

S. Kumar, K. K. Dube

CR-SUBMANIFOLDS OF A NEARLY TRANS-HYPERBOLIC SASAKIAN MANIFOLD

Abstract. In the present paper we have investigated CR-submanifold of a nearly trans- hyperbolic Sasakian manifold. We have also studied parallel distribution relating to ξ -vertical CR-submanifold of a nearly trans- hyperbolic Sasakian manifold.

1. Introduction

In 1978, Bejancu introduced the notion of CR- submanifold of a Kaehler manifold [2]. Since then several papers on CR- submanifolds of Kaehler manifold have been published. On the other hand, CR- submanifold have been studied by Kobayashi[10], Shahid et al. [11, 12], Yano and Kon [14] and others. Upadhyay and Dube [13] have studied almost contact hyperbolic (f, g, η, ξ) -structure, Dube and Mishra [5] have considered Hypersurfaces immersed in an almost hyperbolic Hermitian manifold also Dube and Niwas [6] worked with almost r-contact hyperbolic structure in a product manifold. Later Bhatt and Dube [3] studied on CR-submanifolds of trans- hyperbolic Sasakian manifold. Joshi and Dube [9] studied on Semi-invariant submanifold of an almost r-contact hyperbolic metric manifold. Gill and Dube have also worked on CR submanifolds of trans-hyperbolic Sasakian manifolds [8]. Gherghe studied on harmonicity on nearly trans-Sasaki manifolds [7].

2. Preliminaries

Let \bar{M} be an n dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure (ϕ, ξ, η, g) where a tensor ϕ of type $(1, 1)$, a vector field ξ , called structure vector field and η , the dual 1-form of ξ satisfying the following

$$(2.1) \quad \phi^2 X = X - \eta(X)\xi \quad g(X, \xi) = \eta(X)$$

2000 *Mathematics Subject Classification*: 53C40.

Key words and phrases: CR-submanifold, nearly trans- hyperbolic Sasakian manifold and ξ -vertical CR-submanifold

$$(2.2) \quad \eta(\xi) = -1 \quad \phi(\xi) = 0 \quad \eta \circ \phi = 0$$

$$(2.3) \quad g(\phi X, \phi Y) = -g(X, Y) - \eta(X)\eta(Y)$$

for any X, Y tangent to \bar{M} [4]. In this case

$$(2.4) \quad g(\phi X, Y) = -g(X, \phi Y).$$

An almost hyperbolic contact metric structure (ϕ, ξ, η, g) on \bar{M} is called trans-hyperbolic Sasakian [8] if and only if

$$(2.5) \quad (\bar{\nabla}_X \phi)Y = \alpha(g(X, Y)\xi - \eta(Y)\phi X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)$$

for all X, Y tangent to \bar{M} , α, β are functions on \bar{M} . On a trans-hyperbolic Sasakian manifold \bar{M} , we have

$$(2.6) \quad \bar{\nabla}_X \xi = -\alpha(\phi X) + \beta(X - \eta(X)\xi)$$

a Riemannian metric g and Riemannian connection $\bar{\nabla}$.

Further, an almost contact metric manifold \bar{M} on (ϕ, ξ, η, g) is called nearly trans-hyperbolic Sasakian if [5]

$$(2.7) \quad (\bar{\nabla}_X \phi)Y + (\bar{\nabla}_Y \phi)X = \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) \\ - \beta(\eta(X)\phi Y + \eta(Y)\phi X).$$

Now, let M be a submanifold immersed in \bar{M} . The Riemannian metric induced on M is denoted by the same symbol g . Let TM and $T^\perp M$ be the Lie algebras of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connection on M , then the Gauss and Weingarten formulas are given by

$$(2.8) \quad \bar{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

$$(2.9) \quad \bar{\nabla}_X V = -A_V X + \nabla_X^\perp V$$

for any $X, Y \in TM$ and $V \in T^\perp M$, where ∇^\perp is the connection on the normal bundle $T^\perp M$, h is the second fundamental form and A_V is the Weingarten map associated with V as

$$(2.10) \quad g(A_V X, Y) = g(h(X, Y), V).$$

For any $x \in M$ and $X \in T_X M$, we write

$$(2.11) \quad X = PX + QX$$

where $PX \in D$ and $QX \in D^\perp$.

