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SOME CHARACTERIZATIONS OF OSCULATING
CURVES IN THE EUCLIDEAN SPACES

Abstract. In this paper, we give some characterization for a osculating curve in 3-
dimensional Euclidean space and we define a osculating curve in the Euclidean 4-space as a
curve whose position vector always lies in orthogonal complement Bi- of its first binormal
vector field B;. In particular, we study the osculating curves in E* and characterize such
curves in terms of their curvature functions.

1. Introduction

In the Euclidean space E?, it is well-known that to each unit speed curve
o : I C R — E3 with at least four countinuous derivatives, one can associate
three mutually orthogonal unit vector fields T, N and B called respectively
the tangent, the principal normal and the binormal vector fields. At each
point a(s) of the curve a, the planes spanned by {T, N}, {T, B} and {N, B}
are known respectively as the osculating plane, the rectifying plane and the
normal plane. The curves o : I C R — E3 for which the position vector
« always lie in their rectifying plane, are for simplicity called rectifying
curves. Similarly, the curves for which the position vector always lie in
their normal plane, are for simplicity called normal curves and finally, the
curves for which the position vector a always lie in their osculating plane,
are for simplicity called osculating curves. By definition, for a rectifying
curve, normal curve and osculating curve the position vector « satisfies
respectively:

(1) a(s) = a1(s)T(s) + a2(s) B(s),
(2) a(s) = bi(s)N(s) + ba(s) B(s),
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3) a(s) = c1(s)T(s) + ca(s)N(s),

for some differentiable functions a1, az, b1, b2,c1,c0 of s € I C R,

In the Euclidean 3-space, the rectifying curves are introduced by
B. Y. Chen in [1}. The Euclidean rectifying curves are studied in [1, 2].
In particular, it is shown in [2]| that there exist a simple relationship be-
tween the rectifying curves and the centrodes, which play some important
roles in mechanics, kinematics as well as in differential geometry in defining
the curves of constant precession.

It is well known that the only normal curves in E? are spherical curves
(for spherical curves see [6, 7, 8]).

For unit speed plane curves in 2-dimensional Euclidean space, it is well
known that the second curvature is ko = 0. In this case, the first curvature
k1 play an important role for characterization of the curve: if k; = 0, then
the curve is a straight line, if k; = constant # 0, then the curve is a circle
(or a part of the circle) with the radius r = 1/k; (see [4, 5]).

The following characterizations of circles and straight lines are well-
known.

THEOREM 1. A unit speed plane curve z(s) : R — R? satisfies
(z(s),N(s)) = b, (b € R), where N(s) ts the unit normal vector, if and
only if z(s) is a part of a circle centered at origin or a straight line.

THEOREM 2. A unit speed plane curve z(s) : R — R? defined on the whole
line R satisfies

(4) (x(s),T(s) —a)=b, acR% beR
if and only if z(s) is a circle or a straight line.

EXAMPLE. Let z(s) be a circle centered at 8 = (f1,52) of radius p with
curvature k1 = 1/p. Then it is easy to show that z(s) satisfies (4) for
a = (1/p)(B2, —41) and b = 0. Obviously, each straight line satisfies (4).

In this paper, we give some characterizations for osculating curves in the
Euclidean space E3, then we define the osculating curve in the Euclidean
space E* as a curve whose position vector always lies in the orthogonal
complement Bf- of its first binormal vector field B;. Consequently, B1l is
given by

Bi = {W € E* | (W, B;) = 0},

where (-,-) denotes the standard scalar product in E*. Hence Bj is a 3-
dimensional subspace of E*, spanned by the tangent, the principal normal,
and the second binormal vector fields T, N and Bz respectively. Therefore,
the position vector with respect to some chosen origin, of a osculating curve
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a in E4, satisfies the equation

(5) a(s) = A(s)T(s) + u(s)N(s) + v(s)Ba(s),

for some differentiable functions A(s), p(s) and v(s) in arclength function s.
Next, we characterize osculating curves in terms of their curvature functions
k1(s), k2(s) and k3(s) and give the necessary and the sufficient conditions

for arbitrary curve in E* to be a osculating. Moreover, we obtain an explicit
equation of a osculating curve in E?.

