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AN APPROACH TO HAMILTONIAN MECHANICS 
ON GLUED SYMPLECTIC PSEUDOMANIFOLDS 

Abstract. We define a class of Frolicher spaces locally diffeomorphic to Frolicher 
subspaces of the Euclidean space R n and we call them pseudomanifolds. These differ-
ential constructs carry symplectic geometry so that Hamiltonian systems are naturally 
introduced. When gluing together symplectic pseudomanifolds which intersect transver-
sally, it turns out that up to an equivalence relation, the glued space is symplectic and 
smooth integral curves extend to singular points. 

1. Introduction 
This study is an application of Hamiltonian mechanics to a particular 

class of the so called smooth spaces or Frolicher spaces (also denoted by 
F-spaces). We refer to a Frolicher structure on a set M as a pair (CM, TM) 
of functions c : R —• M called curves and real-valued functions / : M —> R 
such that the following compatibility condition holds: 

• r Tm = {c : R M/f oce C°°(R) for all / e FM} •= CM 

• = { / : M R / / o c e C°°(R) for all c g Tm} '•= 

The triplet (M, Cm-, Fm) is called a Frolicher space. A Frolicher space carries 
two topologies. One is the initial topology -tf generated by the set Tm- This 
is the weakest topology in which all the functions are continuous. It has 
subbasis and basis the collections { / - 1 ( 0 , 1 ) } / g j t m and { / _ 1 (0 , o o ) } y e j r M 

respectively. The other is the topology TC generated by the set CM, the 
open sets of which are subsets O C M such that c - 1 ( 0 ) are open in R. It is 
easy to see that t? C tq- Except otherwise indicated, Frolicher spaces under 
consideration in this work are balanced spaces, that is, tq = r y (See [3]). 
For basics on Frolicher spaces, see [6], [7], [4], [2]. 

Working with the smooth Frolicher structure is particularly interesting as 
geometric objects mostly function spaces, or spaces with many singularities or 

2000 Mathematics Subject Classification: 53D99, 37C05, 37J05, 93C25. 
Key words and phrases: Frolicher space, pseudomanifold, constant dimension. 



942 A. Batubenge, W. Sasin 

failing to be smooth manifolds can be naturally endowed with this structure. 
Also we point out that Frolicher smooth functions and curves are globally 
defined while they have local properties. So the geometry on them stands 
for a possible generalization of the manifold theory. Moreover, it was proved 
that the category of Frolicher spaces contains that of convenient spaces (see 
[7]), that it is a full subcategory of differential spaces in the sense of Sikorski 
(see [4]) and is embedded in the category of diffeological spaces (see [16]). 

The n-dimensional Euclidean space is a natural example of a Frolicher 
space whose smooth structure is formed by all the C°° curves into and all the 
C°° real-valued functions. In this paper we shall deal with those Frolicher 
spaces which are locally diffeomorphic to subsets of Rn . We call them pseu-
domanifolds. We show that this class of smooth spaces forms a framework 
for the modelling of mechanical systems. We will particularly show that 
when two connected Hausdorff symplectic pseudomanifolds that intersect 
transversally glue in a smooth way, the resulting Frolicher space has an in-
duced symplectic structure. Then we shall write Hamiltonian mechanics on 
the generated space. As an application, we will be concerned with the gluing 
of open manifolds at a point. 

2. Smooth maps and diffeomorphisms 

DEFINITION 2.1. A map TP : (M,CM,FM) —> (N, C/v, FN) between Frolicher 
spaces is smooth if <P*TN ^ J~M- A smooth map with a smooth inverse is 
called a diffeomorphism. 

It is easy to see that P is smooth if and only if <P*CM Q CPJ. Combining 
the above statements yields an additional characterisation of a smooth map 
as follows 

fotpoce C°°(M,M) 

for all / G TN a n d c G CM-

Note that in this work we shall simply say smooth for means of smooth 
in the Frolicher sense and Frolicher space M for (M,CM,^M) if there is no 
fear of confusion. A Frolicher space M is said to be locally diffeomorphic to 
another Frolicher space N if, for every x G M, there exists a neighborhood 
U of x diffeomorphic to a subset V of N. In [2] and [8] we show the following 
two results. 

LEMMA 2 .1 . Let N be a Frolicher space and M be a set. Let (CM,FM) be 
the Frolicher structure induced on the set M via maps fi : M —* N,i G I. 
Assume that the map ip : M —* N1, given by <p(x) = (fi(x))i, is one-to-
one. Then <p is a diffeomorphism onto its range <p(M) which is a Frolicher 
subspace of N1. 
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P r o o f . Let c : R —• M be a structure curve on M. Then 

<P 0 c ( t ) = ( f i ° c(t))/ 

for a l i i G R. Since the structure on N1 is generated by the family {g o : 
g G FN, i G /}, it follows that ip o c : R —> ip(M) is a smooth curve on 
<p(M). Hence </? is smooth. 

Now, let (xi)i G (f(M). It is clear that 

9° f i ° ^ ( O = gOTTiOipo = C/0 7Ti((Xi)l). 

Thus </?_1 is smooth. • 

COROLLARY 2 . 1 . Let M be a set, and let / 1 , . . . , fn : X —> R be real-valued 
functions on M such that the map <p : M —> Mn, ip(x) = (fi(x),..., fn{%))> 
is one-to-one. If (Cm,^m) is a Frolicher structure generated by the family 
{/i> • • • > fn}, then tp is a diffeomorphism onto the subspace <p{M) of R n . 