Similarly for N normal to M , we have

$$(2.12) \quad \phi N = BN + CN$$

where BN (resp. CN) is the tangential component (resp. normal component) of ϕN .

DEFINITION 1. An m dimensional Riemannian submanifold M of \overline{M} is called a *CR-submanifold of \overline{M}* if there exists a differentiable distribution $D : x \rightarrow D_x$ on M satisfying the following conditions:

- (i) D is invariant, that is $\phi D_x \subset D_x$ for each $x \in M$,
- (ii) The complementary orthogonal distribution $D^\perp : X \rightarrow D_X^\perp \subset T_X M$ of D is anti-invariant, that is, $\phi D_X^\perp \subset T_X^\perp M$ for each $x \in M$. If $\dim D_X^\perp = 0$ (resp., $\dim D_x = 0$), then the CR-submanifold is called an *invariant* (resp., *anti-invariant*) submanifold. The distribution D (resp., D^\perp) is called the *horizontal* (resp., *vertical*) *distribution*. Also, the pair (D, D^\perp) is called ξ -*horizontal* (resp., *vertical*) if $\xi_X \in D_X$ (resp., $\xi_X \in D_X^\perp$).

3. Some basic lemmas

LEMMA 1. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} . Then

$$\begin{aligned}
 (3.1) \quad & P(\nabla_X \phi PY) + P(\nabla_Y \phi PX) - P(A_{\phi QX} Y) - P(A_{\phi QY} X) \\
 & = \phi P \nabla_X Y + \phi P \nabla_Y X + 2\alpha g(X, Y) P \xi \\
 & \quad - \alpha \eta(Y) \phi PX - \alpha \eta(X) \phi PY - \beta \eta(Y) \phi PX - \beta \eta(X) \phi PY, \\
 (3.2) \quad & Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - Q(A_{\phi QX} Y) - Q(A_{\phi QY} X) \\
 & = 2Bh(X, Y) + 2\alpha g(X, Y) Q \xi - \alpha \eta(Y) \phi QX - \alpha \eta(X) \phi QY \\
 (3.3) \quad & h(X, \phi PY) + h(Y, \phi PX) + \nabla_X^\perp \phi QY + \nabla_Y^\perp \phi QX \\
 & = \phi Q \nabla_Y X + \phi Q \nabla_X Y + 2 \text{Ch}(X, Y) - \beta \eta(Y) \phi QX - \beta \eta(X) \phi QY
 \end{aligned}$$

for $X, Y \in TM$.

Proof. Using (2.4), (2.5), and (2.6), in (2.7) we get

$$\begin{aligned}
 & \nabla_X \phi PY + h(X, \phi PY) - A_{\phi QY} X + \nabla_X^\perp \phi QY - \phi(\nabla_X Y + h(X, Y)) \\
 & + \nabla_Y \phi PX + h(Y, \phi PX) - A_{\phi QX} Y - \nabla_Y^\perp \phi QX - \phi(\nabla_Y X + h(X, Y)) \\
 & = \alpha(2g(X, Y)) \xi - \eta(Y) \phi X - \eta(X) \phi Y - \beta(\eta(X) \phi Y + \eta(Y) \phi X).
 \end{aligned}$$

Again using (2.11) we get

$$\begin{aligned}
 (3.4) \quad & P(\nabla_X \phi PY) + P(\nabla_Y \phi PX) - P(A_{\phi QX} Y) - P(A_{\phi QY} X) - \phi P \nabla_X Y \\
 & - \phi P \nabla_Y X + Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - Q(A_{\phi QX} Y) \\
 & - Q(A_{\phi QY} X) - 2Bh(X, Y) + h(X, \phi PY) + h(Y, \phi PX) \\
 & + \nabla_X^\perp \phi QY + \nabla_Y^\perp \phi QX - \phi Q \nabla_Y X - \phi Q \nabla_X Y - 2 \text{Ch}(X, Y)
 \end{aligned}$$

$$\begin{aligned}
&= \beta\eta(Y)\phi QX - \beta\eta(X)\phi QY + 2\alpha g(X, Y)Q\xi - \alpha\eta(Y)\phi QX \\
&\quad - \alpha\eta(X)\phi QY + 2\alpha g(X, Y)P\xi - \alpha\eta(Y)\phi PX - \alpha\eta(X)\phi PY \\
&\quad - \beta\eta(Y)\phi PX - \beta\eta(X)\phi PY
\end{aligned}$$

for any $X, Y \in TM$.