2. Preliminaries

Let o : I € R — E* be arbitrary curve in the Euclidean space E4. Recall
that the curve a is said to be of unit speed (or parameterized by arclength
function s) if (¢/(s),d/(s)) = 1, where (-, -) is the standard scalar product of
E* given by

(X,Y) = z1y1 + 222 + T3y3 + Tays,

for each X = (z1,72,23,74), Y = (y1,%2,93,y4) € E* In particular, the
norm of a vector X € E* is given by || X|| = v/(X, X).

Let {T, N, By, B2} be the moving Frenet frame along the unit speed curve
a, where T, N, By and By denote respectively the tangent, the principal
normal, the first binormal and the second binormal vector fields. Then the
Frenet formulas are given by (see [3, 4]):

T 0 kK o0 o]]fT
©) N| |~k 0 k 0[N
B 0 —ky 0 ks||B
B 0 0 —ks 0 ||B,

The functions k1(s), k2(s) and k3(s) are called respectively the first,
the second and the third curvature of the curve a. If k3(s) # 0 for each
s € I CR, the curve « lies fully in E4.

3. Osculating curves in E3

In 3-dimensional Euclidean space, the osculating curves, which their po-
sition vector satisfy the equation (3), we have the following well-known
result.

THEOREM 3.1. Let a(s) be a unit speed regular curve lying fully in E3.
Then, o is a osculating curve, if and only if a is a straight line or a planar
curve.

THEOREM 3.2. Let a(s) be a unit speed osculating curve lying fully in E3
then tangential component a (i.e., (a(s),T(s)) = a) and the principal nor-
mal component b (i.e., (a(s), N(s)) = b) of the position vector of the curve
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satisfy the following equation
(7) a?(s) +b%(s) = 2{a(s)ds.

Conversely, if the tangential component a (i.e., (a(s),T(s)) = a) and
the principal normal component b (i.e., (a(s),N(s)) = b) of the position
vector of a unit speed curve a(s) in E3 satisfy the equation (7) then o is a
osculating curve, or a rectifying curve.

Proof. The first part of the proof is clear from Theorem 3.1.

We assume that the tangential component a (i.e., (a(s),T(s)) = a) and
the principal normal component b (i.e., (a(s), N(s)) = b) of the position
vector of a unit speed curve a(s) in E3 satisfy the equation (7). Then we
get from (7)

(8) aa’ + b =a,

where @’ = £(a(s),T(s)) and & = & (a(s), N(s)). By using (6), we obtain
from (8)

(9) ka{a(s), N(s))(a(s), B(s)) = 0.

From (9), we have ks = 0, or {(a(s), N(s)) =0, or {a(s), B(s)) =0. If ko =0,
which means that «(s) is a planar curve. According to the theorem 3.1., it
is a osculating curve. If (a(s), N(s)) = 0, then a(s) is a rectifying curve(i.e.,
the position vector always lies in its rectifying plane). If (a(s), B(s)) = 0,
then a(s) is a osculating curve. m

From Theorem 3.2., we get the following corollary.

COROLLARY 3.1. Let a be a osculating curve lying fully in E3 with the
tangential component a (i.e., (a(s),T(s)) = a) and the principal normal
component b (i.e., (a(s),N(s)) =b).

(i) if tangential component a is zero, then o is a circle,
(ii) #f principal normal component b is zero, then « is a circle or a straight
line.

