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RATE OF A P P R O X I M A T I O N FOR I N T E G R A T E D 
SZASZ-MIRAKYAN OPERATORS 

Abstract. Recently Jain et al. [3] proposed an integral modification of Szasz-Mira-
kyan operators S ,„ lQ(/, x),a > 0 and studied some direct approximation theorems in 
simultaneous approximation. The present paper deals with the rate of approximation of 
such operators, for functions which have derivatives of bounded variation. 

1. Introduction 
To approximate integrable functions on the interval [0, oo), and for a > 0, 

we proposed in [2] and [3] the integral modification of the Szasz-Mirakyan 
operators as 

oo 

(1) Sn.a 
0 
oo oo 

= ^Sn^Oz) \ bn}V>a(t)f(t)dt, x G [0, oo), 
u=0 o 

where the kernel Wn,a(x,t) is defined as: 

oo 

v=0 and the Szasz and Beta basis functions are given by 
( n z f r ( g + i> + l ) (at)v 

sn,v{x)-exp( nx) ^ , bn,v>a{t) - a ^ + ^ + ai)(g+«+i)" 

In case a = 1, the above operators (1) reduce to the Szasz-Beta opera-
tors studied in [6]. Some direct results in simultaneous approximation on 
Sn,a(f,x) for iterative combinations and without combinations were dis-
cussed in [2] and [3] respectively. Very recently Gupta and Sinha [5] in-
troduced similar type of operators, but they have considered the value of 
function at zero explicitly, the operators discussed in [5] for a > 0, are 
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defined as 
oo oo 

V n M x) = ( n ~ < x ) Y l I Pn,v-i,a(t)f(t)dt + ^ ' n X f ( 0), X G [0, oo) 
v=l 0 

where sntV(x) is as defined above and 

The above two integral modifications Sn!a(f,x) and VntCt(f,x) of Szasz-
Mirakyan operators are very similar. The main difference between these two 
are that VntCe(f,x) defined in [5] are discretely defined at /(0) to preserve 
the constant functions, while the operators Snt0l(f,x) are the usual integral 
modification of the Szasz-Mirakyan operators having the weight function of 
generalized Baskakov operators. As the operators (1) are the generalization 
of the operators discussed in [6], this motivated us to study further on such 
operators. 

We define Pnta(x,t) = Wn^a(x, s)ds, then as a special case we have 
(3n,a(x, oo) = Wnta(x, s)ds = 1. Let DB^(0, oo), 7 > 0 be the class of 
absolutely continuous functions / defined on (0, oo) satisfying the growth 
condition f(t) = 0 ( i 7 ) , t —• oo and having a derivative f on the inter-
val (0, oo) coinciding a.e. with a function which is of bounded variation 
on every finite subinterval of (0, oo). It can be observed that all functions 
/ 6 BDj(0, oo) posses for each c > 0 a representation 

X 

f{x) = f(c) + \4>(t)dt, x>c. 
c 

Another topic of interest is the rate of convergence for functions having 
derivatives of bounded variation. Such type of problems were discussed in [1] 
and [4], where the rate of convergence have been discussed for Bernstein and 
some other integral operators. In the present paper, we extend the study 
and obtain the rate of approximation for differential functions of bounded 
variation. 

2. Auxiliary results 
We shall use the following Lemmas to prove our main theorem. 

LEMMA 1 ([2]). Let the function nn,m,a{x), m 6 and a > 0 be defined as 
OO oo 

= ^ ] ¿>n,\ bn,v,a(t)(t dt. 
v=0 0 

Then by easy computation, we have 
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f \ 1 ( \ (i + tt®) 
tbifl ,a(X) = 1, fJ"n,l,a{X) = , n — a 

, , (4ax + 2a2x2 + 2) + nx{ax + 2) 
Mn,2,a(a:) = w 7T~\— • (n — a)(n — 2a) 

Also for n > a(m + 1), we have the recurrence relation: 

[n - a(m + l)]^n,m+i,a{x) 

= xVn}n,a(X) + t(m + 1)(1 + 2aX) ~ ax]Vn,m,a(x) 

+ mx(ax + 2)nnjm-ita(x). 