Now equating horizontal, vertical, and normal components in (3.4), we get the desired result.

LEMMA 2. *Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} . Then*

$$\begin{aligned}
(3.5) \quad 2(\overline{\nabla}_X\phi)(Y) &= \nabla_X\phi Y - \nabla_Y\phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y] \\
&\quad + \alpha\{2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\}
\end{aligned}$$

$$\begin{aligned}
(3.6) \quad 2(\overline{\nabla}_Y\phi)(X) &= \alpha(2g(X, Y)\xi - \eta(Y)X - \eta(X)Y) - \beta(\eta(X)\phi Y + \eta(Y)\phi X) \\
&\quad - \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) + \beta(\eta(X)\phi Y + \eta(Y)\phi X)
\end{aligned}$$

for any $X, Y \in D$.

P r o o f. From Gauss formula (2.8), we have

$$(3.7) \quad \overline{\nabla}_X\phi Y - \overline{\nabla}_Y\phi X = \nabla_X\phi Y + h(X, \phi Y) - \nabla_Y\phi X - h(Y, \phi X).$$

Also, we have

$$(3.8) \quad \overline{\nabla}_X\phi Y - \overline{\nabla}_Y\phi X = (\overline{\nabla}_X\phi)(Y) - (\overline{\nabla}_Y\phi)(X) + \phi[X, Y].$$

From (3.6) and (3.7), we get

$$\begin{aligned}
(3.9) \quad (\overline{\nabla}_X\phi)(Y) - (\overline{\nabla}_Y\phi)(X) &= \nabla_X\phi Y + h(X, \phi Y) - \nabla_Y\phi X - h(Y, \phi X) - \phi[X, Y].
\end{aligned}$$

Also for nearly trans-hyperbolic Sasakian manifolds, we have

$$\begin{aligned}
(3.10) \quad (\overline{\nabla}_X\phi)(Y) + (\overline{\nabla}_Y\phi)(X) &= \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(X)\phi Y + \eta(Y)\phi X).
\end{aligned}$$

Adding (3.9) and (3.10), we get

$$\begin{aligned}
2(\overline{\nabla}_X\phi)(Y) &= \nabla_X\phi Y - \nabla_Y\phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y] \\
&\quad + \alpha\{2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\}.
\end{aligned}$$

Subtracting (3.9) from (3.10) we get

$$\begin{aligned}
2(\overline{\nabla}_Y\phi)(X) &= \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(X)\phi Y + \eta(Y)\phi X) \\
&\quad - \nabla_X\phi Y - h(X, \phi Y) + \nabla_Y\phi X + h(Y, \phi X) + \phi[X, Y].
\end{aligned}$$

Hence Lemma is proved.

LEMMA 3. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} , then

$$\begin{aligned} 2(\bar{\nabla}_Y\phi)(Z) &= A_{\phi Y}Z - A_{\phi Z}Y + \nabla_y^\perp\phi Z - \nabla_Z^\perp\phi Y - \phi[Y, Z] \\ &\quad + \alpha\{2g(Y, Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\} \\ 2(\bar{\nabla}_Z\phi)(Y) &= \alpha(2g(Y, Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y) - \beta(\eta(Y)\phi Z + \eta(Z)\phi Y) \\ &\quad - A_{\phi Y}Z + A_{\phi Z}Y - \nabla_y^\perp\phi Z + \nabla_Z^\perp\phi Y - \phi[Y, Z] \end{aligned}$$

for any $Y, Z \in D^\perp$.

Proof. From Weingarten formula (2.9), we have

$$(3.11) \quad \bar{\nabla}_Z\phi Y - \bar{\nabla}_Y\phi Z = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_y^\perp\phi Z - \nabla_Z^\perp\phi Y.$$

Also, we have

$$(3.12) \quad \bar{\nabla}_Z\phi Y - \bar{\nabla}_Y\phi Z = (\bar{\nabla}_Y\phi)(Z) - (\bar{\nabla}_Z\phi)(Y) + \phi[Y, Z].$$

From (3.11) and (3.12), we get

$$(3.13) \quad (\bar{\nabla}_Y\phi)(Z) - (\bar{\nabla}_Z\phi)(Y) = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_y^\perp Z - \nabla_Z^\perp\phi Y - \phi[Y, Z].$$

