a set A
will be denoted by intA, and the closure of a set A will be denoted by A.

DEFINITION 1. A subset A of a topological space X is called regularly closed
(called also, closed domain) if A = int A. A subset A is called regularly open
(called also, open domain) if A = int(A). Two subsets A and B in a
topological space X are said to be separated if there exist two disjoint open

subsets U and V such that AC U and BC V.

DEFINITION 2. A topological space X is called mildly normal (called also
k-normal) if for any two disjoint regularly closed subsets A and B of X,
there exist two open disjoint subsets U and V of X such that A C U and
BCV.
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DEFINITION 3 (Singal and Arya). A topological space X is called almost
normal if for any two disjoint closed subsets A and B of X one of which is
regularly closed, there exist two open disjoint subsets U and V of X such
that ACU and BC V.

It is clear from the definitions that any normal space is almost normal
and any almost normal space is mildly normal. The converse is not always
true. The space wy X wy + 1 is mildly normal, see [2] and [3], but not almost
normal because the closed subset A = wy x {w; } is disjoint from the regularly
closed subset B = {{a,a) : @ < w1} and they cannot be separated by two
disjoint open subsets, see [1].

In [4], Singal and Arya introduced a finite space which is almost normal
but not normal nor Tj. Since a T3 finite space is discrete, the question, now,
is the following: Is there a Tychonoff space which is almost normal but not
normal? We will answer this below.

The following theorem, see [4], gives a characterization of almost nor-
mality which we will use.

THEOREM 4 (Singal and Arya). For a space X, the following are equivalent

1. X is almost normal.
2. For every closed set B and every regularly open set A containing B,
there exists an open set U such that BCU CUCA. »

We will present an example of a Tychonoff space which is almost nor-
mal but not normal. But first we need to give a property which implies
almost normality. Recall that a space X is extremally disconnected if it is
T1 and the closure of any open set is open. Many topologists required 7 in
the definition of extremally disconnected. So, we give the following weaker
condition.

DEFINITION 5. A space X is called weakly extremally disconnected if the
closure of any open set is open.

It is clear that any extremally disconnected space is weakly extremally
disconnected. The converse is not always true. For example, let 7. Vz =
{0}U{U CR:v2 € U}, then (R, 7 s5) is not T}, as any open set containing
0 must contains v/2, but the closure of any non-empty open set is R, as
{V/2} is dense in (R, 7. v2)- Thus (R, 7 5) is weakly extremally disconnected
but not extremally disconnected.

The next theorem is clear because in weakly extremally disconnected
spaces any regular closed set is clopen. Note that we do not assume any
separation axiom.

THEOREM 6. Any weakly extremally disconnected space is almost normal.
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Now, we will verify that example 3.6.18 of [1] is an example of a Tychonoff
space which is almost normal but not normal.

EXAMPLE 7. Arrange all rationals of the closed unit interval I = [0,1]
into a sequence {q1,q2,43,--.}. Let t € I, then there is a subsequence
{@ny»Gnysns, - - - } that converges to t in the usual topology. Let N; =
{n1,n2,ns,...}. It is clear that N; # Ny for all t,t’ € I with ¢t #¢/. The
family {U; : t € I'}, where U; = (8N \ N) N N;, where 0N is the Stone-Cech
compactification of N with the discrete topology, has cardinality continuum
c and consists of non-empty subsets of BN\ N. For every t # t’ € I, we have
Ny = FUM, where F' C N is a finite set and MNN; = (. Thus, see [1,3.6.4],
we have MNN; = . Since F = F C N, then U;NUy = (BN\N)NN;N Ny =
(BN\N) NN, (FUM) = (BN\N) " (NnF) U(N; B1)) C (AN\N)NN = 0.

Now, for each t € I, choose a point z; € U; and define X = NU
{z¢ : t € I}. Since N is locally compact and dense in X, then, see [1,
3.3.9|, N is open in X, hence X \ N is closed in X consisting of isolated
points. Thus, by Jones’s Lemma, X is not normal. Since X is a subspace
of AN and SN is Hausdorff and compact, then X is Tychonoff. Since AN is
extremally disconnected and X is dense in 8N, as N C X and N is dense
in any compactification of it, then X is extremally disconnected (extremal
disconnectedness is hereditary with respect to both open subsets and dense
subsets, see [1]). Therefore, X is almost normal Tychonoff space which is
not normal. =

Any T, space which is not extremally disconnected is an example of an
almost normal space which is not weakly extremally disconnected. It is
natural to ask the following problem. “Is there a Tychonoff space which is
almost normal but not weakly extremally disconnected nor normal?” The
answer is yes. Take the space X of Example 7 and consider the free sum
X ® R, where R is considered with its usual metric topology.