Consequently for each x € [0, oo), it follows from the recurrence relation that 

Vn,m,a(X) = 0(n-^m+1W). 
REMARK 1. Particularly for any number A > 1 and x G [0, oo), using 
Lemma 1, for n sufficiently large, we have 

/«s ^ N , N Xx(2 + ax) (2) 5n>Q((i - x) , x) = Hn,2,a(x) < 

REMARK 2. In view of Remark 1, it can be easily verified by Holder's 
inequality that 

(3) Sn,a(| t-x\,x)< K 2 , a { x ) ] 1 ' 2 < ^ x ( 2 + ax\ 

LEMMA 2. Let x e [0, oo), A > 1, then for n sufficiently large, we have 

(i) Pn,a(X^y) = \Wn,a(x,t)dt < 0 < y < X, Ti\x y) 0 
oo 00 \x(2 + ax) 

(H) 1 - Pn,a(x, z) = \ Wn,a(x, t)dt < , X < Z < OO. 
J n(z — x)z 

Proof . First we prove (i), using (2), we have 
y y (x- t)2 

J Wn,a{x, t)dt < j ; _ \2Wn,a(x, t)dt 
o o \x y> 

/ \_2 / \ \x(2 + ax) 
<(x- y)~ M a { x ) < x{x _ y)2 . 

The proof of (ii) is similar, so we omit the details. 

3. Main result 
This section deals with the following main theorem. 

THEOREM 1. Let f e 0, oo),7 > 0 and x E (0, oo). Then for A > 2 
and sufficiently large n, we have 
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/[y/n\ x+x/u 

E V 
u=l x—x/v 

x+x/y/n 
\ s n , M , x ) - f ( x ) \ < A ( 2 t Q a ° ( x ; V ( ( / ' ) x ) + - ^ v ((/ ' )x) 

x-x/v x—x/^/n 

+ 

+ 

n 

A(2 + ax) 
nx 

(\f(2x)-f(x)-xf>(x+)\ + \f(x)\) 

Xx{2 + ai) 

+ yXx(2^axlinx+)_ff{x_)l 

+ d / ' O O + Z 'OOl , 
1 + a x I 

2(n — a) 

where V a / ( x ) variation of fx on the interval [a, 6] and f/ie auz-
iliary function fx is defined as 

'f(t)-f(x~), 0 <t < x; 
fx(t) = 0, t = x-

. /(£) — x < t < oo; 

f(x~) and f(x+) represents the left and right hand limits at x. 

P r o o f . It is easily observed from Lemma 1 that Wn^a(x,t)dt = 1, so we 
can write 

oo 
SnAM - f{x) = 5 w„,«(*,<)(/(*) - f(x))dt 

0 
oo t 

= \(\Wn,a(x,t)(f'(u)du)dt). 
0 X 

Also, we can write 

+ / ' ( * ) - X x H , 

where 

Xx(i) = 
1, X = u 

0, i / a . 

Next, we have 
OO / t 

f , { x ) _ lf'(x+) + f(x )\Xx{u)du \Wnta(Xit)dt = 0, 

0 x 
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thus 

SnAM - fix) = I(i W n ( x , t ) ( [ f { X + ) + f { X ~ ) ] + (f')x(u))du)dt 
0 x 

+ Wn(x, ^ sgn(u - x)du)dt. 
Ox 

Also 

I ( j [f'{X+)~f'{X~)]sgn(u - x)du^Wn,a(x,t)dt 

and 

I ( i \[f'(x+)+f(x-)]du\Wn,a(x,t)dt = l-[f'{x+)+f{x-)]SnA{t-x),x). 
0 ^ x ' 
We can write 

\SnAf,x)-f(x)\ 
oo t x t 

< I I (\(f%(u)du^WnAx,t)dt-\(\(f%(u)du)WnAx,t)dt\ 
0 x 

+ \\f(x+)-f'(x-)\SnA\t-x\,x) 

+ \\f(x+) + f'(x-)\Sn,a((t-x),x) 

< \AnAM +BnAf,x)\ + \\f'{x+) - f'(x~)\SnA\t ~ X\,X) 

+ \\f'(x+) + f'(x-)\SnA(t-x),x). 

