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COMPLETE LIFT OF F,(K,1) STRUCTURE
IN THE TANGENT BUNDLE

Abstract. Prasad and Gupta have obtained the integrability conditions of a-structure.
In the present paper I have studied the complete lift of - structure in the tangent bundle.

1. Introduction

Let be an M™ n-dimensional differentiable manifold of class C*° equipped
with a non null tensor field F' of type (1, 1) and of class satisfying

(1) FEK _g’F =0

where K is a positive integer > 2 and a is complex number not equal to
zero. Let us define the operators [ and m as follows

FK—I FK—l
(2) l= a2 m=1I-— a2z’
where I denote the unit tensor. Then we have [1]
(3) l+m=1I Im=ml, P’=1

Thus if there is given a (1, 1) tensor field F' # 0 satisfying (1), then there exist
two complementary distributions L and M corresponding to the projection
operators [ and m respectively. When the rank of F' is constant and is
equal to r everywhere then the dimensions of L and M are r and (n — r)
respectively. Such a structure is called Fg (K, 1) a - structure of rank r and
the manifold M™ is called a structure manifold [1].

The relations [1]
(4) Fl=IF=F, Fm=mF=0,
Fl=IF>=F? F’m=mF?=0,
IFA1 = PR = g2l
mFKl = FK-1m =0
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show that FEK-1 acts on L as GF-structure operator and on M as a null
operator. If the rank of F' is maximal that is r = n then F satisfies

FK—]
I-— - = 0
or
FE-1_g21=0.

It is proved that F, (K, 1) structure of maximal rank is a GF-structure.

2. Complete lift of F,(K,1) structure in tangent bundle

Let T7 (M™) be the set of tensor fields of class C*° and of the type (r, s)
in M™ and T(M™) be the tangent bundle over M. Let Fe(M™) and F have
local components Fih in a coordinate neighborhood U of M™. Then the
complete lift FC of F will have the components of the form [2].

Fr 0o
S Fih .Fih
Now we shall prove the following theorem.

THEOREM 2.1. Let Fe(M™) then the complete lift FC of F is a F, (K,1)
structure in T'(M™) if and only if so is F. Thus F is of rank r if and only
if FC is of rank 2r.

Proof. For any F,G € (M™), we have [2]

(5) FC .

(6) (FG)® = FCG°.
Replacing G by F in (6), we get
(7) (FF)° = (F%)° = (F°).

Since G is a (1,1) tensor field, therefore as a consequence of equation (6),
we have

(FFZ)C — FC(F2)C — FC(FC)2

which in view of equation (7) gives

(8) (F3)C = (FO)%.
Again repeating the same process, we get
(9) (FO)C = (FO)° = (FF)® = (FO)X.

Taking complete lift of both sides of equation (1), we get
(FF)C - (a*F)° =0

which with the help of equation (9) implies that
(FO)YK —a’FC =0.
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Thus FX —a?F = 0 and (F¢)X —a?F¢ = 0, are equivalent. The remaining
part of the theorem follows from equation (5).

Let F be a F, (K,1) structure of rank r in M™. Then the complete
lift I¢ of [ and m® of m are complementary projection tensors in T(M™).
Thus there exist in T(M™") two complementary distributions L¢ and M¢
determined by ¢ and m¢ respectively.

3. Integrability conditions of F, (K, 1) -structure in tangent bundle

Let F be a F, (K,1) -structure of rank r in M™. Then the Nijenhuis
tensor N(X,Y) of F is given in [2]

(10) N(X,Y)=|FX,FY]|—F[FX,FY] - F[X,FY]+ F?[X,Y],
for any, X,Ye(M™) and Fe(M™). We have [2]
(11) FCXC = (FX)¢
(XY =[x,Y)°

and

(X+Y)¢=XC4+Y°.
From equation (4) and equation (11), we obtain
(12) FCm® = (Fm)® = 0.

THEOREM 3.1. The complete lift M€ of a distribution M in M™ is integrable
if and only if M is integrable in M™.

Proof. The distribution M is integrable if and only if [1]

(13) [[mX, mY] =0,
for any X,Ye(M™). Taking complete lift of both sides (13), we get
(14) I°mCX, mCY°] =0,

where [€ = (I —m)® = I —mC, is the projection tensor complementary mC.
Thus the condition (13) and (14) are equivalent. Hence the result follows.