DEFINITION 2 . 2 . A Frolicher space (M,CM,FM) IS called a pseudomanifold 
if ( M , C M , F M ) is locally diffeomorphic to (Rn , C, T). That is, for every 
x G M, there exist a r^M-open neighborhood U of x and a diffeomorphism 
(p of U onto the Frolicher subspace V := <p{U) C R n . 

Note that Corollary 2.1 above provides various examples of pseudoman-
ifolds. We may observe that the Euclidean Frolicher space R" with its 
canonical structure where curves and functions are C°° functions in the 
usual sense, as well as a smooth manifold, are examples of pseudomanifolds 
modelled on open sets. In the near future, we shall present different types 
of pseudomanifolds. 

DEFINITION 2 .3 . Let ( M , C M , F M ) be a pseudomanifold. Let x G M be 
a point, U an open neighborhood of x and a diffeomorphism of U onto 
V C R n . The pair (U, ip) is called a chart on (M, CM^M) at x, U is the 
domain of the chart. 

2.1. Remarks 

a. The definition of a pseudomanifold stated above does not require n to be 
a fixed positive integer. If this occurs, we shall call M a pseudomanifold 
of dimension n or an n-pseudomanifold. Furthermore, if M is locally 
diffeomorphic to open subsets of R n then it is easy to see that the smooth 
structure under consideration and the manifold structure are coincident. 
Finally, let us note that for the purposes of symplectic geometry, one may 
require the modelling subspaces of R" to be star-shaped regions of R", 
or closed subspaces of R n of constant dimension with nonempty interior. 
We refer the reader to the literature (see [9]) for more about the concept 
of a differential space of constant dimension. 
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b. An operational tangent vector at x G M is a derivation on TM, that 
is a map vx : J~M > M satisfying Leibniz property. That is, vX(FG) = 
g(x)vx(f) + f(x)vx(g), where f,g& J~M- The set of all tangent vectors 
at x G M is denoted by TXM and is called the tangent space on M at 
x. In [2] and [4], it is shown that TXM is a linear Frolicher space whose 
smooth structure is generated by functionals ( d f ) x defined by setting 

(1) (df)x(v) = v(f). 
A Frolicher space has another tangent structure defined via structure 
curves as follows. Let n e t and x G M. Denote by C^f the set of all 
smooth curves c G CM such that c(a) = x. By a kinematic tangent vector 
(word borrowed from [7]) to the space M with foot point a we mean 

(2) XcM)--=ft(foc){t=a = df(c(a)), 

where c 6 C^f. A tangent cone space at x is the set of all kinematic tangent 
vectors at x. It is denoted by TXCM and is not necessarily a linear Frolicher 
space(see [4]). A straightforward consequence is that TXCM C TXM for all 
x G M and that both operational and kinematic tangent spaces coincide 
if dim TXM is constant at each x € M. In what follows, a tangent space 
shall mean the operational one if there is no confusion. 

3. Symplectic pseudomanifolds 

DEFINITION 3.1. Let { M , C M ^ M ) be a pseudomanifold of dimension n. 
A symplectic form u oil M is an exterior form which is closed and nonde-
generate. The construct ((M ,CM ,FM) ,U) , where (M, CM, ^M ) is a pseu-
domanifold and UJ a symplectic form defined on (M ,CM ,^M ) is called a 
symplectic pseudomanifold. 

As a symplectic differential space (see [2],[4]), a symplectic n-pseudo-
manifold (M, ui) is an even dimensional space which inherits the well-known 
exterior algebra on differential spaces, and the equality dim TpM = n for 
all p G M, with n = 2m, m e N , m ^ 0 holds true. 

3.1. Normal form for symplectic forms 
In [9] we read 

LEMMA 3 .1 . Let (M, CM, ^M) be a Frolicher space. The following conditions 
are equivalent: 

(i) n tangent vectors vi,..., vn G TXM are linearly independent; 
(ii) for all smooth functions f G Tm, the map 

E : TM - R n ; / ~ 9(f) = M / ) , . . . , «„(/)) 
is a surjection; 
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( i i i ) there exist n smooth functions f \ , . . . , fn G J~m such that V i ( f j ) = Sij, 
where Sij is the Kronecker symbol; 

( i v ) there exist n smooth functions / i , . . . , / n £ J~m such that d e t { v i ( f j ) ) 

Taking into account (i) and (iii) and using Equation 1 above, one has 
= V j ( f i ) = ( d f i ) x ( v j ) if and only if (dfi)x form a basis in the dual space. 

That is, the forms ( d f i ) x are linearly independent. 

DEFINITION 3 .2 . A collection of structure functions {/ i , / 2 , . . . , f n } on a 
pseudomanifold M is called independent at x G M if {{df\)x, (df2)x, • • •, 
(dfn)x} is a linearly independent subset of the cotangent space on M at x. 

In the category of differential spaces, it is proved that independent func-
tions / i , / 2 , . . . , fn at £ form an differential basis if any function g ^ fi in 
the subalgebra of smooth functions on U is of the form u o ( / l 5 / 2 , . . . , /„), 
where u G C°°(Mn, R). As from [9], one may conclude that on an n-
pseudomanifold there are n independent structure functions at each point. 
That is, there exists a basis of n covectors in the cotangent space at x for 
all x G M. Equivalently, there is a local basis B = { X i , X 2 , X n } of the 
module of tangent vector fields at x. 

