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NOTES ON INTEGRAL INEQUALITIES

Abstract. New results, generalizations and improvements concerning several integral
inequalities are obtained.

1. Introduction
The following kinds of integral inequalities were presented first by
F. Qi [10]. He proved the following results:

PROPOSITION 1.1. Let f(z) be differentiable on (a,b) and f(a) = 0. If
0 < f'(z) <1, then

b b 9
(11) [ (f@)’de < ({ f(z)dz) .

If f'(z) > 1, the inequality (1.1) reverses. The equality in (1.1) holds if

f(z)=0or f(z) =2z —a.

PROPOSITION 1.2. Suppose f () has continuous derivative of nth order on

the interval [a,b], f®(a) > 0 and f™(z) > n!, where 0 <i <n —1. Then
b

b n+1
(1.2) [(f "+2da:>(sz)da:) .

a

F. Qi as well-posed the following open problem:

Under what conditions does the inequality
b b

(1.3) [ (f@)de > (§ f(z) dz)

a a

t—1

hold fort > 17

Many mathematicians studied the complements, variants and continua-
tions of Qi’s integral inequality; see the references of this paper.
In {7], the authors proved the following result
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THEOREM 1.3. Assume that the condition: f(z) is nonnegative continuous
on [0, 1] satisfying

1 2

1-2

(1.4) | Ft)ydt > 5 V€ [0,1].
Then ’

1 1
(1.5) Sf"‘“(:v) dz > S:L‘o‘ f(z)dz

0 0

for. every real number a > 0.

They also posed the following open problem.
Let f(z) be continuous function on [0, 1], satisfying

1 1
(1.6) {f)at>{tdt, vzelo1]
T x
Under what conditions does the inequality
1 1
(1.7) Sfa+ﬂ(:v) dz > Sza fP(x) dz,
0 0

hold for a and 37
For the above problem, L. Bougoffa [1], [2] found an answer. He in fact
presented the following

THEOREM 1.4. Let f(z) be nonnegative function, continuous on [a,b] and
differentiable on (a,b), with f'(x) > 1 (see [2]), and let o and B be positive
numbers. If

b b
(1.8) {fydt<\(t—a)dt, Vze]a,b,
then ) ’

b b
(1.9) | foP(2) dz < {(z — a)* fP(z) dz.

If (1.8) reverses, then (1.9) reverses.

2. Main results

We start with Theorem 1.4, and improving this result by dropping the
condition (1.8). Indeed, we prove the following:

THEOREM 2.1. Let f(z) be nonnegative function, continuous on [a,b] and
differentiable on (a,b) with f'(x) > 1, and let a, B be positive numbers. Then
(1.9) is satisfied.
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Proof. Set
t

(z — a)® fP(z)dz — Sf‘”'ﬁ(x) dz.

a

F(t) =

0 e oh

Then, we have
F'(t) = (t — a)*fP(t) = (1) = FA(0) ((t— a)* = F2(2)) = 0
if f(t)=t—a,
F"(t) = B(t — a) P () f'(8) + alt — ) f2(2)
— (a+B) P f(2),
[F" ()] f(y=t—a = @t — @)~ (f(t) - 1) > 0.
This shows that F' attains its minimum when f(t) = ¢ — a which is 0.
That is F(t) > 0.
The following Lemma, is needed for our aim

LEMMA 2.2. Let f, g be two functions defined on [a, b] such that f is nonnegat
-te, ¢'(z) > 1 with g(a) =0, and let v > 0. If

(2.1) §f(t) dt > §g(t) g'(t)dt = M Vzela,b,
then

22) Sf(t) FOd = ),

and

(2.3) Sf‘*(:c)g"(w) dz > %, (@>1,8>0).

Proof. Since ¢'(z) > 0, then g is increasing which gives g(z) > g(a) = 0.
By changing the order of integration, we have

bb b t b
11/0)97(0) ¢ () o = | 10 dt | (@) g @) do = — {F0) g™ (0 .

Also, we have

bb
1§ 7t) g7 (z) g'(z) dt dz =

ar

0 e O
8 e O

(

b
§ (40 - 6%(2)) 97(@) ¢'(2) d =

f(t)dt)g"(z) g'(a) dz

1

z (Y+1) (v +3)

g"t3(b),

DN | bt
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which together with the previous equality implies (2.2). Concerning (2.3),
we apply AG inequality as follows

a—1

éf" 9%(x) = f(z) g° (),

and hence:

=@ @) + T2 (@) 2 () ),
£(2) ¢°(2) 2 (1- ) ¢°*8(2) + @ f(2) ¢+ (2)
> (1- 0) ¢°*7(2) ¢'(2) + o f(2) ¢ (2),

On integrating the above from a to b, and making use of (2.2), we obtain

b b b
[ £9@) (@) de > 1 - ) [ g**(2) ¢ (2)dz + @ f(2) ¢**7 7 (z) da

gutIb) | g*tPHI(b) _ g*tPt(b)
a+B+1 Ya¥B+l a+B+l

>(1-a)

The above Lemma leads to the following

THEOREM 2.3. If the functions f and g satisfy the conditions of Lemma
(2.2) in addition to (2.1), then

b b
(2.4) jrotP(a)de > § f*(z) ¢°(x) dz

for every real o > landf > 0.

