

Jaya Upreti

**COMPLETE LIFT OF $F_a(K, 1)$ STRUCTURE
 IN THE TANGENT BUNDLE**

Abstract. Prasad and Gupta have obtained the integrability conditions of a -structure. In the present paper I have studied the complete lift of $-$ structure in the tangent bundle.

1. Introduction

Let be an M^n n-dimensional differentiable manifold of class C^∞ equipped with a non null tensor field F of type $(1, 1)$ and of class satisfying

$$(1) \quad F^K - a^2 F = 0$$

where K is a positive integer ≥ 2 and a is complex number not equal to zero. Let us define the operators l and m as follows

$$(2) \quad l = \frac{F^{K-1}}{a^2}, \quad m = I - \frac{F^{K-1}}{a^2},$$

where I denote the unit tensor. Then we have [1]

$$(3) \quad l + m = I, \quad lm = ml, \quad l^2 = l.$$

Thus if there is given a $(1, 1)$ tensor field $F \neq 0$ satisfying (1), then there exist two complementary distributions L and M corresponding to the projection operators l and m respectively. When the rank of F is constant and is equal to r everywhere then the dimensions of L and M are r and $(n - r)$ respectively. Such a structure is called $F_a(K, 1)$ a - structure of rank r and the manifold M^n is called a structure manifold [1].

The relations [1]

$$(4) \quad \begin{aligned} Fl &= lF = F, \quad Fm = mF = 0, \\ F^2l &= lF^2 = F^2, \quad F^2m = mF^2 = 0, \\ lF^{K-1} &= F^{K-1}l = a^2l \\ mF^{K-1} &= F^{K-1}m = 0 \end{aligned}$$

show that F^{K-1} acts on L as GF -structure operator and on M as a null operator. If the rank of F is maximal that is $r = n$ then F satisfies

$$I - \frac{F^{K-1}}{a^2} = 0$$

or

$$F^{K-1} - a^2 I = 0.$$

It is proved that $F_a(K, 1)$ structure of maximal rank is a GF -structure.

2. Complete lift of $F_a(K, 1)$ structure in tangent bundle

Let $T_s^r(M^n)$ be the set of tensor fields of class C^∞ and of the type (r, s) in M^n and $T(M^n)$ be the tangent bundle over M . Let $F \in (M^n)$ and F have local components F_i^h in a coordinate neighborhood U of M^n . Then the complete lift F^C of F will have the components of the form [2].

$$(5) \quad F^C : \begin{bmatrix} F_i^h & 0 \\ \delta F_i^h & F_i^h \end{bmatrix}.$$

Now we shall prove the following theorem.

THEOREM 2.1. *Let $F \in (M^n)$ then the complete lift F^C of F is a $F_a(K, 1)$ structure in $T(M^n)$ if and only if so is F . Thus F is of rank r if and only if F^C is of rank $2r$.*

Proof. For any $F, G \in (M^n)$, we have [2]

$$(6) \quad (FG)^C = F^C G^C.$$

Replacing G by F in (6), we get

$$(7) \quad (FF)^C = (F^2)^C = (F^C)^2.$$

Since G is a $(1, 1)$ tensor field, therefore as a consequence of equation (6), we have

$$(FF^2)^C = F^C (F^2)^C = F^C (F^C)^2$$

which in view of equation (7) gives

$$(8) \quad (F^3)^C = (F^C)^3.$$

Again repeating the same process, we get

$$(9) \quad (F^5)^C = (F^C)^5 = (F^K)^C = (F^C)^K.$$

Taking complete lift of both sides of equation (1), we get

$$(F^K)^C - (a^2 F)^C = 0$$

which with the help of equation (9) implies that

$$(F^C)^K - a^2 F^C = 0.$$

Thus $F^K - a^2 F = 0$ and $(F^C)^K - a^2 F^C = 0$, are equivalent. The remaining part of the theorem follows from equation (5).

Let F be a $F_a(K, 1)$ structure of rank r in M^n . Then the complete lift l^c of l and m^c of m are complementary projection tensors in $T(M^n)$. Thus there exist in $T(M^n)$ two complementary distributions L^C and M^C determined by l^c and m^c respectively.

3. Integrability conditions of $F_a(K, 1)$ -structure in tangent bundle

Let F be a $F_a(K, 1)$ -structure of rank r in M^n . Then the Nijenhuis tensor $N(X, Y)$ of F is given in [2]

$$(10) \quad N(X, Y) = [FX, FY] - F[FX, FY] - F[X, FY] + F^2[X, Y],$$

for any, $X, Y \in \epsilon(M^n)$ and $F \in \epsilon(M^n)$. We have [2]

$$(11) \quad \begin{aligned} F^C X^C &= (FX)^C \\ [X^C, Y^C] &= [X, Y]^C \end{aligned}$$

and

$$(X + Y)^C = X^C + Y^C.$$

From equation (4) and equation (11), we obtain

$$(12) \quad F^C m^C = (Fm)^C = 0.$$

THEOREM 3.1. *The complete lift M^C of a distribution M in M^n is integrable if and only if M is integrable in M^n .*

Proof. The distribution M is integrable if and only if [1]

$$(13) \quad l[mX, mY] = 0,$$

for any $X, Y \in \epsilon(M^n)$. Taking complete lift of both sides (13), we get

$$(14) \quad l^C[m^C X, m^C Y^C] = 0,$$

where $l^C = (I - m)^C = I - m^C$, is the projection tensor complementary m^C . Thus the condition (13) and (14) are equivalent. Hence the result follows.

