DEMONSTRATIO MATHEMATICA
Vol. XLI No 4 2008

A. Batubenge, W. Sasin

AN APPROACH TO HAMILTONIAN MECHANICS
ON GLUED SYMPLECTIC PSEUDOMANIFOLDS

Abstract. We define a class of Frolicher spaces locally diffeomorphic to Frolicher
subspaces of the Euclidean space R™ and we call them pseudomanifolds. These differ-
ential constructs carry symplectic geometry so that Hamiltonian systems are naturally
introduced. When gluing together symplectic pseudomanifolds which intersect transver-
sally, it turns out that up to an equivalence relation, the glued space is symplectic and
smooth integral curves extend to singular points.

1. Introduction

This study is an application of Hamiltonian mechanics to a particular
class of the so called smooth spaces or Frolicher spaces (also denoted by
F-spaces). We refer to a Frolicher structure on a set M as a pair (Car, Far)
of functions ¢ : R — M called curves and real-valued functions f : M — R
such that the following compatibility condition holds:

o I'Fyy={c:R—-M/foce C®R) forall feFuy}:=Cyu
o OCyr={f: M - R/foce C®(R) forall c€ Fy}:=Fu.

The triplet (M, Car, Far) is called a Frolicher space. A Frolicher space carries
two topologies. One is the initial topology 7r generated by the set ;. This
is the weakest topology in which all the functions are continuous. It has
subbasis and basis the collections {f~1(0,1)}se,, and {f~1(0,00)}rez,,
respectively. The other is the topology 7¢ generated by the set Cps, the
open sets of which are subsets O C M such that ¢=1(O) are open in R. It is
easy to see that 7x C 7¢. Except otherwise indicated, Frolicher spaces under
consideration in this work are balanced spaces, that is, 7¢ = 7 (See [3]).
For basics on Frolicher spaces, see [6], [7], [4], [2].

Working with the smooth Frolicher structure is particularly interesting as
geometric objects mostly function spaces, or spaces with many singularities or
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failing to be smooth manifolds can be naturally endowed with this structure.
Also we point out that Frolicher smooth functions and curves are globally
defined while they have local properties. So the geometry on them stands
for a possible generalization of the manifold theory. Moreover, it was proved
that the category of Frolicher spaces contains that of convenient spaces (see
[7]), that it is a full subcategory of differential spaces in the sense of Sikorski
(see [4]) and is embedded in the category of diffeological spaces (see [16]).

The n-dimensional Euclidean space is a natural example of a Frolicher
space whose smooth structure is formed by all the C* curves into and all the
C real-valued functions. In this paper we shall deal with those Frolicher
spaces which are locally diffeomorphic to subsets of R™. We call them pseu-
domanifolds. We show that this class of smooth spaces forms a framework
for the modelling of mechanical systems. We will particularly show that
when two connected Hausdorff symplectic pseudomanifolds that intersect
transversally glue in a smooth way, the resulting Frolicher space has an in-
duced symplectic structure. Then we shall write Hamiltonian mechanics on
the generated space. As an application, we will be concerned with the gluing
of open manifolds at a point.

2. Smooth maps and diffeomorphisms

DEFINITION 2.1. A map ¢ : (M,Cpy, Fum) — (N,Cn, Fn) between Frolicher
spaces is smooth if p*Fxy C Fpr. A smooth map with a smooth inverse is
called a diffeomorphism.

It is easy to see that ¢ is smooth if and only if ¢.Cps C Cy. Combining
the above statements yields an additional characterisation of a smooth map
as follows

fopoce C*[R,R)

for all f € Fn and ¢ € Cpy.

Note that in this work we shall simply say smooth for means of smooth
in the Frolicher sense and Frolicher space M for (M, Cps, Far) if there is no
fear of confusion. A Frolicher space M is said to be locally diffeomorphic to
another Frolicher space N if, for every z € M, there exists a neighborhood
U of z diffeomorphic to a subset V of N. In [2] and [8] we show the following
two results.

LEMMA 2.1. Let N be a Frolicher space and M be a set. Let (Car, Farr) be
the Frolicher structure induced on the set M via maps f; : M — N,i € I.
Assume that the map ¢ : M — NI, given by o(x) = (fi(x));, is one-to-
one. Then ¢ is a diffeomorphism onto its range ¢(M) which is a Frélicher
subspace of N'.
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Proof. Let c: R — M be a structure curve on M. Then

poc(t) = (fioc(t):
for all t € R. Since the structure on N7 is generated by the family {g o m; :
g € Fn, i € I}, it follows that poc : R — ¢(M) is a smooth curve on
©(M). Hence ¢ is smooth.
Now, let (z;)r € ¢(M). It is clear that

go fiop M (za)1) =gomopop  ((z:)) = gom((zi)r)-
Thus ¢~ ! is smooth. w

COROLLARY 2.1. Let M be a set, and let f1,..., fn : X — R be real-valued
functions on M such that the map ¢ : M — R"™, p(z) = (fi(z),..., fa(x)),
is one-to-one. If (Capr, Fur) is a Frélicher structure generated by the family
{fi,--., fn}, then ¢ is a diffeomorphism onto the subspace (M) of R™.