Also for nearly trans-hyperbolic Sasakian manifolds, we have

$$\begin{aligned} (3.14) \quad &(\bar{\nabla}_Y\phi)(Z) + (\bar{\nabla}_Z\phi)(Y) \\ &= \alpha(2g(Y, Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y) - \beta(\eta(Y)\phi Z + \eta(Z)\phi Y). \end{aligned}$$

Adding (3.13) and (3.14), we get

$$\begin{aligned} 2(\bar{\nabla}_Y\phi)(Z) &= A_{\phi Y}Z - A_{\phi Z}Y + \nabla_y^\perp\phi Z - \nabla_Z^\perp\phi Y - \phi[Y, Z] \\ &\quad + \alpha(2g(Y, Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y) - \beta(\eta(Y)\phi Z + \eta(Z)\phi Y). \end{aligned}$$

Subtracting (3.13) from (3.14) we get

$$\begin{aligned} 2(\bar{\nabla}_Z\phi)(Y) &= \alpha(2g(Y, Z)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y) - \beta(\eta(Y)\phi Z + \eta(Z)\phi Y) \\ &\quad - A_{\phi Y}Z + A_{\phi Z}Y - \nabla_y^\perp\phi Z + \nabla_Z^\perp\phi Y + \phi[Y, Z]. \end{aligned}$$

This proves our assertions.

LEMMA 4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} , then

$$\begin{aligned} 2(\bar{\nabla}_X\phi)(Y) &= \alpha\{2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y\} - \beta\{\eta(X)\phi Y + \eta(Y)\phi X\} \\ &\quad - A_{\phi Y}X + \nabla_X^\perp\phi Y - \nabla_Y\phi X - h(Y, \phi X) - \phi[X, Y], \end{aligned}$$

$$\begin{aligned} 2(\bar{\nabla}_Y\phi)(X) &= \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(X)\phi Y + \eta(Y)\phi X) \\ &\quad + A_{\phi Y}X - \nabla_X^\perp\phi Y + \nabla_Y\phi X + h(Y, \phi X) + \phi[X, Y] \end{aligned}$$

for any $X \in D$ and $Y \in D^\perp$.

Proof. By using Gauss equation and Weingarten equation for $X \in D$ and $Y \in D^\perp$ respectively we get

$$(3.15) \quad \bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = -A_{\phi Y} X + \nabla_X^\perp \phi Y - \nabla_Y \phi X - h(Y, \phi X).$$

Also, we have

$$(3.16) \quad \bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = (\bar{\nabla}_X \phi)(Y) - (\bar{\nabla}_Y \phi)(X) + \phi[X, Y].$$

From (3.6) and (3.7), we get

$$(3.17) \quad \begin{aligned} (\bar{\nabla}_X \phi)(Y) - (\bar{\nabla}_Y \phi)(X) \\ = -A_{\phi Y} X + \nabla_X^\perp \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y]. \end{aligned}$$

Also for nearly trans-hyperbolic Sasakian manifolds, we have

$$(3.18) \quad \begin{aligned} (\bar{\nabla}_X \phi)(Y) + (\bar{\nabla}_Y \phi)(X) = \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) \\ - \beta(\eta(X)\phi Y + \eta(Y)\phi X). \end{aligned}$$

Adding (3.17) and (3.18), we get

$$\begin{aligned} 2(\bar{\nabla}_X \phi)(Y) = \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(X)\phi Y + \eta(Y)\phi X) \\ - A_{\phi Y} X + \nabla_X^\perp \phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y]. \end{aligned}$$

Subtracting (3.9) from (3.10) we get

$$\begin{aligned} 2(\bar{\nabla}_Y \phi)(X) = \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(X)\phi Y + \eta(Y)\phi X) \\ + A_{\phi Y} X - \nabla_X^\perp \phi Y + \nabla_Y \phi X + h(Y, \phi X) + \phi[X, Y]. \end{aligned}$$

Hence Lemma is proved.

4. Parallel distributions

DEFINITION 2. The horizontal (resp., vertical) distribution D (resp., D^\perp) is said to be parallel [1] with respect to the connection on M if $\nabla_X Y \in D$ (resp., $\nabla_Z W \in D^\perp$) for any vector field $X, Y \in D$ (resp., $W, Z \in D^\perp$).