Now, we will verify that example 113 of [5] is an example of a Hausdorff
almost normal space X which is not regular nor normal. First, let us recall
some basics of the notion of filters. A filter on a set X is a collection F' of
subsets of X with the following properties:

1. Every subset of X which contains a set of F' belongs to F'.
2. Every finite intersection of sets of F' belongs to F'.
3. The empty set is not in F.

If a filter F on X has the property that there is no filter F/ on X such that
F C F' and F # F’, then F is called an ultrafilter on X. Equivalently, F
is an ultrafilter if and only if for every two disjoint subsets A and B of X
such that AU B € F, then either A € F or B € F. If a point z is in all sets
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of a filter we call it a cluster point. Clearly an ultrafilter can have at most
one cluster point. An ultrafilter with a cluster point p is just the set of all
sets containing p and is called a principal ultrafilter. An ultrafilter with no
cluster point is called nonprincipal or free ultrafilter.

For more details about the next example, see [5].

ExaMPLE 8. Let M be the collection of all free ultrafilters on N. Let
X = NU M. Let the topology 7 on X be generated by the neighbourhood
system {B(z) : x € X} where B(z) = {{z}} for each z € N, i.e., points of N
are isolated, and B(z) = {AU{F}: A€ Fe M} foreachz =F € M.

X is Hausdorff because any two members F' and G of M, being ultrafil-
ters, are incomparable. So, there exist A € F'\ G, B € G\ F. Then since F
is an ultrafilter, N\ B € F,so AN(N\ B) = A\ B. Similarly, B\ A € G.
Thus (A\ B)U{F} and (B\ A)U{G} are disjoint open neighbourhood of F
and G. Note that F' € M can be separated from any y € N precisely since
no y can be contained in all sets of F' because F' can have no cluster points.

For extremal disconnectedness, suppose p is a limit point of an open set
U which does not belong to U. Since each point of N is open, p € X\N = M.
So p is an ultrafilter, say F, and every neighbourhood AU {F} of p = F
(where A € F) intersects U. But since F' itself does not belong to U, this
intersection is contained in N. Thus, U NN intersects every member of the
ultrafilter F', but it is a property of ultrafilters that for every subset S C N,
either S or its complement belongs to the ultrafilter. Since U NN does not
intersect its own complement, U NN itself must belong to the ultrafilter F.
That is, (UNN) € p. Thus (UNN)U{F}, or equivelantly, (U NN) U {p}, is
open. Thus UU{p} = UU((UNN)U{p}) is open, and since p was an arbitrary
limit point of U, U must be open. Thus X is extremally disconnected.

Now, any basic open set of the form A U {F'} has a limit point every
ultrafilter G which contains A as an element, for if B € G and A € G, then
ANB # 0,50 BU{G} N AU {F} # 0. So, if B C A, the set BU{F}
contains all ultrafilters which contain B, which means that B U {F'} is not
contained in AU {F}. Thus X cannot be regular.

THEOREM 9. If X is almost normal countably compact and M is paracom-
pact first countable, then X x M is almost normal.

Proof. Let A and B be any two disjoint non-empty closed subsets of X x M
where B is regularly closed. Let p; : X x M — X be the natural projection.
For each m € M and each M-open neighbourhood U(m) of m, define the
following subsets of X:

Ay(m)y = {z € X : there exists y € U(m) such that (z,y) ¢ A}
= pi((X x U(m)) N A).
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By (m) = {z € X : there exists z € U(m) such that (z, 2) € intB}
= p1((X x U(m)) NintB).