By applying Lemma 1 and Remark 2, we have 

(4) |5n > Q(/,x)-/(x)| 

= \An>a(f,x) + Bnia(f,x)\ + \\f'(x+) - f'(x-)\Sn,a(\t-x\,x) 

+ \\f'(x+) + f'(x-)\SnA(t-x),x) 

< \AnAf,x) + BnAf,x) I + \\f'(x+) - f'(x-)\J 
Xx(2 + ax) 

n 

1 n — a 
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In order to complete the proof of the theorem it is sufficient to estimate 
the terms A n ( f , x ) and B n ( f , x ) . Using integration by parts, Lemma 2 and 
setting y = x — x/^/n, we have 

X t 

\BnM*)\ = I \ (^(f')x(u)dujdt(0n,a(x,t))\ 
0 x 
x X. X 

< 

\(3nA^t)(f'Ut)dt\ < (S + $)| V ( ( / % ) l l / W M ) | d i 
0 0 y t 

^ — ^ s t a V " + i V W W * n o t { ' y t 

1 ^ ( ( / , w J d t 

0 t V ' x-x/y/n x-x/Jn 

W / ' M t t ^ - Ì V ( W O . ) . 
0 i 

Let u — • Then we obtain x—t 

y/n 

^ ^ S - V ( w o . ) * . 
u 

\ /c\ I \ [V5| ^ 

x - -I» 
Therefore 

\ /O I x X 

(5) |B n , Q ( / ,x) | < ^ + X ) V ( ( / % ) + ^ V « / % ) • l) = l X--
Next, we have 

oo t 

(6) \Anta(f,x)\ = | J ( j {f)x{u)du)wn,a{x,t)dt X x 
oo t 2 x t 

= | S (\(f')x(u)du)wn,a(x,t)dt+ 5 (\(f')x(u)duyt(l - (3ntCe(x,t)) 

2x x x x 

oo oo 
< \ ( f ( t ) ~ f(x))Wn,a(x,t)dt +\f'(x+)\ \(t-x)Wn,a(x,t)dt 

\/n 

dt 

2x 

+ 

2x 

2x 2x 

\(f')x(u)du) \(l-pnta(x,2x)\+ 5 \(f%(t)\\l-pn(x,t)\dt 
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C \f(r)\ 
< - 5 Wn^(x,t)f\t - x\dt + ^ y i J Wn,a(x,t)(t - xfdt 

X 2x X 2x 

+ \f'(x+)\ J Wn,a{x,t)\{t - x)\dt + A(2 + ax)(\f(2x) - f(x) - xf'( j T) m 
2* nx 

+ M 2 ± a x 1 j : y { { f ) x ) + x y ( ( / % ) 

V=1 X * X 

Using Holder's inequality, and Lemma 1, we estimate the first two terms 
in the right hand side of (6) as follows: 

C°° I f(x)\ 00 

(7) - 5 Wn,Q(x,t)ti\t - x\dt + l ^ y i 5 wn,a{x,t){t - xfdt 
X2x X 2x 

C ,<*> \ 1 \1 

- ( S Wn,a(x, t)t2^dt) 2 ( J Wn^ix, t)(t ~ xfdt) < T* \ , 
2x 0 

+ ^Jwn,a(x,t)(t-xfdt 
X 2x 

< C270(n-7/2) V M ^ I + |/(x)| AC2 + OX) _ 
y/n nx 

Finally the third term of the right side of (6) is estimated as follows: 
oo 

(8) \f'(x+)\\ Wn<a(x,t)\t-x\dt< |/'(*+)|$ Wn,a(x,t)\t-x\dt 
2x 0 

-OO . 2 
< Wn,a(x,t)(t - xfdt) ( j Wn,a{x,t)dt\ 

0 0 

= 1 / ( ^ ) 1 ^ ( 2 + 0:*) 
V « 

Combining the estimates (6)-(8), we get 

(9) \AnMx)] < X{2 + ax)(\f(2x)-f(x)-xf'(x+)\ nx 

+ A(2 + a x ) . x +..y/ix{2 + ax) 

n v=l x * x v 

+ C27 0 (n-7/2) V M p ^ ) + | / ( x ) | A(2 + ax) _ 
\Jn nx 
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Finally combining (4), (5) and (9), we get the desired result. This com-
pletes the proof of Theorem 1. 
REMARK 3. It may be noted that under the assumption of Theorem 1, the 
convergence rate of the operators Sn:a(f,x) to / is O ( ^ ) , which is the 
convergence rate of the classical Szasz-Mirakyan operators. 
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