THEOREM 3 .1 . Let be a symplectic pseudomanifold of 
dimension 2n. For every point x G M there exist an open neighborhood U 
of x in M and 2 n smooth functions q1,... ,qn,p1,... ,pn G Tx U, where 
TXU is the subalgebra of smooth functions on U, such that 

n 

u\U = ^ d q i A dp\ 
i-1 

The latter form is called the canonical (-normal or Darboux-) form of u. 

P r o o f . Since ( M , C m ^ m ) has dimension 2n, it turns out that for any 
x G M there exist an open neighborhood U of x, a local basis {Wi,..., Wn, 
Vi,...,Vn} C X(U) and smooth functions e 1 , . . . , en , e n + 1 , . . . , e2 n in the 
subalgebra TX{U) such that 

Wi{e?)=6ij, Wi(en+i) = 0 , V ^ ) = 0, Vi(en+^) = Sij, 

where Sij is the Kronecker delta symbol. Then 

d e l , . . . , den, den+1,..., de2n 

form the basis dual to Wi,..., Wn, Vi,... ,Vn in the dual space. So one 
can choose functions q1,..., q n , p l , . . . ,pn in TX{U) such that {dq1,..., dqn, 
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dp1,..., dpn} form the basis in which ui\u has the normal form 
ra 

u\jj = ^ dql A dp1, m 
i=1 

LEMMA 3.2. Let ( M , CM, FM) be a Frolicher space and { / I , . . •, fn} C TX{U) 
be a collection of structure functions such that one of them is injective in a 
neighborhood U of x G M. Then the map xp := ( / i , . . . , fn) is a diffeomor-
phism of (U,Cu,Fu) onto (ip(U),C^Lr),^u))-

P r o o f . Let %p be the map ip : U —> R" defined by 

^{x)-.= {h{x),...Jn{x)) Vx G M, 

It is clear that ip is injective. Since the subset ip{U) C M™ above carries a 
Frolicher structure, it follows from Lemma 2.1 above that tp is a diffeomor-
phism. • 

LEMMA 3.3. In the conditions of Lemma 3.2, the associated tangent map 

: TXM -> T^x)ff>(M) 

is an isomorphism of linear spaces. 

P r o o f . The map ip*x is linear. By Lemma 3.2 ip\u IS a diffeomorphism. 
Then exists and = (^»x)^1- That is, is an isomorphis-
mon on U. 

Now assume that X is a smooth vector field on M and Y is a vector 
field on tp(M). It follows that for all w <E T^x)ip(M), 

w = Yty(x)) = ip*x(X (ip~1 (il)(x)))) = AxX(x). 

Taking v := X(x) € TXM proves the required result. • 

PROPOSITION 3.1 . Let (M^CMI^M) be a pseudomanifold of dimension n 
and N C M. If (N, is a Frolicher n-dimensional subspace imbedded 
in M, then every local basis of smooth vector fields {W\,... ,Wn} on M 
induces a local basis of smooth vector fields {V\,... ,Vn} on N. 

P r o o f . Let x G M and U be an open neighborhood of x in M such that 
{Wi,...,Wn} is a local basis over U. Assume without loss of generality 
that the inclusion map IN • N ^ M is smooth and (IN)*x • TXN —> TXM 
(t(x) = x for all x G N) is an isomorphism so that ¿jv is an embedding. 
Consider V i , . . . , Vn in X(U fl N) as candidates for the local basis on N. We 
note that 

Vi(x) = (tN)^Wi(x). 
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Using Equation 1 above, we have 

Vi(x)(f\UnN) = d(f\UnN)(Vi(x)) 

= d(f\UnN)(iN)-£Wi(x) 

= (iNnuyd(f)(irfUWi(x) 

= (Wif)\Nnu-
That is, V{ are smooth tangent vector fields. Thus, V i , . . . , Vn form a local 
basis on JV. • 

COROLLARY 3 .1 . Let ((M,Cm,Fm),u) be a pseudomanifold of dimension 
2n endowed with symplectic structure u. Let N C M a subset of M. If 
(N,Cn,Fn) is a Frolicher subspace of constant maximal dimension then 
there exists on N a symplectic structure induced by u. 

P r o o f . Let t : N <—> M be the smooth inclusion map. That is, t is 
the identity map of M restricted to N and for all x E N the equality 
dim TXN = dim TXM holds and : TXN TXM is an isomorphism of 
vector spaces. Hence, 

dim TXM = 2n = dim TXN 

for all x e N. Then dim N = 2n. Furthermore, for all v\, v^ G TpM one has 

1*U(V1,V2) = <Jj{l*pVi, L*pV2) 

= u{v 1,V2). 

Hence, the pullback l*uj is a nondegenerate 2-form on N. One concludes 
that N together with this pullback is a symplectic Frolicher space, turning 
i into a symplectic transformation on M. • 

A smooth map ip : M\ —> M2 on symplectic pseudomanifolds (M\,u>\) 
and (M2,a>2) is said to be symplectic or canonical if (p*u>2 = That is, for 
all x G Mi and all v,w € TXM\ one has the following identity 

L0lx(v,w) = U2v(x){<P*xV,ip*xW), 

where oj\x is the evaluation of lo\ at the point x, u>2ip(x) is the evaluation of 
u2 at the point ip(x) and ip.tx is the tangent (or derivative) of at x. 