DEFINITION 2.2. A Frolicher space (M, Cpy, Far) is called a pseudomanifold
if (M,Cu,Fur) is locally diffeomorphic to (R",C,F). That is, for every
x € M, there exist a 77,,-open neighborhood i of x and a diffeomorphism
@ of U onto the Frolicher subspace V' := (i) C R™.

Note that Corollary 2.1 above provides various examples of pseudoman-
ifolds. We may observe that the Euclidean Frolicher space R™ with its
canonical structure where curves and functions are C*° functions in the
usual sense, as well as a smooth manifold, are examples of pseudomanifolds
modelled on open sets. In the near future, we shall present different types
of pseudomanifolds.

DEFINITION 2.3. Let (M,Cuy, Fur) be a pseudomanifold. Let z € M be
a point, U an open neighborhood of z and ¢ a diffeomorphism of U onto
V C R™ The pair (U, ¢) is called a chart on (M,Cpr, Fpr) at z, U is the
domain of the chart.

2.1. Remarks

a. The definition of a pseudomanifold stated above does not require n to be
a fixed positive integer. If this occurs, we shall call M a pseudomanifold
of dimension n or an n-pseudomanifold. Furthermore, if M is locally
diffeomorphic to open subsets of R™ then it is easy to see that the smooth
structure under consideration and the manifold structure are coincident.
Finally, let us note that for the purposes of symplectic geometry, one may
require the modelling subspaces of R™ to be star-shaped regions of R,
or closed subspaces of R™ of constant dimension with nonempty interior.
We refer the reader to the literature (see [9]) for more about the concept
of a differential space of constant dimension.
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b. An operational tangent vector at £ € M is a derivation on Fjy, that
is a map vz : Fpm — R satisfying Leibniz property. That is, vz(fg) =
9(z)ve(f) + f(x)vz(g), where f,g € Fpr. The set of all tangent vectors
at £ € M is denoted by T;M and is called the tangent space on M at
z. In [2] and [4], it is shown that T, M is a linear Frélicher space whose
smooth structure is generated by functionals (df), defined by setting

(1) (df)z(v) = v(f).
A Frolicher space has another tangent structure defined via structure
curves as follows. Let a € R and z € M. Denote by C};° the set of all

smooth curves ¢ € Cys such that c(a) = z. By a kinematic tangent vector
(word borrowed from [7]) to the space M with foot point a we mean

) Xealf) = (7 0 OVma = df(e(a),

where c € C}". A tangent cone space at z is the set of all kinematic tangent
vectors at z. It is denoted by T,,C'M and is not necessarily a linear Frélicher
space(see [4]). A straightforward consequence is that T,CM C T, M for all
z € M and that both operational and kinematic tangent spaces coincide
if dim T, M is constant at each z € M. In what follows, a tangent space
shall mean the operational one if there is no confusion.

3. Symplectic pseudomanifolds

DEFINITION 3.1. Let (M,Cp, Fu) be a pseudomanifold of dimension n.
A symplectic form w on M is an exterior form which is closed and nonde-
generate. The construct ((M,Car, Fur),w), where (M,Car, Fur) is a pseu-
domanifold and w a symplectic form defined on (M,Cys, Far) is called a
symplectic pseudomanifold.

As a symplectic differential space (see [2],[4]), a symplectic n-pseudo-
manifold (M, w) is an even dimensional space which inherits the well-known
exterior algebra on differential spaces, and the equality dim T,M = n for
all p € M, with n = 2m, m € N, m # 0 holds true.

3.1. Normal form for symplectic forms
In [9] we read

LEMMA 3.1. Let (M,Cps, Fur) be a Frolicher space. The following conditions
are equivalent:

(i) n tangent vectors vy,...,vn € TyM are linearly independent,;
(ii) for all smooth functions f € Fyy, the map

0:Fu—RY fe0(f)=(u(f),...,v(f))

18 a surjection;
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(iii) there exist n smooth functions fi,..., fn € Fum such that v;(f;) = by,
where &;; is the Kronecker symbol;
(iv) there exist n smooth functions fi,..., fn € Fu such that det(v;(f;))

£ 0.

Taking into account (i) and (iii) and using Equation 1 above, one has
0i; = v;(fi) = (dfi)z(v;) if and only if (df;); form a basis in the dual space.
That is, the forms (df;), are linearly independent.

DEFINITION 3.2. A collection of structure functions {fi, f2,..., fn} on a
pseudomanifold M is called independent at z € M if {(df1)sz, (df2)z,---,
(dfn)z} is a linearly independent subset of the cotangent space on M at z.