THEOREM 3.2. *For any $X, Y \in \epsilon(M^n)$ let the distribution M be integrable in M^n , that is $N(mX, mY) = 0$, then the distribution M^C is integrable in $T(M^n)$ if and only if*

$$N^C(m^C X^C, m^C Y^C) = 0.$$

Proof. Let N^C be the Nijenhuis tensor of F^C in $T(M^n)$ of F in M^n . Then, we have

$$(15) \quad \begin{aligned} N^C(X^C, Y^C) &= [F^C X^C, F^C Y^C] \\ &\quad - F^C[F^C X^C, F^C Y^C] - F^C[X^C, F^C Y^C] + (F^2)^C[X^C, Y^C], \end{aligned}$$

$$(16) \quad \begin{aligned} N^C(m^C X^C, m^C Y^C) &= [F^C m^C X^C, F^C m^C Y^C] \\ &\quad - F^C [F^C m^C X^C, F^C m^C Y^C] \\ &\quad - F^C [m^C X^C, F^C m^C Y^C] + (F^2)^C [m^C X^C, m^C Y^C]. \end{aligned}$$

Equation (16) with the help of equation (12) gives

$$N^C(m^C X^C, m^C Y^C) = (F^2)^C [m^C X^C, m^C Y^C].$$

This in view of equation (4) gives

$$N^C(m^C X^C, m^C Y^C) = (F^2 l)^C [m^C X^C, m^C Y^C]$$

or

$$N^C(m^C X^C, m^C Y^C) = (F^2)^C l^C [m^C X^C, m^C Y^C].$$

Using the equation (14), we have

$$N^C(m^C X^C, m^C Y^C) = 0.$$

This proves the theorem.

THEOREM 3.3. *For any $X, Y \in (M^n)$, let the distribution L be integrable in M^n , that is $mN(X, Y) = 0$. Then the distribution L^C is integrable in $T(M^n)$, if and only if*

$$m^C N^C(X^C, Y^C) = 0.$$

Proof. In view of equations (15), (12) and (11), we obtain

$$m^C N^C(X^C, Y^C) = m^C [F^C X^C, F^C Y^C] = m^C [FX, FY]^C = 0.$$

This completes the proof of the theorem.

When the distribution L is integrable, then F operates on each integrable manifold of L as a GF -structure operator F_* such as

$$F_* X_1 = FX_1,$$

where X_1 is an arbitrary vector field tangent to the integral manifold of L .

When the distribution L is integrable and the GF -structure F_* induced from F on each integral manifold of L is also integrable, then c-structure is said to be partially integrable.

THEOREM 3.4. *For any $X, Y \in (M^n)$, let $F_a(K, 1)$ -structure be partially integrable in M^n , that is $N(lX, lY) = 0$. Then $F_a(K, 1)$ -structure is partially integrable in $T(M^n)$, if and only if*

$$N^C(l^C X^C, l^C Y^C) = 0.$$

Proof. From equations (15) and (11), we have

$$\begin{aligned} N^C(l^C X^C, l^C Y^C) &= N^C(l^C X^C, l^C Y^C) - F^C[F^C l^C X^C, F^C l^C Y^C] \\ &\quad - F^C[l^C X^C, F^C l^C Y^C] + (F^2)^C[l^C X^C, l^C Y^C] \\ &= [FlX, FlY]^C - F^C[FlX, Y]^C - F^C[X, FlY]^C + (F^2)^C[lX, lY]^C \\ &= (N(lX, lY))^C = 0 \end{aligned}$$

since the $F_a(K, 1)$ -structure is partially integrable in M^n .

When both distribution L and M are integrable, we can choose a local coordinate system such that all L are represented by putting $(n - r)$ local coordinate constant and all M by putting the other r coordinate system is called an adapted coordinate system. In an adapted coordinate system, the projection operators and have the components of the form [2]

$$l = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}, \quad m = \begin{bmatrix} 0 & 0 \\ 0 & I_{n-r} \end{bmatrix}$$

respectively, where I_r is a unit matrix of order r and I_{n-r} is of order $n - r$. Since F satisfies equation (4), the tensor F has components of the form

$$F = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

in an adapted coordinate system, whose F_r is a square matrix of order $r \times r$.

DEFINITION 3.1. The $F_a(K, 1)$ structure is said to be integrable if

1. The $F_a(K, 1)$ structure is partially integrable,
2. The distribution M is integrable,
3. The components of the $F_a(K, 1)$ structure are independent of the coordinates, which are constant along the integral manifold of L in an adapted coordinate system.

THEOREM 3.5. For any vector fields X and Y , let the structure $F_a(K, 1)$ be integrable in M^n , that is

$$N(X, Y) = 0.$$

Then the structure $F_a(K, 1)$ is integrable in $T(M^n)$ if and only if

$$N^C(X^C, Y^C) = 0.$$

Proof. From the equation (13), we have

$$\begin{aligned} N^C(X^C, Y^C) &= [F^C X^C, F^C Y^C] - F^C[F^C X^C, F^C Y^C] - F^C[X^C, F^C Y^C] \\ &\quad + (F^2)^C[X^C, Y^C]. \end{aligned}$$

In view of equations (11) and (10), we have

$$N^C(X^C, Y^C) = (N^C(X, Y))^C = 0.$$

since the structure $F_a(K, 1)$ is integrable in M^n .

References

- [1] C. S. Prasad and V. C. Gupta, *Integrability conditions of - a structure satisfying*, Demonstratio Math. 35 (1) (2002), 149–155.
- [2] K. Yano and S. Ishihara, *Tangent and Cotangent Bundles*, Marcel Dekker Inc, New York 1973.

DEPARTMENT OF MATHEMATICS
KUMAUN UNIVERSITY
S.S.J. CAMPUS, ALMORA-263601
UTTARAKHAND, INDIA
e-mail: Jaya_Upreti@yahoo.com.in

Received August 16, 2006; revised version May 17, 2008.