4. Osculating curves in E*

In this section, we firstly characterize the osculating curves in E4 in terms
of their curvatures. Let o = a(s) be a unit speed osculating curve in E4, with
non-zero curvatures ki(s), ka(s) and k3(s). By definition, the position vector
of the curve a satisfies the equation (5), for some differentiable functions
A(s), p(s) and v(s). Differentiating the equation (5) with respect to s and
using the Frenet equations (6), we obtain

T= (/\I — /,Lk])T -+ ()\kl + ,u,')N + (,ukg - I/kg)Bl + I/IBQ.
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It follows that

AI - ,u’kl = 1’
Ak '=0,
(10) 1+ u
,Ll,kz e l/k3 = 0,
v =0,
and therefore
1 (k3
/\(S) = —Ck—l (k_2) y
(11) uls) = e
v(s) =g,

where ¢ € Rg. In this way, the functions A(s), u(s) and v(s) are expressed
in terms of the curvature functions k;(s), k2(s) and k3(s) of the curve a.
Moreover, by using the first equation in (10) and relation (11), we easily
find that the curvatures k1(s), k2(s) and k3(s) satisfy the equation

1 (ks\'\'  kiks
— = i - Ro.
(12) (k(k)) + B8 e cems

Conversely, assume that the curvatures kj(s), ko(s) and ks3(s), of an
arbitrary unit speed curve « in E4, satisfy the equation (12). Let us consider
the vector X € E* given by

1 (k3 k
X(s) =a(s) +c— [ =2 ) T(s) — ¢==N(s) — cBy(s).
kl k2 kz
By using the relations (6) and (12), we easily find X’(s) = 0, which means
that X is a constant vector. This implies that « is congruent to a osculating

curve. In this way, the following theorem is proved.

THEOREM 4.1. Let a(s) be unit speed curve in E*, with non-zero curvatures
k1(s), ko(s) and k3(s). Then « is congruent to a osculating curve if and

only if .
1 [ ks kiks _
(L(5Y) o8 e cen

Recall that arbitrary curve « in E* is called a W-curve if it has constant
curvature functions (see [4]). It is clear that such curves holds Theorem 4.1.

The following theorem gives the characterization of a W-curves in E?, in
terms of osculating curves.

THEOREM 4.2. Fvery unit speed W -curve, with non-zero curvatures ki, ko
and k3 in B4, is congruent to a osculating curve.
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Proof. It is clear from Theorem 4.1. m
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EXAMPLE.
a(s) ( os( r s) si < . )
={ac ——————3s},asin [ —=—=s5},
va?r? 4+ b2 Va?r? 4 b2

1 ) 1
bcos (W‘S) y bsin (Wa‘))

is a unit speed curve in E?. It is easily obtain the Frenet vectors and curva-

tures as follows:

T(s) _ \/a;ra;:i-b2 Sin( \/a27'"r2+b2 S), \/a2?'2+b2 COS( \/a2:2+b2 3),
\/a2:g+b2 Sin( \/a2:2+b2 s)’ \/a2:2+b2 COS( \/a2:2+b2 8) ’

ki(s) = Y8

_ 2 .

N(s) = \/a2z1+b7 cos( \/a2:2+b2 8); \/a2lr1:+b2 sin( \/a2:2+b2 s), ,
\/a2:‘i)+b2 COS( \/02:2+b2 S)’ Va§;§+b2 Sin( \/a2:2+b2 5)

ka(s) = s

Bl(s) _ \/a2:2+b2 Sin( \/a2:2+b2 5), \/a2;£+b2 COS(\/a2:2+b2 3),
\/a;rgr—%lﬂ Sin( \/a2rr2+b2 S)’ \/a2ig+b2 cos( \/a2:2+b2 5)

k3(s) = \/ﬁ,

Ba(s) = \/07:(_{2_172 cos( \/a2:2+b2 s), \/a2rb4-{2-b2 sin( \/a2rr2+b2 s),
\/a;::+b2 COS( \/a2:2+b2 8)’ Va;::+b2 sin( \/a2:2+b2 s)

Since k1(s) = constant, ka(s) = constant and k3(s) = constant, a(s) is
a W-curve in E*. According to Theorem 4.2, « is congruent to a osculating

curve in E4.