In the category of differential spaces, it is proved that independent func-
tions f1, f2,..., fn at z form an differential basis if any function g # f; in
the subalgebra of smooth functions on U is of the form w o (f1, fo,..., fr),
where w € C*°(R™ R). As from [9], one may conclude that on an n-
pseudomanifold there are n independent structure functions at each point.
That is, there exists a basis of n covectors in the cotangent space at x for
all x € M. Equivalently, there is a local basis B = {X;, Xs,..., X} of the
module of tangent vector fields at z.

THEOREM 3.1. Let (M,Cym,Fum),w) be a symplectic pseudomanifold of
dimension 2n. For every point x € M there exist an open neighborhood U
of ¢ in M and 2n smooth functions ¢*,...,q"%,p',...,p" € F.U, where
F2U is the subalgebra of smooth functions on U, such that

n
wy = Z dqt A dpt.
i=1
The latter form is called the canonical (-normal or Darbouz-) form of w.

Proof. Since (M,Cpr, Far) has dimension 2n, it turns out that for any
x € M there exist an open neighborhood U of z, a local basis {W1,...,W,,
Vi,...,Va} C X(U) and smooth functions el,...,e" e ... 2" in the
subalgebra F,(U) such that

Wi(e) = b5, Wi(e") =0, Vi(e!) =0, V(") =4y,
where d;; is the Kronecker delta symbol. Then
del,... de" de"*t, ... de®™

form the basis dual to Wy,...,W,,Vi,...,V, in the dual space. So one
can choose functions ¢!, ...,q"% p',...,p" in F,(U) such that {dq',...,dq",
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dp!,

.,dp™} form the basis in which wjy has the normal form

n

wy = qui Adp'. m

i=1
LEMMA 3.2. Let (M,Cpr, Fa) be a Frélicher space and { f1, ..., fu} C Fz(U)
be a collection of structure functions such that one of them is injective in a
neighborhood U of x € M. Then the map ¢ := (f1,.-., fn) is a diffeomor-
phism of (U,Cy, Fu) onto ((U),Cywy, Fy))-

Proof. Let 9 be the map ¢ : U — R™ defined by
w(f’:) = (fl(m))af’n(x)) VIEMa

It is clear that 1 is injective. Since the subset ¥(U) C R™ above carries a
Frolicher structure, it follows from Lemma 2.1 above that 1 is a diffeomor-
phism. =

LEMMA 3.3. In the conditions of Lemma 3.2, the associated tangent map
Yug : TeM — Ty (M)
is an isomorphism of linear spaces.

Proof. The map t., is linear. By Lemma 3.2 ¢)y is a diffeomorphism.
Then 9! exists and (w‘l)*¢(z) = (4z) L. That is, 1., is an isomorphis-
mon on U.

Now assume that X is a smooth vector field on M and Y is a vector
field on (M). It follows that for all w € Tyy4)¥ (M),

w =Y ¥(@)) = Ya(X[@ 7 (¥(2)))) = Yea X (z).
Taking v := X (z) € T;M proves the required result. m

PROPOSITION 3.1. Let (M,Cpr, Far) be a pseudomanifold of dimension n
and N C M. If (N,Cn,Fn) is a Frélicher n-dimensional subspace imbedded
in M, then every local basis of smooth vector fields {Wh,...,W,} on M
induces a local basis of smooth vector fields {V1,...,V,} on N.

Proof. Let x € M and U be an open neighborhood of & in M such that
{W1,...,W,} is a local basis over U. Assume without loss of generality
that the inclusion map ¢y : N — M is smooth and (¢n)sz : TeN — T, M
(t(z) = x for all z € N) is an isomorphism so that ¢y is an embedding.
Consider V1, ..., V, in 2(UN N) as candidates for the local basis on N. We
note that

Vi(z) = (en)za Wil2).
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Using Equation 1 above, we have

Vi(@)(fiunn) = d(fiunn) (Vi)
= d(fiunn) (en)is Wi()
= (nrw) d(f) (") s Wi(2)
= (Wif)leU-

That is, V; are smooth tangent vector fields. Thus, V1,...,V, form a local
basis on N. =

COROLLARY 3.1. Let ((M,Cpr, Fu),w) be a pseudomanifold of dimension
2n endowed with symplectic structure w. Let N C M a subset of M. If
(N,Cn,Fn) is a Frolicher subspace of constant mazimal dimension then
there exists on N a symplectic structure induced by w.

Proof. Let ¢+ : N — M be the smooth inclusion map. That is, ¢ is
the identity map of M restricted to N and for all z € N the equality
dim T, N = dim T, M holds and t,; : TN — T,M is an isomorphism of
vector spaces. Hence,

dim T, M = 2n = dim T, N
for all z € N. Then dim N = 2n. Furthermore, for all v1,v2 € T, M one has

t*w(v1,v2) = W(tepvt, Lipt2)
= w(vy, v2).