PROPOSITION 1. *Let M be a ξ -vertical CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} . If the horizontal distribution D is parallel, then*

$$(4.1) \quad h(X, \phi Y) = h(Y, \phi X)$$

for all $X, Y \in D$.

Proof. Using parallelism of horizontal distribution D , we have

$$(4.2) \quad \nabla_X \phi Y \in D, \quad \nabla_Y \phi X \in D \quad \text{for any } X, Y \in D.$$

Thus using the fact that $X = QY = 0$ for $Y \in D$, (3.2) gives

$$(4.3) \quad B h(X, Y) = g(X, Y) Q \xi \quad \text{for any } X, Y \in D.$$

Also, since

$$(4.4) \quad \phi h(X, Y) = Bh(X, Y) + Ch(X, Y),$$

then

$$(4.5) \quad \phi h(X, Y) = g(X, Y)Q\xi + Ch(X, Y) \quad \text{for any } X, Y \in D.$$

Next from (3.3), we have

$$(4.6) \quad h(X, \phi Y) + h(Y, \phi X) = 2Ch(X, Y) = 2\phi h(X, Y) - 2g(X, Y)Q\xi,$$

for any $X, Y \in D$. Putting $X = \phi X \in D$ in (4.6), we get

$$(4.7) \quad h(\phi X, \phi Y) + h(Y, \phi^2 X) = 2\phi h(\phi X, Y) - 2g(\phi X, Y)Q\xi$$

or

$$(4.8) \quad h(\phi X, \phi Y) - h(Y, X) = 2\phi h(\phi X, Y) - 2g(\phi X, Y)Q\xi.$$

Similarly, putting $Y = \phi Y \in D$ in (4.6), we get

$$(4.9) \quad h(\phi Y, \phi X) - h(X, Y) = 2\phi h(X, \phi Y) - 2g(X, \phi Y)Q\xi.$$

Hence from (4.8) and (4.9), we have

$$(4.10) \quad \phi h(X, \phi Y) - \phi h(Y, \phi X) = g(X, \phi Y)Q\xi - g(\phi X, Y)Q\xi.$$

Operating ϕ on both sides of (4.10) and using $\phi\xi = 0$, we get

$$(4.11) \quad h(X, \phi Y) = h(Y, \phi X)$$

for all $X, Y \in D$.

Now, for the distribution D^\perp , we prove the following proposition.

PROPOSITION 2. *Let M be a ξ -vertical CR-submanifold of a nearly trans-hyperbolic Sasakian Manifold \bar{M} . If the distribution D^\perp is parallel with respect to the connection on M , then*

$$(4.12) \quad A_{\phi Y}Z + A_{\phi Z}Y \in D^\perp \quad \text{for any } Y, Z \in D^\perp.$$

Proof. Let $Y, Z \in D^\perp$, then using Gauss and Weingarten formula (2.6), we obtain

$$(4.13) \quad -A_{\phi Z}Y + \nabla_Y^\perp \phi Z - A_{\phi Y}Z + \nabla_Z^\perp \phi Y = \phi \nabla_Y Z + \phi \nabla_Z Y + 2\phi h(Y, Z) + \alpha(2g(X, Y)\xi - \eta(Y)\phi Z - \eta(Z)\phi Y) - \beta[\eta(Z)\phi Y + \eta(Y)\phi Z]$$

for any $Y, Z \in D^\perp$. Taking inner product with $X \in D$ in (4.13), we get

$$(4.14) \quad g(A_{\phi Y}Z, X) + g(A_{\phi Z}Y, X) = g(\nabla_Y Z, \phi X) + g(\nabla_Z Y, \phi X).$$

If the distribution D^\perp is parallel, then $\nabla_Y Z \in D^\perp$ and $\nabla_Z Y \in D^\perp$, for any $Y, Z \in D^\perp$.

So from (4.14) we get

$$(4.15) \quad g(A_{\phi Y}Z, X) + g(A_{\phi Z}Y, X) = 0 \quad \text{or} \quad g(A_{\phi Y}Z + A_{\phi Z}Y, X) = 0$$

which is equivalent to

$$(4.16) \quad A_{\phi Y}Z + A_{\phi Z}Y \in D^\perp \quad \text{for any } Y, Z \in D^\perp,$$

and this completes the proof.

DEFINITION 3. A CR-submanifold is said to be mixed totally geodesic if $h(X, Z) = 0$ for all $X \in D$ and $Z \in D^\perp$.

