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SOME CHARACTERIZATIONS OF OSCULATING 
CURVES IN THE EUCLIDEAN SPACES 

Abstract. In this paper, we give some characterization for a osculating curve in 3-
dimensional Euclidean space and we define a osculating curve in the Euclidean 4-space as a 
curve whose position vector always lies in orthogonal complement Bi of its first binormal 
vector field S i . In particular, we study the osculating curves in E4 and characterize such 
curves in terms of their curvature functions. 

1. Introduction 
In the Euclidean space E3 , it is well-known that to each unit speed curve 

a : I C R —• E3 with at least four countinuous derivatives, one can associate 
three mutually orthogonal unit vector fields T, N and B called respectively 
the tangent, the principal normal and the binormal vector fields. At each 
point q(s) of the curve a , the planes spanned by {T, N}, {T, B) and {N, B} 
are known respectively as the osculating plane, the rectifying plane and the 
normal plane. The curves a : I C R —> E 3 for which the position vector 
a always lie in their rectifying plane, are for simplicity called rectifying 
curves. Similarly, the curves for which the position vector always lie in 
their normal plane, are for simplicity called normal curves and finally, the 
curves for which the position vector a always lie in their osculating plane, 
are for simplicity called osculating curves. By definition, for a rectifying 
curve, normal curve and osculating curve the position vector a satisfies 
respectively: 

(1) a(s) = ai(s)T(s) + a2(s)B(s), 
(2) a(s) = b1(s)N(s) + b2(s)B(s), 
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(3) a(s) = ci{s)T(s) + C2(s)N(s), 

for some different ia te functions a i , <22,61,62, ci, c-i of s € I C R. 
In the Euclidean 3-space, the rectifying curves are introduced by 

B. Y. Chen in [1], The Euclidean rectifying curves are studied in [1, 2], 
In particular, it is shown in [2] that there exist a simple relationship be-
tween the rectifying curves and the centrodes, which play some important 
roles in mechanics, kinematics as well as in differential geometry in defining 
the curves of constant precession. 

It is well known that the only normal curves in E 3 are spherical curves 
(for spherical curves see [6, 7, 8]). 

For unit speed plane curves in 2-dimensional Euclidean space, it is well 
known that the second curvature is k2 = 0. In this case, the first curvature 
k\ play an important role for characterization of the curve: if k\ = 0, then 
the curve is a straight line, if k\ = constant 0, then the curve is a circle 
(or a part of the circle) with the radius r = l/k\ (see [4, 5]). 

The following characterizations of circles and straight lines are well-
known. 

THEOREM 1. A unit speed plane curve x(s) : R —>• R 2 satisfies 
(x(s),N(s)) — b, (b E R), where N(s) is the unit normal vector, if and 
only if x(s) is a part of a circle centered at origin or a straight line. 

THEOREM 2. A unit speed plane curve x(s) : R —> R 2 defined on the whole 
line R satisfies 

(4) ( z ( s ) ,T{s ) -a) = b, a E R2 , be R 

if and only if x(s) is a circle or a straight line. 

EXAMPLE . Let x(s) be a circle centered at 0 = (01,02) of radius p with 
curvature k\ = 1 /p. Then it is easy to show that x(s) satisfies (4) for 
a = (l/p)(02, —0i) and 6 = 0. Obviously, each straight line satisfies (4). 

In this paper, we give some characterizations for osculating curves in the 
Euclidean space E3 , then we define the osculating curve in the Euclidean 
space E4 as a curve whose position vector always lies in the orthogonal 
complement of its first binormal vector field B\. Consequently, B^- is 
given by 

Bi = {we E4 I (W,BT) = 0 } , 

where (•, •) denotes the standard scalar product in E 4 . Hence is a 3-
dimensional subspace of E4 , spanned by the tangent, the principal normal, 
and the second binormal vector fields T, N and B2 respectively. Therefore, 
the position vector with respect to some chosen origin, of a osculating curve 
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a in E 4 , satisfies the equation 

( 5 ) a ( s ) = A (s)T(s) + fi(s)N(s) + u(s)B2(s), 

for some differentiable functions A(s), ¡i(s) and u(s) in arclength function s. 
Next, we characterize osculating curves in terms of their curvature functions 
ki(s), (s) and ks(s) and give the necessary and the sufficient conditions 
for arbitrary curve in E4 to be a osculating. Moreover, we obtain an explicit 
equation of a osculating curve in E 4 . 