Hence, the pullback ¢*w is a nondegenerate 2-form on N. One concludes
that N together with this pullback is a symplectic Frolicher space, turning
¢ into a symplectic transformation on M. =

A smooth map ¢ : M; — M3 on symplectic pseudomanifolds (M;,w;)
and (My,ws) is said to be symplectic or canonical if p*ws = w;. That is, for
all x € M; and all v,w € T, M; one has the following identity

Wiz (’U, w) = w2<p(:1:)(50*zv7 QO*;,;’U)),

where wy; is the evaluation of w; at the point x, wo,(4) is the evaluation of
wo at the point p(z) and ., is the tangent (or derivative) of ¢ at z.

It follows from the above definition that ¢*ws|, @y = w1y always holds
for symplectic pseudomanifolds and turns the chart ¢ into a canonical diffeo-
morphism. The set of all canonical diffeomorphisms of a symplectic pseu-
domanifold M is a smooth subgroup of the smooth group Diff(M) of all
diffeomorphisms of M with respect to the composition of maps [6]. This
subgroup is denoted by Diff,,,(M).
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The matter discussed above is a framework for a generalized formalism
of mechanical systems on smooth spaces. For instance, Hamiltonian systems
can be described as follows in the general setting of Frolicher spaces, and
restricted to the class of pseudomanifolds.

4. Hamiltonian systems on pseudomanifolds

Let (M,w) be an n-pseudomanifold. Let X(M) and Q'(M) be the Fis-
modules of smooth vector fields and 1-forms on M respectively. From the
literature on symplectic geometry, it is known that w induces a vector bundle
isomorphism w” : TM — T*M that corresponds to an Fy;-module isomor-
phism also denoted w” : £(M) — QY(M). But in the next section, we will
see that if M is a glued space which may contain singular points, then a
nonzero vector field can map to a zero 1-form. Now consider the map

U:(fMa{ ’ }) - (x(M)a[a ])
sending H € Fys to a vector field Xpg := o(H) and satisfying

Xp = ()7} (dH),

where { , } and [, ] are Poisson bracket and Lie bracket respectively. The
vector field Xy generated in this way is uniquely determined by the equation

w(Xn,-) = dH(:).

Recall that the field X surely exists if the associated map " is bijective,
or on a restricted domain in the general case and the uniqueness follows from
the nondegeneracy of w. The vector field Xy attached to a function H €
Fu such that ix,w = dH is called the global Hamiltonian vector field and
H is the energy function for the mechanics, while Xy is considered as the
Hamiltonian system whose Hamiltonian function H carries the total energy
of the system. The triplet ((M,Cur, Fu),w, H) is said to be a dynamical
(-Hamiltonian in this case) system. The 1-form generated by the symplectic
form w and the function H is dH. That is,

n
TxXyW = Z(av]Hdp] + 8WjH.dqj)

i=1

if Xp =Y (riWi+ Vi) in the basis {W1,...,Wn,V1,...,Vn}.
i=1

PROPOSITION 4.1. Let (M,w) be a symplectic 2n-pseudomanifold. The
Hamiltonian wvector field Xpg associated with the Hamiltonian function
H: M — R can be written as
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n

Xug=) (0w H-Vi+vH W)
i=1
with respect to a local basis {W1,..., W, V1,...,Vo.} on X(U), where U is
an open neighborhood of a point p € M.

Proof. In the basis {W1,...,W,,V1,...,V,} the vector field Xy can be

written as
n

Xy = Z(TiWi + s;V3).

i=1

Since
n .
ixyw =Y (Bv;H - dp; + 0w, H - dg’),
j=1
one has the identification
(dg’ A dp;)(r;W; + s;V;,-) = 8v,H - dp; + 0w, H - dg’.
Expanding the left-hand side and using the duality between W; and Vj, dg’
and dp;, we have
(riW; + 5;V;)(dg’ Adp;) = (r;W;(dg;)) A dp; — (r;W;(dp;)) A dg?
+ (s3V5(da?)) A dp; — (3;;(dpy)) A dg?
= r;dp; — sjdqj.
It follows from the equation above that
rjdp; — sjdg’ = 8y, H - dp; + 0w, H - dg’
so that
rj=0v,H, s;=-0w;H

which proves the result. =

Now every integral curve ¢ of the Hamiltonian vector field Xy should
have 2n components q'(t),...,q"(t),p1(t), ..., pn(t) satisfying the identities

gj=0v;Hoc and p;j=-0w;Hoc

with respect to the local basis {W1,..., Wy, V1,...,V,}. A vector field on
a symplectic pseudomanifold (M,w) is said to be locally Hamiltonian if at
every point z of M there is an open neighborhood U > z such that X
restricted to U is Hamiltonian. Hence X = Xy and H is the Hamiltonian
function associated with Xg. That is,

ix|Uw = dH‘U
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A smooth function f on a pseudomanifold is said to be a first integral
of a vector field X, = {h,-} if {h,f} = 0. The standard results in
the theory of symplectic manifolds hold true in the setting of symplectic
n-pseudomanifolds. They emphasize the conservative properties of Hamil-
tonian vector fields in this smooth setting. It is easily verified that a Hamil-
tonian function H is constant along the trajectories of the flow of X = Xp
and the energy is conserved in the system. That is, H is a first integral of
Xy as we can write

Xy (H) = 0.