It follows from the above definition that ip*u)2\<p(u) = wi|i7 always holds 
for symplectic pseudomanifolds and turns the chart ip into a canonical diffeo-
morphism. The set of all canonical diffeomorphisms of a symplectic pseu-
domanifold M is a smooth subgroup of the smooth group Diff(M) of all 
diffeomorphisms of M with respect to the composition of maps [6]. This 
subgroup is denoted by Diffcan(M). 
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The matter discussed above is a framework for a generalized formalism 
of mechanical systems on smooth spaces. For instance, Hamiltonian systems 
can be described as follows in the general setting of Frolicher spaces, and 
restricted to the class of pseudomanifolds. 

4. Hamiltonian systems on pseudomanifolds 
Let (M , lo ) be an n-pseudomanifold. Let X(M) and 0 1 (M ) be the Tm~ 

modules of smooth vector fields and 1-forms on M respectively. Prom the 
literature on symplectic geometry, it is known that u> induces a vector bundle 
isomorphism uJ3 : TM —> T*M that corresponds to an .T^-module isomor-
phism also denoted ui" : 3L(M) —> i)1 (M). But in the next section, we will 
see that if M is a glued space which may contain singular points, then a 
nonzero vector field can map to a zero 1-form. Now consider the map 

» - M I , ] ) 

sending H € !Fm to a vector field Xh '•= &(H) and satisfying 

x H = ( J y ' i d H ) , 

where { , } and [ , ] are Poisson bracket and Lie bracket respectively. The 
vector field Xh generated in this way is uniquely determined by the equation 

u ( X H , - ) = dH(-). 

Recall that the field Xh surely exists if the associated map cob is bijective, 
or on a restricted domain in the general case and the uniqueness follows from 
the nondegeneracy of lo. The vector field Xh attached to a function H G 
J~m such that ¿xHw = dH is called the global Hamiltonian vector field and 
H is the energy function for the mechanics, while Xh is considered as the 
Hamiltonian system whose Hamiltonian function H carries the total energy 
of the system. The triplet { (M ,Cm ,Fm )-,u ,H ) is said to be a dynamical 
(-Hamiltonian in this case) system. The 1-form generated by the symplectic 
form u and the function H is dH. That is, 

n 

ixHu = ^ {dv jH .dp j + dwjH.dq3) 
¿=1 

n 

i f XH = J 2 ( r i W i + i n t h e basis Vn}. 

i=1 

P R O P O S I T I O N 4.1. Let (M,u>) be a symplectic 2n-pseudomanifold. The 

Hamiltonian vector field Xh associated with the Hamiltonian function 

H : M —>• R can be written as 
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n 
XH = • K + dvP • 

i= 1 
with respect to a local basis {Wi,..., Wn, V\,..., V^} on X(U), where U is 
an open neighborhood of a point p G M. 

P r o o f . In the basis {W\,..., Wn, V\,..., V^} the vector field Xh can be 
written as 

n 
X „ = Y,(r iW i + siVi). 

¿=i 
Since 

n 
ixHu = ^(dvjH • dpj + dw3H • dqJ), 

j= i 
one has the identification 

(dq3 A dpj)(rjWj + SjVj, •) = dv}H • dpj + dw5H • dq3. 

Expanding the left-hand side and using the duality between Wj and Vj, dq3 

and dpj, we have 

(rjWj + SjVj)(dq3 A dpj) = (rjW^dqj)) A dpj - ( : r j W j { d p j ) ) A dq3 

+ (sjVj(dq3)) A dpj - (sjVj(dpj)) A dq3 

= rjdpj — Sjdq3. 

It follows from the equation above that 

rjdpj — Sjdq3 = dv3H • dpj + &WjH • dq3 

so that 

r3 = dv}H, sj = -dWjH 

which proves the result. • 
Now every integral curve c of the Hamiltonian vector field Xh should 

have 2n components ql(t),..., qn(t),pi(t),... ,pn(t) satisfying the identities 

qj = dv,j Hoc a n d Pj = —dwjH o c 

with respect to the local basis {W\,..., Wn, ... ,Vn}. A vector field on 
a symplectic pseudomanifold (M, uj) is said to be locally Hamiltonian if at 
every point x of M there is an open neighborhood U 3 x such that X 
restricted to U is Hamiltonian. Hence X = Xh and H is the Hamiltonian 
function associated with Xh- That is, 

ix\uu = dH\ u-
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A smooth function / on a pseudomanifold is said to be a first integral 
of a vector field Xh = {h, •} if {h,f} = 0. The standard results in 
the theory of symplectic manifolds hold true in the setting of symplectic 
n-pseudomanifolds. They emphasize the conservative properties of Hamil-
tonian vector fields in this smooth setting. It is easily verified that a Hamil-
tonian function H is constant along the trajectories of the flow of X = XH 
and the energy is conserved in the system. That is, H is a first integral of 
XH as we can write 

Xh(H) = 0. 