2. Preliminaries 
Let a : I C R —• E4 be arbitrary curve in the Euclidean space E 4 . Recall 

that the curve a is said to be of unit speed (or parameterized by arclength 
function s) if (a'(s), a'(s)) = 1, where (•, •) is the standard scalar product of 
E 4 given by 

(X, Y) = Xiyi + X2V2 + X3V3 + X4?/4, 
for each X = (xi,x2,xz,x4), Y = (3/1,3/2?2/3)2/4) £ E 4 . In particular, the 
norm of a vector X G E 4 is given by ||X|| = y/(X,X). 

Let {T, N, Bi, B2} be the moving Frenet frame along the unit speed curve 
a, where T, N, B\ and B2 denote respectively the tangent, the principal 
normal, the first binormal and the second binormal vector fields. Then the 
Frenet formulas are given by (see [3, 4]): 

0 fci 0 0 1 [ T ' 
-ki 0 k2 0 N 

0 —k2 0 k3 Bi 
0 0 -k3 0 B2 

The functions k\ (s), ^ ( s ) and k3(s) are called respectively the first, 
the second and the third curvature of the curve a. If ks(s) / 0 for each 
s G I C R, the curve a lies fully in E4 . 

3. Osculating curves in E 3 

In 3-dimensional Euclidean space, the osculating curves, which their po-
sition vector satisfy the equation (3), we have the following well-known 
result. 
T H E O R E M 3.1. Let a(s) be a unit speed regular curve lying fully in E 3 . 
Then, a is a osculating curve, if and only if a is a straight line or a planar 
curve. 

T H E O R E M 3.2. Let a(s) be a unit speed osculating curve lying fully in E 3 

then tangential component a (i.e., (a(s),T(s)) = a) and the principal nor-
mal component b (i.e., (a(s), N(s)) = b) of the position vector of the curve 

r 
N' 

B[ 
B> 
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satisfy the following equation 

(7) a2(s) + b2(s) = 2\a(s)ds. 

Conversely, if the tangential component a (i.e., (a(s),T(s)) = a) and 
the principal normal component b (i.e., (a(s),N(s)) = b) of the position 
vector of a unit speed curve a(s) in E3 satisfy the equation (7) then a is a 
osculating curve, or a rectifying curve. 

Proof . The first part of the proof is clear from Theorem 3.1. 
We assume that the tangential component a (i.e., (a(s),T(s)) = a) and 

the principal normal component b (i.e., (a(s ) ,N(s ) ) = b) of the position 
vector of a unit speed curve o;(s) in E3 satisfy the equation (7). Then we 
get from (7) 

(8) aa' + bb' = a, 

where a' = £{a(s),T(s)) and b' = £(a(s), N(s)). By using (6), we obtain 
from (8) 

(9) k2(a(s),N(s))(a(s),B(s)) = 0. 

From (9), we have k2 = 0, or (a(s), N(s)) = 0, or (a(s), B(s)) = 0. lik2 = 0, 
which means that a(s) is a planar curve. According to the theorem 3.1., it 
is a osculating curve. If (a(s),N(s)} = 0, then a(s) is a rectifying curve(i.e., 
the position vector always lies in its rectifying plane). If (a(s), B(s)) = 0, 
then a(s) is a osculating curve. • 

From Theorem 3.2., we get the following corollary. 