5. Gluing symplectic pseudomanifolds

In what follows, we consider two connected Hausdorff symplectic 2n-
pseudomanifolds (M, C1, F1) and (Ma, Ce, F2) that glue in the sense of Sasin
(see [12] and [13]). The gluing diffeomorphism h : Mp; — Mp2 maps points
of a subset of (Mop1,Co1,Fo1) onto those of a subset (Mp1, Co2, Foz) in such
a way as to obtain a subset A = w,, (Mo1) = 7,,(Mo2), where 7, is the
quotient map (My,Cy, F1) U (Myq,Ca, F2) — (M1 Up M2,Cy Up, Ca, F1 Up F2)
identifying every x € My with h(z) € M2 and leaving the other points
fixed. Recall that My; and My are initial objects and M; Up Mo is a
final object in the category of Frolicher spaces. The Frolicher space M :=
(My Up, M2,Cq Up, Co, F1 Up, F2) provided with the final smooth structure
obtained by means of the quotient map =,, is called the glued Frolicher
space of M; and M; along the diffeomorphism hA. More on gluing differential
spaces can be found in [12], [13], and [14]. Let us then note the following:

1. f € Fp if and only if f|My € Fpp, or fIMa € Fp,.

2. TpM = (Ll)*prMl &5} (Lz)*prMg for pe A,

3. (ta)wpTpA = (11)spTpM1 N (¢2)spTpMs, where tpo : A — M is the
inclusion map.

DEFINITION 5.1. Let fi; € Far, and fo € Far, such that f1|A = fo|A, the
smooth map fi U fa : My Up M3 — R defined by

(3) fiUfelM;=f; i=1,2
is called a conjunction map.

Clearly, f1 U fa is smooth by construction as f1 and fa are smooth by
assumption. Also, it is easy to observe that fi U fo € ®Cy = Far.

DEFINITION 5.2. A vector field X € X(M) is said to be tangent to the
subspace A if for any point p € A there is a tangent vector v € T, M such
that

X (p) = (ta)spv-
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We shall denote by Xa (M) the set of all smooth vector fields tangent to M
which are also tangent to A.

LEMMA 5.1. Let X € XA(M). Let Y : A — TA be a vector field defined by

(4) ([’A)*py(p) = X(p)7 p € Aa
then Y is smooth as a tangent vector field on A and Y is unique.

Proof. Observe that since X is smooth, it follows by construction that Y
is also smooth. Moreover, one can see that ta is an embedding, so Y is
unique since (ta)«p is an isomorphism of linear Frolicher spaces. m

DEFINITION 5.3. The vector field Y defined in Equation (4) above is called
the restriction of X € Xa(M) to the subspace A and is denoted by X|A.

PROPOSITION 5.1. If (M, Cyr, Far) is a glued pseudomanifold of My and Mo
along h, then
() X(M) = Xa(M).
Proof. The inclusion Xa(M) C X(M) is obvious. We need only show the
reverse inclusion. Let X € X(M), then X € Xp;\a(M), for j = 1,2. This
follows from the assumption that A is closed as boundary, making M;\A
an open set. Hence X € Xy(a\a)(M). That is, X € Xp,(M). It follows
that X(p) € (¢j)+pTpM; whenever p € A, j =1,2. So
X(p) € (1) TpMr 1 (12)pTp Mz,

which is equivalent to

X(p) € (LA)*prA-
Thus X € Xa(M), which proves the reverse inclusion. m
DEFINITION 5.4. A pair (X1, X3) of vector fields X; € XA(M;) and X, €

XA (My) is said to be consistent on A if X;|A = X;3|A. The unique vector
field denoted by X LI X5 such that

XlLJXgIMi:Xi, 1=1,2
is called the conjunction of vector fields X; and X5.

PROPOSITION 5.2. Let i{A(Mm) = {(X1,X2) € J{‘A(Ml) X }:A(M2)} be the
set of all pairs of vector fields X; € XA (M1) and X € Xa(M2) which are
consistent on A. Then the correspondence

X(M) — Xa(M12)
is bijective.
Proof. The proof is a straightforward consequence of Proposition 5.1 and
Definition 5.2 above. m
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PROPOSITION 5.3. Let (M = M; Uy Ms,Cpr, Far) be the pseudomanifold
following a transversal intersection along h. Let ¢ : R — M be a smooth
curve on M such that c(t) lies in M fort <0, c(t) lies in My fort > 0 and
c(0) € A. Then

C,(O) € (LA)*c(O) (TC(O)A).
Proof. Let c_ denote the restriction of ¢ to (—oc0,0] and ¢4 the restriction
of ¢ to [0,+00). Since ¢ is assumed smooth, it turns out that

¢ (0) = (11)1c(0)€-(0) = (12)xe(0) ¢y (0).
It follows that
(6) C,(O) € (Ll)*c(O)Tc(O)Ml N (L2)*c(0)Tc(O)M2 = (I’A)*C(O) (Tc(O)A) =

COROLLARY 5.1. For every smooth vector field X € X(M; Uy, My) there is
an integral curve at singular points.