For each m € M, fix a countable decreasing local base {U,(m) : n € w}
for M at m. We will write Ay, instead of Ay, (m) and By, instead of By, (m)-
For each n € w and each m € M, we have Ay, N By, 2 Ay,,,NBy,,,- Thus
the family {Ay, N By, : n € w} is a decreasing sequence of closed subsets
of X. If Ay, N By, # ® for each n € w, then by countable compactness
of X, there exists an z € X such that ¢ € (), (Av, N By,). So, if W
is any X-open neighbourhood of z, then W N Ay, # 0 # W N By, for
each n € w. We will show that (z,m) € AN B. Let W x U be any basic
open neighbourhood of (z,m) in X x M. Then there exists an n € w such
that (x,m) € W x U, C W x U. Now, W N By, # 0 implies that W N
{z € X : there exists z € U,(m) such that (z,z) € intB} # @, thus there
exists a € W and a € {z € X : there exists z € U,(m) such that (z,z) €
intB}. That is, a € W and there exists z € Up(m) such that (a,z) €
intB, thus (a,z) € (W x U,(m)) NintB. Thus (W x U,(m)) N intB # 0.
Therefore, (z,m) € int B = B. Also, WN Ay, # 0 implies W N {z €
X : there exists y € U(m) such that (z,y) € A} # 0, thus there exists
a € Wand a € {z € X : there exists y € U(m) such that (z,y) € A},
which means a € W and there exists y € U, such that (a,y) € A. Thus
(a,y) € W xUy)N A, ie, (W xUp,)NA#0. Thus (z,m) € A = A.
Thus AN B # 0 which is a contradiction. Therefore, we conclude that
for each m € M there exists an open neighbourhood U(m) of m such that
Aymy N Bym) = (. Since the natural projection is an open function, then

for each m € M we have that By, is a regularly closed subset of X.
Since X is almost normal, then for each m € M, there are open disjoint
subsets G, and Hp, of X such that Ay(m) € Gy and By(m) C Hp. Now,
{U(m) : m € M} is an open cover of M. Since M is paracompact, then
there is a locally finite open cover {V,, : m € M} such that for each m € M,

we have Vi, C V;, C Uy, = U(m), see [1, 5.1.7].
CLamM 1. B C U epr(Hm X Vig).

Let (x,y) € B be arbitrary, then there is an m’ € M such that y €
Vi € Vi € Upy. Suppose that x & B—U;:, then there exists an open
neighbourhood G of = such that GN By_, = 0. By the definition of By_,,
we have G N U,y = 0. It means that for each z € U, and each z’ € G,
we have (z/,z) € int B. Therefore, (G x Upy) N B = 0. Since z € G
and y € Vi C Uy, then (z,y) ¢ int B = B, a contradiction. Therefore,
& € By_, C Hpy, hence (z,y) € Hn X Vinr € Upeps(Hm X Vi) and hence
Claim 1 is proved.
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CLAM 2. AN(Hpy x Vi) =0 for each m € M.

Suppose that there exists an m € M and (z,y) € X x M such that
(x,y) € AN (Hpy X Viy) = AN (Hy, x V). Then y € V. Since Vi, C Upy,
then AN(X xV,,,) € AN(X xUy,) € AN (X x Uy,). So, by continuity of p1,
we havepl(Aﬂ(XxV ) CSPi(AN(X xUp)) Sp(AN(X X Up)) = Au,,.
Since y € V;,, and nd (z,y) € 4, thena:Epl(Aﬂ(XxV ) € Ay,, € G-
But z is also in H,,, thus Gy, N H,y, # @ which is a contradiction, and hence
Claim 2 is proved.

Now, since {V, : m € M} is locally finite, then {H,, x V,, : m € M} is a
locally finite family of open subsets of X x M. By Claim 1, B C (J,,,cps (Hm %
Vm) where the later set is open. By Claim 2, AN\U,,epr(Hm X Vi) = 0,
because |J,,cpr(Hm X Vin) = Upmerr (Hm X Vi) by locally finiteness.

Therefore A and B can be separated by disjoint open sets, thus X x M
is almost normal. =

The space w; X wi + 1 shows that neither paracompactness nor first
countable can be dropped from the hypotheses on the second factor, see [1,
5.1.40].

COROLLARY 10. If X is almost normal countably compact and M is metriz-
able, then X x M 1is almost normal. m

We still do not know if the Sorgenfrey line square is almost normal nor
if the Niemytzki (the Moore) plane is almost normal.

Now, let Q denote the set of rational numbers and P denote the set
of irrational numbers. Let M denote the Michael line. So, M = R, the
irrational points are isolated, and a basic open neighbourhood for a rational
point is the same as in R with the usual topology. It is well known that
M x P is not normal, where the topology on P is the usual topology, see [1],
5.1.32. We are going to show that M x P is not almost normal.

