

Deepak Kumar Dubey, V. K. Jain

RATE OF APPROXIMATION FOR INTEGRATED SZASZ-MIRAKYAN OPERATORS

Abstract. Recently Jain et al. [3] proposed an integral modification of Szasz-Mirakyen operators $S_{n,\alpha}(f, x)$, $\alpha > 0$ and studied some direct approximation theorems in simultaneous approximation. The present paper deals with the rate of approximation of such operators, for functions which have derivatives of bounded variation.

1. Introduction

To approximate integrable functions on the interval $[0, \infty)$, and for $\alpha > 0$, we proposed in [2] and [3] the integral modification of the Szasz-Mirakyen operators as

$$(1) \quad \begin{aligned} S_{n,\alpha}(f, x) &= \int_0^\infty W_{n,\alpha}(x, t)f(t)dt \\ &= \sum_{v=0}^{\infty} s_{n,v}(x) \int_0^\infty b_{n,v,\alpha}(t)f(t)dt, \quad x \in [0, \infty), \end{aligned}$$

where the kernel $W_{n,\alpha}(x, t)$ is defined as:

$$W_{n,\alpha}(x, t) = \sum_{v=0}^{\infty} s_{n,v}(x)b_{n,v,\alpha}(t),$$

and the Szasz and Beta basis functions are given by

$$s_{n,v}(x) = \exp(-nx) \frac{(nx)^v}{v!}, \quad b_{n,v,\alpha}(t) = \alpha \frac{\Gamma(\frac{n}{\alpha} + v + 1)}{\Gamma(v + 1)\Gamma(\frac{n}{\alpha})} \frac{(\alpha t)^v}{(1 + \alpha t)^{(\frac{n}{\alpha} + v + 1)}}.$$

In case $\alpha = 1$, the above operators (1) reduce to the Szasz-Beta operators studied in [6]. Some direct results in simultaneous approximation on $S_{n,\alpha}(f, x)$ for iterative combinations and without combinations were discussed in [2] and [3] respectively. Very recently Gupta and Sinha [5] introduced similar type of operators, but they have considered the value of function at zero explicitly, the operators discussed in [5] for $\alpha > 0$, are

defined as

$$V_{n,\alpha}(f, x) = (n - \alpha) \sum_{v=1}^{\infty} s_{n,v}(x) \int_0^{\infty} p_{n,v-1,\alpha}(t) f(t) dt + e^{-nx} f(0), \quad x \in [0, \infty)$$

where $s_{n,v}(x)$ is as defined above and

$$p_{n,v,\alpha}(t) = \frac{\Gamma(\frac{n}{\alpha} + v)}{\Gamma(v + 1)\Gamma(\frac{n}{\alpha})} \frac{(\alpha t)^v}{(1 + \alpha t)^{\frac{n}{\alpha} + v}}.$$

The above two integral modifications $S_{n,\alpha}(f, x)$ and $V_{n,\alpha}(f, x)$ of Szasz-Mirakyan operators are very similar. The main difference between these two are that $V_{n,\alpha}(f, x)$ defined in [5] are discretely defined at $f(0)$ to preserve the constant functions, while the operators $S_{n,\alpha}(f, x)$ are the usual integral modification of the Szasz-Mirakyan operators having the weight function of generalized Baskakov operators. As the operators (1) are the generalization of the operators discussed in [6], this motivated us to study further on such operators.

We define $\beta_{n,\alpha}(x, t) = \int_0^t W_{n,\alpha}(x, s) ds$, then as a special case we have $\beta_{n,\alpha}(x, \infty) = \int_0^{\infty} W_{n,\alpha}(x, s) ds = 1$. Let $DB_{\gamma}(0, \infty)$, $\gamma \geq 0$ be the class of absolutely continuous functions f defined on $(0, \infty)$ satisfying the growth condition $f(t) = O(t^{\gamma})$, $t \rightarrow \infty$ and having a derivative f' on the interval $(0, \infty)$ coinciding a.e. with a function which is of bounded variation on every finite subinterval of $(0, \infty)$. It can be observed that all functions $f \in BD_{\gamma}(0, \infty)$ posses for each $c > 0$ a representation

$$f(x) = f(c) + \int_c^x \psi(t) dt, \quad x \geq c.$$

Another topic of interest is the rate of convergence for functions having derivatives of bounded variation. Such type of problems were discussed in [1] and [4], where the rate of convergence have been discussed for Bernstein and some other integral operators. In the present paper, we extend the study and obtain the rate of approximation for differential functions of bounded variation.

2. Auxiliary results

We shall use the following Lemmas to prove our main theorem.