Proof. We only observe that a piecewise curve defined by
£) = {Cl(t) for t € (—o0, tg)
co(t) for t € [to, +00)

such that ¢; : [to, +00) — M is an integral curve for X; € Xa(Mj2). On
the other hand c; : (—00,tp] — M3 is an integral curve for Xy € Xa (M 2).
Then ¢1(to) = c2(to) € A is a smooth integral curve for X € X(M). u

DEFINITION 5.5. Two k-forms w; € Qk(Ml) and wy € Qk(Mg) are said to
be consistent on A if

(7) AW = tyaw2,
where 11a (resp. taa) is the inclusion map of A into M (resp. Ms).

Let QF(M) = {w1 Uwy : w1 € QF(My), wa € QF(Mp); 1fpwr = 3pwa}
denote the set of all A-consistent k-forms on M.

DEFINITION 5.6. The conjunction of A-consistent k-forms wy and w- is the
k-form defined by

wiUwy : X(M) X -+ x (M) — Fu,
such that
(8) (W Uwe)(X1UYy,...,XpUYs) :=wi(Xq,...,Xk) Uwe(Y1,...,Y%)
where X; UY7,..., X UYy € X(M).

PROPOSITION 5.4. Ifw; and wy are A-consistent k-forms on M = My Up My
then dwy and dws are A-consistent (k + 1)-forms on M.

Proof. Clearly one has tjpdwi = t35dws which follows from (j w1 =
L5AW2. m
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DEFINITION 5.7. The (k+1)-form dw = dw;Udw, obtained from w = wj Liws
is called the exterior derivative of the k-form w.

THEOREM 5.1. Let (My,w;) and (Ma,w2) be symplectic pseudomanifolds.
Then w1 Uwy is a symplectic form on M = M Up, My and wy Uws assigns to
any tangent vector field X = X1 U X9 a unigque 1-form a = a3 U ag on M,
where o, ae are A-consistent 1-forms on (My,w1) and (M,ws) respectively,
corresponding to X, and Xs.

Proof. Observe that w;Llws is symplectic by construction. We need to show
that w; U wy maps X; U X into oy Ll ag, where X; € X(M;), oz € QY(M;),
i =1,2. In fact, in the usual way we know that

w: X —ixw=wlX,)=a
uniquely yields a 1-form since w is nondegenerate, and

w(X, ) =wp U wz(Xl U Xo, )
by definition. It follows that
(9) wl(Xl,-)l_lwg(Xg,-) = ay U as.

It remains to show the correctness of the definition of a; Ll ag with respect
to w1 and we. That is, we show that o; and ag, images of w; and ws, are
A-consistent. It is easy to see that

(t1a01)(v) = (i2a02) (v),
where v € T,M, p € M and u € T,A satisfies (t1a)pu = X1(p) and
according to Lemma 5.1 above, (t2a)spt = Xa(p). =

COROLLARY 5.2. The correspondance Xy — dH is not bijective.

6. Application: Gluing at a point and related mechanics

6.1. The spaces are symplectic. Let (M;,w;) and (M2, ws) be symplec-
tic pseudomanifolds of constant dimension. Let us consider that these spaces
are glued at a point so that M = My Up My and A = {p}, p € M. The Fy-
module X (M) is isomorphic with the R-module {a € Q'(M) : a(p) = 0}
vanishing at p. It is easy to see that XA(M) = {X € X(M) : X(p) = 0}.
Then for any X € XA(M), the 1-form o = ixw satisfies the condition

ap = 0.

Therefore, Xa(M) = {(X1, X2) € X(M1) x X(M2) : X1(p) = 0, X2(p) = 0}
and clearly wy and w9 are consistent since

aw1 =0, 3awe =0.
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Hence, we obtain the glued symplectic space (M; Up Ma,w; Uws). A vector
field X; U X2 € (X)a(Mi2) corresponds to a 1-form oy U ag, where a; =
ix,w1, a2 = ix,wy. Clearly a;(p) =0,i=1,2.