The following lemma is an easy consequence of (2.10).

LEMMA 5. *Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} . Then M is mixed totally geodesic if and only if $A_N X \in D$ for all $X \in D$.*

DEFINITION 4. A normal vector field $N \neq 0$ is called D -parallel normal section if $\nabla_X^\perp N = 0$ for all $X \in D$.

PROPOSITION 3. *Let M be a mixed totally geodesic ξ -vertical CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} . Then the normal section $N \in \phi D^\perp$ is D -parallel if and only if $\nabla_X \phi N \in D$ for all $X \in D$.*

Proof. Let $N \in \phi D^\perp$. Then from (3.2) we have

$$(4.17) \quad Q(\nabla_Y \phi X) = 0 \quad \text{for any } X \in D, Y \in D^\perp.$$

In particular, we have $Q(\nabla_Y X) = 0$. By using it in (3.3), we get

$$(4.18) \quad \nabla_X^\perp \phi QY = \phi Q \nabla_X Y \quad \text{or} \quad \nabla_X^\perp N = -\phi Q \nabla_X \phi N.$$

Thus, if the normal section $N \neq 0$ is D -parallel, then using Definition 4 and (4.18), we get

$$(4.19) \quad \phi Q(\nabla_X \phi N) = 0$$

which is equivalent to $\nabla_X \phi N \in D$ for all $X \in D$. The converse part easily follows from (4.18). This completes the proof of the proposition.

Acknowledgment. Authors are thankful to the referees for their valuable suggestions through which they have presented their paper in a better and more informative way.

References

- [1] A. Bejancu and N. Papaghiuc, *CR-submanifolds of Kenmotsu manifold*, Rend. Mat. **7** (1984), 607–622.
- [2] A. Bejancu, *CR submanifolds of a Kaehler manifold. I*, Proc. Amer. Math. Soc. **69** (1978), 135–142.
- [3] L. Bhatt and K. K. Dube, *On CR-submanifolds of a trans-hyperbolic Sasakian manifold*, Acta Ciencia Indica **31** (2003), 91–96.
- [4] D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 1976.

- [5] K. K. Dube and M. M. Mishra, *Hypersurfaces immersed in an almost hyperbolic Hermitian manifold*, Competes Rendus of Bulgarian Acad. of Sci. **34** (10) (1981), 1343–1345.
- [6] K. K. Dube and R. Niwas, *Almost r-contact hyperbolic structure in a product manifold*, Demonstratio Math. **11** (1978), 887–897.
- [7] Gherghe, *Harmonicity on nearly trans-Sasaki manifolds*, Demonstratio Math. **33** (2000), 151–157.
- [8] H. S. Gill and K. K. Dube, *On CR submanifolds of trans-hyperbolic Sasakian manifolds*, Demonstratio Math. **38** (2005), 953–960.
- [9] N. K. Joshi and K. K. Dube, *Semi-invariant submanifold of an almost r-contact hyperbolic metric manifold*, Demonstratio Math. **36** (2001), 135–143.
- [10] M. Kobayashi, *CR submanifolds of a Sasakian manifold*, Tensor (N.S.) **35** (1981), no. 3, 297–307.
- [11] M. H. Shahid, *CR-submanifolds of a trans-Sasakian manifold*, Indian J. Pure Appl. Math. **22** (1991), 1007–1012.
- [12] M. Shahid, A. Sharfuddin and S. A. Husain, *CR-submanifolds of a Sasakian manifold*, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. **15** (1985), no. 1, 263–278.
- [13] M. D. Upadhyay and K. K. Dube, *Almost contact hyperbolic (f, g, η, ξ) -structure*, Acta. Math. Acad. Scient. Hung., Tomus **28** (1976), 1–4.
- [14] K. Yano and M. Kon, *Contact CR submanifolds*, Kodai Math. J. **5** (1982), no. 2, 238–252.

DEPARTMENT OF MATHEMATICS

STATISTICS AND COMPUTER SCIENCE COLLEGE OF BASIC SCIENCES AND HUMANITIES

G. B. PANT UNIVERSITY OF AGRICULTURE & TECHNOLOGY

PANTNAGAR UTTARAKHAND, 263145 INDIA

e-mail: kkduke@yahoo.com

Received June 5, 2007; revised version March 24, 2008.