C O R O L L A R Y 3 . 1 . Let a be a osculating curve lying fully in E 3 with the 
tangential component a (i.e., (a(s),T(s)) = a) and the principal normal 
component b (i.e., {a(s), N(s)) = b). 

(i) if tangential component a is zero, then a is a circle, 
(ii) if principal normal component b is zero, then a is a circle or a straight 

line. 

4. Osculating curves in E4 

In this section, we firstly characterize the osculating curves in E4 in terms 
of their curvatures. Let a = a(s) be a unit speed osculating curve in E4 , with 
non-zero curvatures fci(s), ^ ( s ) and k̂  (s). By definition, the position vector 
of the curve a satisfies the equation (5), for some differentiable functions 
A(.s), /i(s) and u(s). Differentiating the equation (5) with respect to s and 
using the Frenet equations (6), we obtain 

T = (A' - nh)T + (Afci + fi')N + {fik2 - vk3)Bx + v'B2. 
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It follows that 

(10) 

and therefore 

A' — fiki = 1, 
Xki + f i ' = 0, 

/x/c2 - uks = 0, 
u' = 0, 

I/(s) = c, 

where c G Mo- In this way, the functions A(.s), /j,(s) and u(s) are expressed 
in terms of the curvature functions k\(s), ^ ( s ) and k^(s) of the curve a. 
Moreover, by using the first equation in (10) and relation (11), we easily 
find that the curvatures fci(s), ^ ( s ) and k ^ s ) satisfy the equation 

< 1 2 > ( ! ) ' ) ' 

Conversely, assume that the curvatures ki(s), ^ ( s ) and ks(s), of an 
arbitrary unit speed curve a in E4, satisfy the equation (12). Let us consider 
the vector I e E 4 given by 

X(s) = a(s) + c— T(s) - c-£N(s) - cB2(s). 

By using the relations (6) and (12), we easily find X'(s) = 0, which means 
that X is a constant vector. This implies that a is congruent to a osculating 
curve. In this way, the following theorem is proved. 

THEOREM 4 . 1 . Let A(s) be unit speed curve in E 4 , with non-zero curvatures 
ki(s), ¿2(5) and ^(s). Then a is congruent to a osculating curve if and 
only if 

1 f h \ V k,k3 

V A h ) ) = c e R o -
Recall that arbitrary curve a in E4 is called a VT-curve if it has constant 

curvature functions (see [4]). It is clear that such curves holds Theorem 4.1. 
The following theorem gives the characterization of a W-curves in E4, in 

terms of osculating curves. 

THEOREM 4 . 2 . Every unit speed W-curve, with non-zero curvatures k\, k2 

and in E4, is congruent to a osculating curve. 
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P r o o f . It is clear from Theorem 4.1. 

E X A M P L E . 

q;(s) = ( a cos [ =s ), asm 
7 V \ Va r2 + b2 J Va2r2 + b2 J' 

b cos I ^ =s ), b sin 
V a V + 6 2 y Wa2r2 + b2' 

is a unit speed curve in E 4 . It is easily obtain the Frenet vectors and curva-
tures as follows: 

T(s)= \ vVr"+b2 COS(V'a2r2+6;!'^' 

V T a ^ w ^ ( y / a ' r ' + P 8 ) ' %/aV+&2 ^ T ^ W ^ 

h(s) = 

Qnp2 / 7* \ CLT^ ' ( V \ 

VaM+fti C ° S V a M + ( > ^ ' VoV+fci S m Va 2 ^+b2 ' S J ' 

VaM+tf VaV^+h2 S m ( vW+fc 2 S ) - abr(r2-\) 
2\°) — ^a2„2, ui\.n?na 

O , S Va2r2+&2 S m^v/a2r2+62 S^' Va'J+b? C O S( v/a2r2+fc2 

-Dl(sJ = 

fc3(s) = " J 
D t X , VaM+b2 VaM+b2 ° Va 2r 2+6 2 

Since ki(s) = constant, ^ ( s ) = constant and ^ ( s ) = constant, a(s) is 
a VF-curve in E 4 . According to Theorem 4.2, a is congruent to a osculating 
curve in E 4 . 