LEMMA 1 ([2]). *Let the function $\mu_{n,m,\alpha}(x)$, $m \in \mathbb{N}^0$ and $\alpha > 0$ be defined as*

$$\mu_{n,m,\alpha}(x) = \sum_{v=0}^{\infty} s_{n,v}(x) \int_0^{\infty} b_{n,v,\alpha}(t)(t - x)^m dt.$$

Then by easy computation, we have

$$\begin{aligned}\mu_{n,0,\alpha}(x) &= 1, & \mu_{n,1,\alpha}(x) &= \frac{(1+\alpha x)}{n-\alpha}, \\ \mu_{n,2,\alpha}(x) &= \frac{(4\alpha x + 2\alpha^2 x^2 + 2) + nx(\alpha x + 2)}{(n-\alpha)(n-2\alpha)}.\end{aligned}$$

Also for $n > \alpha(m+1)$, we have the recurrence relation:

$$\begin{aligned}[n-\alpha(m+1)]\mu_{n,m+1,\alpha}(x) &= x\mu_{n,m,\alpha}^{(1)}(x) + [(m+1)(1+2\alpha x) - \alpha x]\mu_{n,m,\alpha}(x) \\ &\quad + mx(\alpha x + 2)\mu_{n,m-1,\alpha}(x).\end{aligned}$$

Consequently for each $x \in [0, \infty)$, it follows from the recurrence relation that

$$\mu_{n,m,\alpha}(x) = O(n^{-[(m+1)/2]}).$$

REMARK 1. Particularly for any number $\lambda > 1$ and $x \in [0, \infty)$, using Lemma 1, for n sufficiently large, we have

$$(2) \quad S_{n,\alpha}((t-x)^2, x) \equiv \mu_{n,2,\alpha}(x) \leq \frac{\lambda x(2+\alpha x)}{n}.$$

REMARK 2. In view of Remark 1, it can be easily verified by Holder's inequality that

$$(3) \quad S_{n,\alpha}(|t-x|, x) \leq [\mu_{n,2,\alpha}(x)]^{1/2} \leq \sqrt{\frac{\lambda x(2+\alpha x)}{n}}.$$

LEMMA 2. Let $x \in [0, \infty)$, $\lambda > 1$, then for n sufficiently large, we have

$$(i) \quad \beta_{n,\alpha}(x, y) = \int_0^y W_{n,\alpha}(x, t) dt \leq \frac{\lambda x(2+\alpha x)}{n(x-y)^2}, \quad 0 \leq y < x,$$

$$(ii) \quad 1 - \beta_{n,\alpha}(x, z) = \int_z^\infty W_{n,\alpha}(x, t) dt \leq \frac{\lambda x(2+\alpha x)}{n(z-x)^2}, \quad x < z < \infty.$$

Proof. First we prove (i), using (2), we have

$$\begin{aligned}\int_0^y W_{n,\alpha}(x, t) dt &\leq \int_0^y \frac{(x-t)^2}{(x-y)^2} W_{n,\alpha}(x, t) dt \\ &\leq (x-y)^{-2} \mu_{n,2,\alpha}(x) \leq \frac{\lambda x(2+\alpha x)}{x(x-y)^2}.\end{aligned}$$

The proof of (ii) is similar, so we omit the details.

3. Main result

This section deals with the following main theorem.

THEOREM 1. Let $f \in DB_\gamma(0, \infty)$, $\gamma > 0$ and $x \in (0, \infty)$. Then for $\lambda > 2$ and sufficiently large n , we have

$$\begin{aligned}
|S_{n,\alpha}(f, x) - f(x)| &\leq \frac{\lambda(2 + \alpha x)}{n} \left(\sum_{v=1}^{\lfloor \sqrt{n} \rfloor} \bigvee_{x-x/v}^{x+x/v} ((f')_x) + \frac{x}{\sqrt{n}} \bigvee_{x-x/\sqrt{n}}^{x+x/\sqrt{n}} ((f')_x) \right) \\
&\quad + \frac{\lambda(2 + \alpha x)}{nx} (|f(2x) - f(x) - xf'(x^+)| + |f(x)|) \\
&\quad + \sqrt{\frac{\lambda x(2 + \alpha x)}{n}} \left(C2^\gamma O(n^{-\frac{\gamma}{2}}) + |f'(x^+)| \right) \\
&\quad + \frac{1}{2} \sqrt{\frac{\lambda x(2 + \alpha x)}{n}} |f'(x^+) - f'(x^-)| \\
&\quad + \frac{1 + \alpha x}{2(n - \alpha)} |f'(x^+) + f'(x^-)|,
\end{aligned}$$

where $\sqrt[a]{b} f(x)$ is the total variation of f_x on the interval $[a, b]$ and the auxiliary function f_x is defined as

$$f_x(t) = \begin{cases} f(t) - f(x^-), & 0 \leq t < x; \\ 0, & t = x; \\ f(t) - f(x^+), & x < t < \infty; \end{cases}$$

$f(x^-)$ and $f(x^+)$ represents the left and right hand limits at x .