5. Gluing symplectic pseudomanifolds 
In what follows, we consider two connected Hausdorff symplectic 2n-

pseudomanifolds (MI, C\, Ti) and (M2, Ti) that glue in the sense of Sasin 
(see [12] and [13]). The gluing diffeomorphism h : MQ\ —> MQ2 maps points 
of a subset of (M01, C01, ) onto those of a subset (M01, C02, ^02) IN such 
a way as to obtain a subset A = 7rph(Moi) = nPh(Mo2), where irPh is the 
quotient map (MuCuTi) U (MI,C2 ,JF2 ) - » ( M I U^ M 2 , C I UFC C2, Tx U h ^2 ) 
identifying every x € M01 with h(x) G M02 and leaving the other points 
fixed. Recall that MQ\ and M02 are initial objects and Mi U/j M2 is a 
final object in the category of Frolicher spaces. The Frolicher space M := 
(MI Ufc M2,CI U/J C2, ^"I Uh T2) provided with the final smooth structure 
obtained by means of the quotient map nPh is called the glued Frolicher 
space of Mi and M2 along the diffeomorphism h. More on gluing differential 
spaces can be found in [12], [13], and [14], Let us then note the following: 

1. f £ J-M if and only if /|Mj € TMl or /|M2 G TM2-
2. TPM = (¿i)*pTpMi 0 (L2)*VTPM2 for p € A. 
3. (¿A)*pipA = (II)*PTPMI n (L2)*PTPM2I where ¿a : A <—> M is the 

inclusion map. 

DEFINITION 5.1. Let /1 G TMx and /2 E FM2 s u c h that /i|A = /2|A, the 
smooth map /1 U /2 : Mi U^ M2 —• K defined by 

(3) Z i U / a l M ^ / i ¿ = 1,2 

is called a conjunction map. 

Clearly, /1 U fa is smooth by construction as fa and fa are smooth by 
assumption. Also, it is easy to observe that fa U fa e $Co = 3~m-

DEFINITION 5.2. A vector field X E X(M) is said to be tangent to the 
subspace A if for any point p E A there is a tangent vector v € TPM such 
that 

X(p) = (LA)*pV-
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We shall denote by JEA (M) the set of all smooth vector fields tangent to M 
which are also tangent to A. 

LEMMA 5 .1 . Let X G XA{M). Let Y : A —> T A be a vector field defined by 

(4) (i*)*pY(p) = X(p), p G A, 

then Y is smooth as a tangent vector field on A and Y is unique. 

P r o o f . Observe that since X is smooth, it follows by construction that Y 
is also smooth. Moreover, one can see that ¿A is an embedding, so Y is 
unique since (LA)*P is an isomorphism of linear Frolicher spaces. • 

DEFINITION 5 .3 . The vector field Y defined in Equation (4 ) above is called 
the restriction of X G X/\(M) to the subspace A and is denoted by X | A . 

PROPOSITION 5 .1 . If (M,CM,FM) IS a glued pseudomanif old of MI and M2 

along h, then 

(5) X ( M ) = XA (AT). 

P r o o f . The inclusion XA(M) C X(M) is obvious. We need only show the 
reverse inclusion. Let X G X(M), then X € %Mj\A(M), for j = 1,2. This 
follows from the assumption that A is closed as boundary, making Mj\A 
an open set. Hence X € Xd(Mj\A)(M)• That is, X € Xm3 (M). It follows 
that X(p) G (L j ) * p T p M j whenever p € A, j = 1,2. So 

X{p) G {ti)*pTpM1 n (i i2)*pTpM2 , 
which is equivalent to 

X ( p ) G (IA)*PTPA. 

Thus X G XA(M), which proves the reverse inclusion. • 

DEFINITION 5.4. A pair (Xi,X2) of vector fields X\ G XA{M\) and X2 G 
XA{M2) is said to be consistent on A if X i | A = X2\/S.. The unique vector 
field denoted by X\ U X2 such that 

X1UX2\Mi = Xi, ¿ = 1,2 

is called the conjunction of vector fields X\ and X2. 

PROPOSITION 5 .2 . Let XA(M1)2) = { ( X i , X 2 ) G X a ( M I ) x XA{M2)} be the 
set of all pairs of vector fields X\ G X&(M\) and X2 G XA{M2) which are 
consistent on A. Then the correspondence 

X(M) -> XA(M1:2) 

is bijective. 

P r o o f . The proof is a straightforward consequence of Proposition 5.1 and 
Definition 5.2 above. • 
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PROPOSITION 5 . 3 . Let ( M = MI UH M2,CM,FM) be the pseudomanifold 
following a transversal intersection along h. Let c : R —> M be a smooth 
curve on M such that c(t) lies in MI for t < 0, c(t) lies in M2 for t > 0 and 
c(0) € A. Then 

c'(0) G (¿A).c(o)(rc(0)A). 

P r o o f . Let c_ denote the restriction of c to (—00,0] and c+ the restriction 
of c to [0, +00). Since c is assumed smooth, it turns out that 

c'(0) = (¿i)*c(o)c'_(0) = (t2)*c(0)c'+(0). 

It follows that 

(6) c'(0) € (n)*CI0)TC{0)MI fl (¿2)*c(0)rc(0)M2 = (lA),C{0)(TC{0)A). M 

COROLLARY 5.1. For every smooth vector field X G 3£(Mi U/¡, M 2 ) there is 
an integral curve at singular points. 