Proof. Using the AG inequality, we have

a+ﬂfa+ﬂ($) > f*(x) g (w)—%ﬂgaw(.@)
> f42) (@) - —— +ﬁ *H(z) ¢ (x).
Integrating both sides of the above inequality from a to b gives
b b b
aiﬁsf“w(w)dwﬂf"(x)g 51" @d (=
b
- L@ s (gfa(m)g (@) do - §¢**5(2) ¢ (a) do)
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b
o N 5 J¢] ga+ﬂ+1(b) _ ga+ﬂ+1 (b))
> Sl e+ Lo (T8 T
b
=15 1@

a

The result follows.

REMARK 2.4. Theorem 2.3 covers the results of [3], [5], and [7] as these
results are in fact special cases of this Theorem. As an example the result
of [3] follows by putting g(z) = z,a =0, b= 1.

Concerning F. Qi’s result (Proposition 1.2), the authors in [5], [8] and
[12] have all dealt with this result in order to get some improvement. Among
all of these, the result of [12] which is the best, and states the following:

Let n be a positive integer. Suppose f(z) has a continuous derivative of
the n-th order on the interval [a, b] such that f®(a) = 0, where0 <i < n—1,
and

n!
f(z) > Cr=t
then
b b n+1
(2.5) Sf"”(:c) dz > (S f(z) dm)

Now we are in a position to give the following new results.

THEOREM 2.5. Suppose f is positive and has continuous 2nd derivative on
the interval [a,b] such that f(a) =0, f'(a) =0, andlety>a >0, 5>1,
Bla+1)>(y+1). If

f@) f'()
(2.6) RO 2 Bla+1)—(y+1),
then
b b 8
(2.7) [ f1(z)de > (g F(z) dm) .

If (2.6) reverses, then (2.7) reverses as well.
Proof. By the hypothesis, f”(t) > 0, then f/(t) is increasing and hence
f'(t) > f'(a) = 0. Set

t t

F(t) = Sf"(x) dz — (S f(z) dsc)ﬁ.

a
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‘We have

F(t) = f7(t) - ﬁf"(t)d (@dz)” =0,
if ’
(2.8) 8 (§ f%() dz) o prag),

a
t

Pt = 0 £0) - 86 - 1) 120 (@) da)

a

~ap 201 0) ([ F@yaz)”

a

Now, for t satisfying (2.8), we have
t _
F/(0) = (v =) 70 £16) — (8- 1) °00) (§ /2 (a) da)

_ = 70 ) (§ oy iz~ B=Y fa“(t))

o fo(x) de (v — ) F(2)
If we are setting G(t) for the quantity in the brackets above, we have

B-1 ( feri) f”(t))
G/ ) = fo(t) — a+1 () —
0 =170~ "2 (@ + 0 1200 - 50
a p-1 f@) @)
—ew(1- 2 (a+1-
o= S5 o
Therefore G is nondecreasing. But G(a) = 0, then G(t) > 0. This implies
that F"(t) > 0. That is F attains its minimum when ¢ = a. But F(a) > 0,
then F(¢t) > 0. This completes the proof.

)) >0, Dby the hypothesis.

REMARK 2.6. In Theorem 2.5, if f is convex, the theorem is valid as
f’(t) > 0. But if f is concave, that is f”(¢) < 0, and nondecreasing,
then the theorem is valid if v + 1 > B(a + 1).

LEMMA 2.7. Let f be positive and has continuous 2nd derivative on the
interval [a,b] such that f(a) >0, f'(a) > 0. If
f@) ")
(F'(®))?

>k>1, t€]la,b,

then:

"(a 1/(1-k)
o< (k-2 e-0+ @)



Notes on integral inequalities 893

Proof. By the hypothesis f”(t) > 0, then f’(¢) is increasing and hence
positive. We have
MONEPEO]

OREEICR
which implies:
f// t
|y de > k1 5 e
In f'(¢) - In f'(a) > k(ln f(£) - In f(a))
In f/(t) — kIn £(¢) > In f'(a) — k1n f(a)
f(#) f'(a)
ln(fkm) >1n (fk(a))
and hence:
! f@)y
[£740) (@) do > (@ ))sdx,
~ (a) 1o, )R
f(t)S<(k 1)(())(t Q)+ f ()) .

The following is a good generalization for the result of [12], and hence for
all similar results before, as well as the proof is via a very simple method.

THEOREM 2.8. Let n be a positive integer. Suppose f(z) has a continuous
derivative of the n-th order on the interval [a,b] such that f®(a) = 0, where
0<i<n—1. Let a, 83, v be positive numbers such that a8 > ~. If

n —ap « (ny+1)n!
(2.9) (f( )(-T)ﬁ A > W

then (2.7) is satisfied. In particular fory =n+2, f=n+1, a =1, we
obtain (2.5).

(b _ a)ﬂ(na+1)—(n'y+1),

Proof. Taylor’s expansion applied to f with Lagrange remainder states
that

(
) + Z f k) %(m —a)" for some £ € (a, )

x—ak+
= %?(a:—a)”.

On substituting for f(z) above in (2.7), we obtain:

() e ({(5R o) s
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Simplifying gives:

(@) > L (-aestome,

Therefore in order to have (2.7) satisfied, we get

[1]
(2]
(3]

(9]

(10]
[11]

(Fa)e? 2 SIEDE o a)oari- oo,
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