THEOREM 3.2. For any X,Ye(M™) let the distribution M be integrable in
M™, that is N(mX,mY) = 0, then the distribution M is integrable in
T(M™) if and only if

NC(mCXC mfY°) =o.
Proof. Let NC be the Nijenhuis tensor of FC in T(M™) of F in M™. Then,
we have

(15) NY(XC,v%) = [FCXC, FCY?|
o FC[FCXC,FCYC] —FC[XC,FCYC] + (F2)C[XC,YC],



918 J. Upreti
(16) NEmCXC mCY°) = [FCmCXC FCmCY?)
— FC[FCmCXC FCmCYC)
— FOmCXC, FOmCY ] + (F2)C[mC X, mCYC].
Equation (16) with the help of equation (12) gives
NC(mCXC, mCYC) — (FQ)C[mCXC, mCYC],
This in view of equation (4) gives
NCmCXC mCY°) = (FA)°mC X, mCY°]
or
NC(mCXC, mCYC) — (F2)Clc[mCXC, mC'yC].
Using the equation (14), we have
NOmCXC mfY®) =o.
This proves the theorem.

THEOREM 3.3. For any X,Ye(M™), let the distribution L be integrable
in M", that is mN(X,Y) = 0. Then the distribution LC is integrable in
T(M™), if and only if

mCNC(XC, Y% =o.
Proof. In view of equations (15), (12) and (11), we obtain
mCNC(XC,Y®) = mC[FCXC, FCYC] = mC[FX, FY]¢ = 0.
This completes the proof of the theorem.

When the distribution L is integrable, then F' operates on each integrable
manifold of L as a GF-structure operator F, such as

F.X, =FX,

where X; is an arbitrary vector field tangent to the integral manifold of L.

When the distribution L is integrable and the G F-structure F, induced
from F' on each integral manifold of L is also integrable, then c-structure is
said to be partially integrable.

THEOREM 3.4. For any X,Ye(M™), let F, (K,1) -structure be partially in-
tegrable in M™, that is N(1X,lY) = 0. Then F, (K, 1) -structure is partially
integrable in T(M™), if and only if

NCICxC,1°Y%) = 0.
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Proof. From equations (15) and (11), we have
NC(lCXC,lCYC) — NC(lCXC,lCYC) _ FC[FCZCXC, FClCYC]
. FC[ZCXC, FClCYC] + (F2)C[lCXC, leC]
= [FIX,FlY]° — FO[FIX,Y]° - FO[X, FIY]C + (F?)°[IX,1Y]°
= (N(IX, V)¢ =0
since the Fy (K, 1) -structure is partially integrable in M™.
When both distribution L and M are integrable, we can choose a local
coordinate system such that all L are represented by putting (n — r) local
coordinate constant and all M by putting the other r coordinate system is

called an adapted coordinate system. In an adapted coordinate system, the
projection operators and have the components of the form [2]

l= , m=
00 0 I,_,

respectively, where [ is a unit matrix of order r and I,,_, is of order n —r.
Since F' satisfies equation (4), the tensor F' has components of the form

F:|:IT 0]
00

in an adapted coordinate system, whose F;. is a square matrix of order r x r.
DEFINITION 3.1. The F, (K, 1) structure is said to be integrable if

1. The F, (K, 1) structure is partially integrable,

2. The distribution M is integrable,

3. The components of the Fy (K, 1) structure are independent of the co-
ordinates, which are constant along the integral manifold of L in an
adapted coordinate system.

THEOREM 3.5. For any vector fields X and Y, let the structure Fo (K, 1) be
integrable in M"™, that is

N(X,Y)=0.
Then the structure F, (K,1) is integrable in T(M™) if and only if

NC(xC v =o.
Proof. From the equation (13), we have
N (XC, Y% = [FCXxC FCYC] - FC[FCXC FCY°]| - FC[XC FCYC)
+(FHY[XC,Y°).
In view of equations (11) and (10), we have
NC(XC v = (NC(X,Y))° =0.

since the structure F, (K, 1) is integrable in M™.
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