Thus, we get the position vector of the curve given in example as follows: 
From equation (12) we get c = ^ ^ and c = From equation (10), 
we find 

A (s) = - c — — = 0 , fjt(s) = c— = — = 

f («) = c = 

fciVfca/ ' fci Va2r4 + b2 ' 
ab(r2 - 1) 

x/a 2r 4 + b2 
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From equation (5), we write the position vector of the curve as: 

. . - ( « ¥ + # ) , „ , - « H r 2 - 1) D , > 

THEOREM 4 . 3 . Let a(s) be unit speed osculating curve in E 4 , with non-zero 
curvatures ki(s), k2(s) and ks(s). Then the following statements hold: 

(i) The curvatures ki(s), (s) and k^(s) satisfy the following equality 

+ ^—- jcos ki(s)ds^ds + c^j sin ^ j ki(s)ds^ 

where c G Mo and ci,c2 G M. 
(ii) The tangential component and the principal normal component of the 

position vector of the curve are respectively given by 

V . (a(s\N(s)) = c^. (14) (a(s),T(s)) = -c-\^-) , (a(s),N(s)) = c^, c G Mo-

(iii) The second binormal component of the position vector of the curve 
is non-zero constant. 

Conversely, if a(s) is a unit speed curve in E4 with non-zero curvatures 
ki(s), (s), ks(s) and one of the statements (i), (ii) or (iii) holds, then a 
is a osculating curve or congruent to a osculating curve. 

Proof . Let us first suppose that a(s) is a unit speed osculating curve in 
E4 with non-zero curvatures ki(s), ^2(5) and k^(s). The position vector of 
the curve a satisfies the equation (12). 

Here if we express y(s) = and p(s) = then equation (12) can 
be written as 

If we change variables in above equation as t = \ then we get 

d2y _ -1 
dt2 ^ ck\' 

the solution of this differential equation is 
/1 c sin t \ / — l f cos i , \ . 

y = y-^-^—dt + ciJ c o s \ —dt + c2J sini, 
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where c G Mo, ci,c2 € R- Here, if we put y(s) = and dt = we get 

= ^sin ^^ki(s)ds^ds + ci^ cos 

+ ^—-jcos ki(s)ds^ds + c^j sin ^ j 

Thus we prove the statement (i). 
By using the relations (5) and (11), we can write the position vector of 

the curve as follows: 

(15) A(S) = - c l 'T(S) + c^N(s) + cB2(s). 

From (15), we have <a(s),T(s)) = (a(s),N(s)) = e g and 
(a{s),B2(s)) = c, C G K 0 . 

Thus we proved the statements (ii) and (iii). 
Conversely, assume that statement (i) holds. Then the curvature func-

tions fci(s), k2 (s) and k^(s) satisfy the equality 

= (ik\(s)ds^ds + ci^ cos 

• jcos ^ki(s)ds^ds + c-^j sin ki(s)ds^. 

Differentiating the previous equation two times with respect to s we get, 

which means that according to the theorem 3.1. a is congruent to osculating 
curve. Next assume that statements (ii) holds. By taking derivative of 
(a(s),N(s)) = | with respect to s and using (6) we get, 

-k1(a,T) + k2{a,B1)=c(^j . 

By using (a{s),T(s)) = - c ^ - ^ f j ^ and k2 + 0, we get {a,Bi) = 0, which 

means that a is a osculating curve. 
If statement (iii) holds, then we have < a, B2 > = c, c £ Ro- Differenti-

ating the previous equation with respect to s and using (6), we find 

-k3(a,B1) = 0. 

It follows that (a, Bi) = 0 and hence the curve a is a osculating curve. This 
proves the theorem. • 

' - 1 + ' c 
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