P r o o f . We only observe that a piecewise curve defined by 

j c i ( i ) for t G ( -00, i0] 
C I c2(i) for t G [i0, +00) 

such that ci : [to, +00) —> Mi is an integral curve for X\ G On 
the other hand c2 : (—00, ¿o] —• M<¿ is an integral curve for X2 G 
Then ci(ío) = c2(ío) G A is a smooth integral curve for X G X(M). • 

DEFINITION 5.5. Two fc-forms oji G i) fc(Mi) and u>2 G Q/c(M2) are said to 
be consistent on A if 

(7) ¿ÍA^I = l2Au2, 

where ¿JA (resp. ¿2A) is the inclusion map of A into Mi (resp. M2) . 

Let TTK(M) = {uji U w 2 : w i £ CLK(MI), w2 G íí fc(M2); i\AUI = ¿2Aw2} 
denote the set of all A-consistent fc-forms on M. 

DEFINITION 5.6. The conjunction of A-consistent /C-forms lo\ and W2 is the 
fc-form defined by 

COI U u 2 : 3C(M) x • • • x 3¿(M) J~MI 

such that 

(8) (ui U u;2)(Xx UYu...,XkU Yk) := cji(XI, ...,Xk)U U2(YI, ...,Yk) 

where Xx U Yi,..., Xk U Yk G 3t(M). 

PROPOSITION 5.4. I f u 1 and w2 are A-consistent k-forms on M — MiUftM2 

then du>i and du>2 are A-consistent (k + 1)-forms on M. 

P r o o f . Clearly one has L*l£̂ duji = i*2£xdiJ2 which follows from = 
L*2¿U2. -
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DEFINITION 5.7. The (/c+l)-form du = du\Udu2 obtained from a; = uiUu>2 
is called the exterior derivative of the A;-form u. 

THEOREM 5 .1 . Let (M\,u>\) and (M2,U2) be symplectic pseudomanifolds. 
Then Uu2 is a symplectic form on M = Mi U^ M2 and u>i U102 assigns to 
any tangent vector field X = X\ U X2 a unique 1 -form a = a\ U 0.2 on M, 
where 0:1,0:2 are A - c o n s i s t e n t 1 -forms on (Mi, wi) and (M,0J2) respectively, 
corresponding to X\ and X2. 

Proof . Observe that Uu>2 is symplectic by construction. We need to show 
that u>i U u>2 maps X\ U X2 into a\ U <22, where X{ 6 X(Mi), ccj € i21(Mj), 
¿ = 1,2. In fact, in the usual way we know that 

UJ : X H-> ¿xw = uj(X, •) = a 

uniquely yields a 1-form since LU is nondegenerate, and 

u(X,-) =wiUw2(IiUl2,-) 

by definition. It follows that 

(9) u 1 (X l , - )Uu 2 (X2 , - ) = a 1 U a 2 . 

It remains to show the correctness of the definition of a.\ U «2 with respect 
to and u¡2- That is, we show that a\ and 0:2, images of u\ and o>2, are 
A-consistent. It is easy to see that 

where v e TpM, p € M and u G TpA satisfies {i\/\)*pu = X\ (p) and 
according to Lemma 5.1 above, (¿2A)*pU = X2(p). • 

COROLLARY 5.2. The correspondance Xu 1—> dH is not bijective. 

6. Application: Gluing at a point and related mechanics 
6.1. The spaces are symplectic. Let (M\,ui\) and (M2,0^2) be symplec-
tic pseudomanifolds of constant dimension. Let us consider that these spaces 
are glued at a point so that M = Mi Û  M2 and A = {p},pe M. The TM~ 
module is isomorphic with the R-module { a € i l 1 (M) : a(p) = 0} 
vanishing at p. It is easy to see that (M) = {X € X(M) : X(p) = 0}. 
Then for any X € £A(M), the 1-form A = satisfies the condition 

Oip = 0. 

Therefore, XA(M) = { ( X i , X 2 ) e £ ( M i ) x 3t(M2) : X^p) = 0 , X 2 ( p ) = 0} 
and clearly lui and u2 are consistent since 

llAU 1 = 0, ¿2Aw2 = 0. 
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Hence, we obtain the glued symplectic space (ML U^ M2,u>\ Uu>2). A vector 
field X\ U X2 £ (X)a(Mi^) corresponds to a 1-form « i U «2, where a\ — 
ix^i, «2 = ix2u2. Clearly cti(p) = 0, i = 1, 2. 

EXAMPLE: Hamiltonian systems glued at a point 
Consider the canonical pseudomanifold (M12, C, J-) and two pseudoman-

ifolds 
Mi = {{q\ q2, q3,Pi,P2,P3,0,0,0,0,0,0); q\Pi G R, i = 1, 2,3} C R12 

M2 = { ( 0 , 0 , 0 , 0 , 0 , 0 , q \ q 2 , f , P i , p 2 , P 3 y , q i , P i e R , i = 1,2,3} CR1 2 . 

Then Mi and M2 are obviously Frolicher subspaces of R12 which are consid-
ered as configuration spaces for two mechanical systems with 6 degrees of 
freedom. The configuration coordinates (q1, q2, q3) or (q1, q2, q3) and the mo-
menta (PI,P2,P3 ) or (pi,p2,P3) determine together the instantaneous states. 
Then R12 can be considered as the phase space of the system. 