PROPOSITION 11. The product space M x P is not almost normal.

Proof. Let U ={{z,y) :z e R,y e P,z >yland V={(z,y) ;2 €eR, y €
P, z < y}. Then U and V are two disjoint open sets in M x IP, and

MxP=UUVU{(p,p):p€P}.
Consider L = {(z,z) : = € R} as a subspace of R? considered with its usual
metric topology, so, L is a complete metric space. Then,
LN (M x P) = {(p,p) : p € P}.

Hence U \ U = {(p,p) : p € P}, because if (z,y) € V, then (z,y) ¢ U as U
and V are disjoint open sets, and any basic open neighbourhood of (p, p),
where p € P, must intersect U.
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Since the closure of any open set is regularly closed, then A = U =
UU {(p,p) : p € P} is a regularly closed set. Now, let B=(Q xP)NnV. We
want to show that B is a closed subset in M x P or equivalently, (M xP)\ B
is an open set. Let (z,y) € M x P and (z,y) € B we have the following
cases:

Case (1): (z,y) € U. Since UNV =, then UN B = . Since U is an
open set contains (z,y), then there exists open neighbourhood W C U of
(z,y) such that W C (M x P) \ B. Hence (z,y) € int(M x P) \ B).

Case (2): (z,y) € L. Then z,y € P and z = y. Since the subset
PxP={(z,y) :,z,y € P} is open set, there exist open neighbourhood W
of (z,y), such that W CP x P. So, WN (Q x P) = . Since B C (Q x P),
then W C (M x P) \ B. Hence (z,y) € int((M x P) \ B).

Case (3): (z,y) € V\ B. Since V \ B C P x P, then similarly case(2)
there exists open neighbourhood W of (z,y) such that W C P x P. So,
W C (M x P)\ B. Hence (z,y) € int((M x P) \ B).

From the above we have (M x PP) \ B is open set. Hence B is a closed
set. Since UNV =0, and BCV,then UNB=0ie. ANB =0, where A
is a regularly closed set and B is a closed set.

Now, for any point (z,y) € M x P we shall let D({(z,y),r) denote the
basic open neighbourhood of (z,y) with center (z,y) and radius r define as
follows: when z € QQ let

D((z,y),r)=((z—mnz+r)x(y—ry+r) N (MxP).
When x € P, let
D((z,y),r)={z} x (y—ry+7) N (M xP).
Now, let W and W5 be any two open sets such that A C W; and B C Ws.
We will prove that WiNWs # §. Now, for each (p,p) € A C Wi, there exists
a basic open set D({p,p),rp), where r, > 0 such that (p,p) € D({p,p),rp) C

Wi. Now, define S, = {(p,p) : p € P, r, > 1/n}. It is clear that S, C A for
all n € N. It is obvious that

U S» = JH(p.p):peP}.
neN
Now, we have L = {(z,y) : v,y € R,z = y} = (UpenSn) U{{g,9) :
q € Q}) is a closed subset in (R?,U/). Hence L is a complete metric space
as subspace in (R2,U), where U/ is the usual metric topology on the plane
R?. Since {{g,q) : ¢ € Q} is countable set and {(g,q)} is nowhere dense
for each ¢ € Q in L as subspace in (R?,/). By Baire Category Theorem,
there exists ng € N such that Sy, is no nowhere dense, i.e. there exists basic
open set I C L such that S,, = {(p,p) : p € P, rp, > 1/ng} is dense in [
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as subspace in L, i.e., I C S_noL. It is well known that I is on the form
I = ((a,b) x (a,b)) NL, where a,b € R. Now, let ¢ € Q such that (q,q) € I
and let mg € N such that 0 < 1/mg < 1/2ng. It is obvious that every open
neighbourhood of each (g,p) € B, where p € (q,q + 1/mg), must intersect
Wi. So, Wi and W5 cannot be disjoint. Hence we cannot separated A and
B by tow disjoint open sets. Thus M xP is not almost normal space. »

It is still unknown if the Michael product M x P is mildly normal or not,
[3]. Also, whether the Dowker theorem version for almost normality is true
or not, which is the following problem: If X is almost normal countably
paracompact and Y is compact second countable, is then X x Y almost
normal?
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