Thus, we get the position vector of the curve given in example as follows:

From equation (12) we get ¢ = F_l-% and ¢ = 7_a,ghb(:f+_;2). From equation (10),
we find
1 k3 ! k3 -1 —(a21”2 + b2)
A(s)=—c—[—) =0, s)=c—=—=——"—— 7
®) k1 (k‘2> () ke ki Vi + 2

—ab(r? — 1)
Vo i e

v(s)
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From equation (5), we write the position vector of the curve as:

~(a%r? + b?) —ab(r? —1)
a(s) = ——=N(8) + ———=—==B2(s).
©) = e VO Ty 220
THEOREM 4.3. Let a(s) be unit speed osculating curve in E4, with non-zero
curvatures ki(s), ka(s) and k3(s). Then the following statements hold:

(i) The curvatures ki(s), ko(s) and k3(s) satisfy the following equality
(13) ijg; = (% Xsin (Skl(s)ds)ds + cl) cos (Skl(s)ds)
+ (_71 Scos (Skl (s)ds) ds + 02> sin (S k1 (s)ds)

where ¢ € Ry and ¢1,cp € R.
(ii) The tangential component and the principal normal component of the
position vector of the curve are respectively given by

(14) <a(s),T(s)>=—ckil(:—z>, <a(s),N(s)>:c’Z—z, c € Ry.

(iii) The second binormal component of the position vector of the curve
1S non-zero constant.

Conversely, if a(s) is a unit speed curve in E* with non-zero curvatures
k1(s), ka2(s), k3(s) and one of the statements (i), (ii) or (i) holds, then a
is a osculating curve or congruent to a osculating curve.

Proof. Let us first suppose that a(s) is a unit speed osculating curve in
E* with non-zero curvatures k;(s), k2(s) and k3(s). The position vector of
the curve « satisfies the equation (12).

1 (ks\'\' kiks
— = A A | Ro.
(k(k)) +HB_ e ceRs

Here if we express y(s) = ka(s) and p(s) = ==, then equation (12) can
kg(s) k1 (S)

be written as p p
—(p(s)—y> + y(s) =—1/c, c€Ry.

ds ds p(s)
If we change variables in above equation as ¢t = § ;Tlsjds’ then we get
d%y -1
ol - R
di2 +y Ckl , €€ IRg,
the solution of this differential equation is

1, sint -1 t
y= (—Ssil—dt + cl) cost + (———ng—dt + 02) sint,
c) kg c ¥k
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where ¢ € Ry, ¢1,c2 € R. Here, if we put y(s) = :—Z% and dt = kids, we get

,/ZEZ; = (-(1; Ssin (Skl(s)ds)ds + cl> cos (Skl(s)ds>
+ <%1Xcos (Skl(s)ds) ds + cz> sin (Xkl(s)ds).

Thus we prove the statement (i).
By using the relations (5) and (11), we can write the position vector of
the curve as follows:
1 (ks\' ks
(15) a(s) = —c— (—) T(s) + c—=N(s) + c¢Ba(s).
k1 \ k2 ko
From (15), we have (a(s),T(s)) = —ckil(%)l, (a(s),N(s)) = c% and
(a(s), B2(s)) = ¢, ¢ € Ry.
Thus we proved the statements (ii) and (iii).
Conversely, assume that statement (i) holds. Then the curvature func-
tions k1(s), k2(s) and k3(s) satisfy the equality

223 = (1 {sin (Skl(s)ds) ds + cl> cos (Skl(s)ds)

C

+ (——c—l Scos (Skl(s)ds)ds + cz) sin (Skl(s)ds>.

Differentiating the previous equation two times with respect to s we get,

1 (ks\'\ | kiks
((2)) ot ccn

which means that according to the theorem 3.1. « is congruent to osculating
curve. Next assume that statements (ii) holds. By taking derivative of
(afs), N(s)) = c%g with respect to s and using (6) we get,

k !
—ki{a,T) + ka{a, By) = C(ES—) .
2
!/
By using (a(s),T(s)) = —c% (%) and ko # 0, we get (a, B;) = 0, which

means that o is a osculating curve.
If statement (iii) holds, then we have < a, By >= ¢, c € Ry. Differenti-
ating the previous equation with respect to s and using (6), we find

—k3 (a, Bl) =0.

It follows that (@, By} = 0 and hence the curve « is a osculating curve. This
proves the theorem.
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