ExAMPLE: Hamiltonian systems glued at a point

Consider the canonical pseudomanifold (R'?,C, F) and two pseudoman-
ifolds

Ml = {(qlvqzvq3>pl>p2ap37O,Oa0907070);qi,pi S R, 1= 1,2,3} - R12
M2 = {(OaOaO’Oa 070, 51,52,63,171,172,1—’3);qiaﬁi € R: 1= 132a3} - R12'

Then M; and M3 are obviously Frélicher subspaces of R!2 which are consid-
ered as configuration spaces for two mechanical systems with 6 degrees of
freedom. The configuration coordinates (¢!, ¢%, ¢3) or (3%, 3%, ¢°) and the mo-
menta (p1, p2, p3) or (P1, P2, P3) determine together the instantaneous states.
Then R'2 can be considered as the phase space of the system.

In the Hamiltonian formulation the equations of the motion for such a
classical system are written in terms of first order differential equations

dg* _OH dp;  OH
dt  0p;’ dt  Og¢
A Hamiltonian function H(g,p) defining the system in case of absence of
constraining forces and time dependence is the total energy of the system,
that is, the kinetic plus the potential energies. According to some obser-
vation made by Eledrisi [5] on structured spaces, we note that on a pseu-
domanifold, the set of singular points lying in the transversal intersection
is

A= M;N M, ={0}. Thatis, pp € A if and only if py = (0, ...,0) € R'2.
Assume that (M),w;) and (Ma,ws) are symplectic with symplectic A-con-
sistent forms given by

(10) fori=1,2,3.

3 3
wp = qul/\dpi, wp = qul/\dﬁi-
=1 =1

Consider two potential functions V; : M; —» R, V5 : My — R such that
Vi(po) = Va(po) and two Hamiltonian functions given by

1 3 p2
[ 7
H1—2Zm+‘/1a
i=1
S
1 p2
H2:§;E1+V2
1=

where m designates the mass of material points. We need to calculate the
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Hamiltonian vector field in each case. Then we shall obtain the correspond-
ing integral curves in M; and in Ms.

‘We obtain
3
pi 0 0Vi 0
11 Xy, = . .
( ) Hl P maql 8(17’ 8p27
3 _
(12) Xu, = &—‘3\—.—8—%%.

i=1
The integral curves for Xy, satisfy the (Hamilton-Jacobi) equations
d¢' _pi  dpi _ O

(13) dt m’ dt  O¢t

Hence, assuming without loss of generality that g—vii =constant we have

0= (L3 5)

=1

Similarly for Xp, one has

oV,
i rya A P
0= (L am-250)
which we can glue for the mechanics on M = M U M.

6.2. General case. Let (M1, ¢1) and (M3, g2) be pseudo-Riemannian open
manifolds which have a transversal intersection at a point p. That is,

My UM =M, MlﬂM2={p}:=A

Let 0, € T, M be the zero tangent vector on M at p € M, and To, (T M;)
the tangent space to T'M; at 0,. Then

TMiNTMy = {0,} and To,(TMy)NTo,(TMz) = {00,},
where we denoted by 0o, the tangent vector to T'M; at the vector 0,. Now,
T(M) :=TM;UTM,, T*M := T*MyUT*M,, with T*MiNT*M, = {0}}.
The projections of the glued bundles are
ri=mUmy: TM — M,where m; : TM; - M;,
T:='rlLl7'2:T*M—>M, where 7, : T*M; — M;,

for i = 1,2. Let us recall that a function f is smooth on M if f|M; € Fu,.
Therefore, g; U g2 is a smooth function on M and it is clear that ¢; Ll g is
a Riemannian metric on M.
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Moreover, the Riemannian metrics g; are consistent on A since
tagi =0, i=1,2.
Next, consider a Lagrangian function on the glued space.
L:(MiUp,Mz,g1Uge) =R, L(v)= %g(v,v), veTM.
That is,
L:=LjuL,, with L;:TM; >R (i=1,2)
the Lagrangians on TM; given by

1
L,(’U) = —gi(v, U), v € TM;, Ll(Op) = L2(Op).
2

It is clear that if Ly and Lg_are hyperregular, then one obtains a glued
Legendre transformation £ : TM — T*M, with

L:=L1UL,, L;:TM; — T*Mi

mapping tangent vectors in the glued tangent bundle onto tangent covectors
in the glued cotangent bundle. Since £; are diffeomorphisms by assumption,
so is £. Of course,

Li(0p) =0 and L;(v)(w) = gi(v, w),

where i = 1,2 and v,w € TM;. Let us consider the canonical 1-forms
0; : T,TM; »> R, a € T*M;, ie. §; € Ql(T*Mi), and 01;(001,) =0 by
linearity. Now, set

=010, and w=wi;Uws,
where w; = df; € Q?(M;) are canonical symplectic 2-forms on T*M;. Again,
tiaw; =0,
that means that the forms collapse at the gluing point. It follows that
wr, = Llwy U Lowg = w1y, Uwar,.

The above ingredients are enough for us to write a mechanical system on
a glued space. If E : TM — R denotes the energy function with the
associated vector field Xg such that ix_ w; = dE, then the geodesics on
the glued space are base integral curves of the vector fields Xy constructed
on the glued tangent bundle. It can be observed that some geodesics are
piecewise smooth curves with bifurcation.