In the Hamiltonian formulation the equations of the motion for such a 
classical system are written in terms of first order differential equations 

/inx dqi dH dPi dH 
( 1 0 ) = f o r z = 1 ' 2 ' 3 -

A Hamiltonian function H(q,p) defining the system in case of absence of 
constraining forces and time dependence is the total energy of the system, 
that is, the kinetic plus the potential energies. According to some obser-
vation made by Eledrisi [5] on structured spaces, we note that on a pseu-
domanifold, the set of singular points lying in the transversal intersection 
is 

A = Ml n M2 = {0} . That is, p 0 e A if and only if p0 = (0,..., 0) <E R12. 

Assume that (MI,CJI) and (M2,0*2) are symplectic with symplectic A-con-
sistent forms given by 

3 3 

uj\ = ^^ dql A dpi, 0J2 = ^ ^ dql A dpi. 
i= l ¿=1 

Consider two potential functions V\ : ML —> R, V2 : M2 ^ such that 
Vi(po) = V2(po) and two Hamiltonian functions given by 

2 m 
4=1 

2 ^ m 

where m designates the mass of material points. We need to calculate the 
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Hamiltonian vector field in each case. Then we shall obtain the correspond-
ing integral curves in Mi and in M2. 

We obtain 
3 pi d avi d 

—^ m dq1 dq1 dpi' 
1 

3 

. , rri dq1 dq1 dpi 1=1 

The integral curves for Xhx satisfy the (Hamilton-Jacobi) equations 

C131 = El. =
 dVi 

1 ' dt m dt dqt' 
Qy 

Hence, assuming without loss of generality that ^ f =constant we have 

7 (t) = 

Similarly for Xh2 one has 

7 (t) = 

v i=i i=i 

1 _ A \ 

i=i i=i ' 
which we can glue for the mechanics on M = Mi U M2. 

6.2. General case. Let (Mi, 51) and (M2, <72) be pseudo-Riemannian open 
manifolds which have a transversal intersection at a point p. That is, 

Mi U M2 = M, Mi n M2 = {p} := A. 

Let 0P <5 TpM be the zero tangent vector on M at p € M, and T0j,(TMj) 
the tangent space to TMj at 0p. Then 

T M i n T M 2 = {0p} and T0 p(TMi) n T0p(TM2) = {00p}, 

where we denoted by Oop the tangent vector to TM\ at the vector 0p. Now, 

T(M) := TM1UTM2, T*M := T*M1UT*M2, with T*M1C\T*M2 = {0;}. 

The projections of the glued bundles are 

7T := 7T1 U 7T2 : T M —> M, where 7n : TMi —> M i ; 

r := n U r2 : T*M M, where 7? : T*M; -»• M{, 
for ¿ = 1,2. Let us recall that a function / is smooth on M if / | M j e 
Therefore, g\ U §2 is a smooth function on M and it is clear that g\ U g2 is 
a Riemannian metric on M. 
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Moreover, the Riemannian metrics gi are consistent on A since 

i*iA9i = 0 , ¿ = 1 , 2 . 

Next, consider a Lagrangian function on the glued space. 

L : (Mi Uh M2,9lUg2) -» R, L(v) = ^g(v,v), v € TM. 

That is, 
L := Li U L2, with Li : TMi —> R (¿ = 1,2) 

the Lagrangians on TMi given by 

Li(v) = v), v E TMi, Li(Op) = L2(0P). 

It is clear that if L\ and L2 are hyperregular, then one obtains a glued 
Legendre transformation C : TM —> T*M, with 

C:=CiU £2, Ci • TMi T*Mi 

mapping tangent vectors in the glued tangent bundle onto tangent covectors 
in the glued cotangent bundle. Since Ci are diffeomorphisms by assumption, 
so is C. Of course, 

A (0P) = 0 and Ci(v)(w) = gi(v,w), 

where ¿ = 1,2 and v,w € TM{. Let us consider the canonical 1-forms 
9i : TaTMi —> R, a e T*Miy i.e. ^ e i i ^ T ' M i ) , and 00 p) = 0 by 
linearity. Now, set 

0 = 9\ LI 02 and uj = uiUlo2, 

where w» = d9t G ft2(Mi) are canonical symplectic 2-forms on T*Mi. Again, 

i*AUi = 0, 

that means that the forms collapse at the gluing point. It follows that 

ul ••= C\ui U C2CJ2 = wi i j U UJ2L2. 

The above ingredients are enough for us to write a mechanical system on 
a glued space. If E : TM —> R denotes the energy function with the 
associated vector field Xe such that ixE^L = dE, then the geodesies on 
the glued space are base integral curves of the vector fields Xe constructed 
on the glued tangent bundle. It can be observed that some geodesies are 
piecewise smooth curves with bifurcation. 

Now we state 

PROPOSITION 6.1. Let (M,g) be the glued Riemannian space, where M = 
Mi Uh M2 and Mi are smooth manifolds whose transversal intersection con-
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sists of a singleton {p}, and g = g\ LJ p2 the glued metric. Then the La-
grangian L : TM —> M given by 

L(v) = ^g{v,v), v G TM 

is hyperregular and the associated Legendre transformation satisfies 

£(v)(w) = g(v, w), v, w G T M . 