Now we state

PROPOSITION 6.1. Let (M, g) be the glued Riemannian space, where M =
M, Uy My and M; are smooth manifolds whose transversal intersection con-
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sists of a singleton {p}, and g = g1 U go the glued metric. Then the La-

grangian L : TM — R given by
L(v) = %g(v,v), veTM
is hyperregular and the associated Legendre transformation satisfies
LW)(w) = g(v,w), v,weTM.
The enerqy function is
E:L=%g(v,v), veTM

and the associated Hamiltonian is given by

H(a) = %(C'l(a),ﬁ_l(a)), ae M.

Proof. Define a function ®,,, : R — R by setting
®y0(t) = Lv+tw), v,weTM.

From the given Lagrangian we have
1
q)'u,w(t) = Eg(v +tw,v+ tw)

1 1
= 29(v,9) + tg(v, w) + 5tg(w, ).

Hence

(14) £ 8y0(D)lm0 = 9(v,w) = L(2)(w).

Now we need to show that £ is a diffeomorphism. Since it is bijective
according to the properties of g and smooth by definition, we only show
that £~! is smooth. Note that the canonical smooth structure on TM is
generated by the set {a o7} U {da} and on T*M by the set {07} U {do},
where a € Fps, 7 and 7 are bundle projections respectively. So it is enough
to show that the composition of £~! with the generators in 7*(M) is smooth.

1. We have
(aomoLt=ao(moL ) =aor.

This is a smooth function on T* M as a composite of smooth functions.
2. Next, we show that da o £71 is smooth. Let p € M and U be an
open neighborhood of p € M. Let {Wi,...,W,} be a local basis
over U. That is, there exist W}, ..., W, smooth functions such that
W (p)(W;(p)) = 6;;, whered,j =1,...,n according to Lemma 3.1.
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(15)

Thus
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Consider the diffeomorphism 1 : U x R™ — T*U given by
Y(p,r1,- . Ta) = YW (p)

where p € U, r € R™. Then from the equivalent definition of a smooth
map (see Definition 2.1), dao £L7! is smooth if and only if dao L7 0 1p
is smooth. According to the properties of the 2-form ¢ which is a
nondegenerate function, there exist unique vector fields Ay,...,A, €
X(U) such that

Wy (X) = (4, X)

where X € X(U),i=1,...,n. Note that L(u) =i,(g9) = g(u,-). Then
using Equation 14 to solve Equation (15) gives the identity

L7HW () = Ailp),
where p € U. It follows that for all (p,r) € U x R™ Equation 1

da(L~ o) (p,r) = Lo ﬁ(p’ )(a)

—H ZriWi*(p))(a)
= Zn p)){a)
= Yo rAG)@

The latter is a finite sum of smooth maps A;(p) as tangent vectors at
p, for each ¢ = 1,...,n and « is a structure function on U. Thus,
da o L7 o4y is smooth. But do € Fry is a generating function,
therefore £~! is a smooth map.

Next, note that from H = Eo L™}, and E(v) = (L(v),v) — L(v), we have

B@) = 9(v,v) - 59(v,v) = 39(0,v) = L.

H(a) = (B0 £7)(a) = B(L™(@)) = 39(£7 (@), £7(a)).

Now we may consider a mechanical system with potential on the glued

space.

PROPOSITION 6.2. In the conditions just described in the proposition above,
let V: M — R be a smooth function and L : TM — R be the Lagrangian
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defined by
(16) L) = 39(0,) ~ (V o 1)(0),

where v € TM. Then the Legendre transformation is the symplectomor-
phism
L(v)(w) = g(v, w)

and the energy function E : TM — R is given by

1
(17) E(v) = 9(0,v) + (V o m)(0).
The associated Hamiltonian H : T*M — R is given by
(18) H=LoL'42Vor,
where 7 : T*M — M is the canonical projection.

Proof. A similar construction leads to L(v)(w) = g(v,w), turning £ into
a diffeomorphism. Therefore, L is hyperregular. Thus,

B@) = 39(v,0) + (V om)(v).

Notice that wy, = L*wy is closed on T'M since
Lrwy = L*(dOy) = d(L*(6p))

is exact, where #y and wg are the canonical 1-form and 2-form on T*M re-
spectively. Also it is a nondegenerate 2-form since £ is a diffeomorphism.
One concludes that wy, is a symplectic form. Therefore, £ is a symplecto-
morphism.

Next, consider

B(w) = 59(v,0) + (Vo m)(0),
and let v € £L7Y(a), for @ € T*M. Then
H(a) = E(L™Y (@) = 39(L7Y(a), L7 () + (Vo m)(L (@)
= 39(v,0) + (Vo m)(v) = 39(v,v) — L(v)) + L(v) + (V o m)(v)
= L(v) + 2(V om)(v) = Lo L7 (a) + 2(V o m)(L™}(a))
=LoL Ya)+2(Vor)(a) s
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