The energy function is 

E = L = ^g(v,v), v G TM 

and the associated Hamiltonian is given by 

H(a) = « G T*M. 

Proof . Define a function $ViW : M —> R by setting 

$v,w(t) = L(y + tw), v,w € TM. 

From the given Lagrangian we have 

®v,w(t) ' ^g(v + tw,v + tw) 

= v) + tg(v, w) + ^t2g(w, w). 

Hence 

(14) = g(v, w) = £(v)(w). 

Now we need to show that £ is a diffeomorphism. Since it is bijective 
according to the properties of g and smooth by definition, we only show 
that is smooth. Note that the canonical smooth structure on TM is 
generated by the set {a o ir} U {da} and on T*M by the set {a o r} U {da}, 
where a € Tm, n and r are bundle projections respectively. So it is enough 
to show that the composition of £ - 1 with the generators in T*(M) is smooth. 

1. We have 
(a o 7r) o C~l = a o (7T o £ - 1 ) = a o r. 

This is a smooth function on T*M as a composite of smooth functions. 
2. Next, we show that da o C~l is smooth. Let p e M and U be an 

open neighborhood of p G M. Let {W\,... ,Wn} be a local basis 
over U. That is, there exist W*,..., W* smooth functions such that 
W*(p)(Wj(p)) = Sij, where i , j = 1 ,...,n according to Lemma 3.1. 
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Consider the diffeomorphism ip : U x Mn —> T*U given by 
n 

t p ( p , n , . . . , r n ) = J~2riW*(p), 

i=l 

where p G U, r G K n . Then from the equivalent definition of a smooth 
map (see Definition 2.1), dao is smooth if and only if da o £ _ 1 oip 
is smooth. According to the properties of the 2-form g which is a 
nondegenerate function, there exist unique vector fields A\,...,An G 

X(U) such that 

( 1 5 ) W*(X) = g ( A i , X ) 

where X G 3C(U), i = 1 , . . . ,n. Note that C(u) = i u ( g ) = g(u, •). Then 
using Equation 14 to solve Equation (15) gives the identity 

C-\W*{p)) = Ai{pl 

where p G U. It follows that for all (p, r) G U x R " Equation 1 

da(C~ l o i p ) ( p , r ) = C~ l o tp(p,r)(a) 

= C - \ Y j r i W ; { p ) ) { a ) 

i=1 

= ¿ r ^ - ^ W T i p J J i a ) 
i=1 

n 

j=i 
The latter is a finite sum of smooth maps Ai{p) as tangent vectors at 
p, for each i = 1 , . . . ,n and a is a structure function on U. Thus, 
da o C~ l o ip is smooth. But da G Ttu is a generating function, 
therefore is a smooth map. 

Next, note that from H = EoC-1, and E(v) = (C(v),v) — L(v), we have 

E(v) = g(v, v) - ^g(v, v) = ^g(v, v) = L. 

Thus 

= ( E o r ' H a ) = W ^ a ) ) = ^ ( ¿ " ^ . ¿ ^ ( a ) ) . . 

Now we may consider a mechanical system with potential on the glued 
space. 

PROPOSITION 6 . 2 . In the conditions just described in the proposition above, 

let V : M —> M be a smooth function and L : TM R be the Lagrangian 
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d e f i n e d by 

(16) L ( v ) = ± g ( v , v ) - ( V o n ) ( v ) , 

w h e r e v £ T M . T h e n t h e L e g e n d r e t r a n s f o r m a t i o n i s t h e s y m p l e c t o m o r -

p h i s m 

C ( v ) ( w ) = g ( v , w ) 

a n d t h e e n e r g y f u n c t i o n E : T M —• R i s g i v e n by 

(17) E ( v ) = ± g ( v , v ) + ( V o i r ) ( v ) . 

T h e a s s o c i a t e d H a m i l t o n i a n H : T * M —* M i s g i v e n by 

(18) H = L O £ ~ 1 + 2 V O T , 

w h e r e T : T * M M i s t h e c a n o n i c a l p r o j e c t i o n . 

Proo f . A similar construction leads to C ( v ) ( w ) = g ( v , w ) , turning C into 
a diffeomorphism. Therefore, L is hyperregular. Thus, 

E ( v ) = \ g { v , v ) + ( V o i r ) ( w ) . 

Notice that ujl = C*uo is closed on T M since 

C*LJo = C*{d0o) = d(C(OQ)) 

is exact, where do and uq are the canonical 1-form and 2-form on T * M re-
spectively. Also it is a nondegenerate 2-form since £ is a diffeomorphism. 
One concludes that UL is a symplectic form. Therefore, £ is a symplecto-
morphism. 
Next, consider 

E ( v ) = ^ g ( v , v ) + ( V o 7 r ) ( v ) , 

and let v € C ~ l ( a ) , for a G T * M . Then 

H ( a ) = E ( C ~ 1 ( a ) ) = \ g { C - \ a ) , C ~ \ a ) ) + ( V o ^ ( ¿ ^ ( a ) ) 

= \ g ( v , v ) + ( V o n ) ( v ) = \ g ( v , v ) - L ( v ) ) + L ( v ) + ( V o TT)(V) 

= L(v) + 2(V O 7R)(v) = LO C~X(A) + 2(V o t t ) ^ " ^ « ) ) 

= L o £ - 1 ( a ) + 2 ( V o r ) ( a ) m 
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