Proof. It is easily observed from Lemma 1 that $\int_0^\infty W_{n,\alpha}(x, t) dt = 1$, so we can write

$$\begin{aligned}
S_{n,\alpha}(f, x) - f(x) &= \int_0^\infty W_{n,\alpha}(x, t)(f(t) - f(x)) dt \\
&= \int_0^\infty \left(\int_x^t W_{n,\alpha}(x, u)(f'(u) du) \right) dt.
\end{aligned}$$

Also, we can write

$$\begin{aligned}
f'(u) &= \frac{[f'(x^+) + f'(x^-)]}{2} + (f')_x(u) + \frac{[f'(x^+) - f'(x^-)]}{2} sgn(u - x) \\
&\quad + \left[f'(x) - \frac{[f'(x^+) + f'(x^-)]}{2} \right] \chi_x(u),
\end{aligned}$$

where

$$\chi_x(t) = \begin{cases} 1, & x = u \\ 0, & x \neq u. \end{cases}$$

Next, we have

$$\int_0^t \left(\int_x^t f'(u) du - \frac{[f'(x^+) + f'(x^-)]}{2} \chi_x(u) du \right) W_{n,\alpha}(x, t) dt = 0,$$

thus

$$\begin{aligned} S_{n,\alpha}(f, x) - f(x) &= \int_0^\infty \left(\int_x^t W_n(x, t) \left(\frac{[f'(x^+) + f'(x^-)]}{2} + (f')_x(u) \right) du \right) dt \\ &\quad + \int_0^\infty \left(\int_x^t W_n(x, t) \frac{[f'(x^+) - f'(x^-)]}{2} sgn(u - x) du \right) dt. \end{aligned}$$

Also

$$\begin{aligned} \int_0^\infty \left(\int_x^t \frac{[f'(x^+) - f'(x^-)]}{2} sgn(u - x) du \right) W_{n,\alpha}(x, t) dt \\ = \frac{[f'(x^+) - f'(x^-)]}{2} S_{n,\alpha}(|t - x|, x) \end{aligned}$$

and

$$\int_0^\infty \left(\int_x^t \frac{1}{2} [f'(x^+) + f'(x^-)] du \right) W_{n,\alpha}(x, t) dt = \frac{1}{2} [f'(x^+) + f'(x^-)] S_{n,\alpha}((t - x), x).$$

We can write

$$\begin{aligned} |S_{n,\alpha}(f, x) - f(x)| &\leq \left| \int_x^\infty \left(\int_x^t (f')_x(u) du \right) W_{n,\alpha}(x, t) dt - \int_0^x \left(\int_x^t (f')_x(u) du \right) W_{n,\alpha}(x, t) dt \right| \\ &\quad + \frac{1}{2} |f'(x^+) - f'(x^-)| S_{n,\alpha}(|t - x|, x) \\ &\quad + \frac{1}{2} |f'(x^+) + f'(x^-)| S_{n,\alpha}((t - x), x) \\ &\leq |A_{n,\alpha}(f, x) + B_{n,\alpha}(f, x)| + \frac{1}{2} |f'(x^+) - f'(x^-)| S_{n,\alpha}(|t - x|, x) \\ &\quad + \frac{1}{2} |f'(x^+) + f'(x^-)| S_{n,\alpha}((t - x), x). \end{aligned}$$

By applying Lemma 1 and Remark 2, we have

$$\begin{aligned} (4) \quad |S_{n,\alpha}(f, x) - f(x)| &= |A_{n,\alpha}(f, x) + B_{n,\alpha}(f, x)| + \frac{1}{2} |f'(x^+) - f'(x^-)| S_{n,\alpha}(|t - x|, x) \\ &\quad + \frac{1}{2} |f'(x^+) + f'(x^-)| S_{n,\alpha}((t - x), x) \\ &\leq |A_{n,\alpha}(f, x) + B_{n,\alpha}(f, x)| + \frac{1}{2} |f'(x^+) - f'(x^-)| \sqrt{\frac{\lambda x(2 + \alpha x)}{n}} \\ &\quad + \frac{1}{2} |f'(x^+) + f'(x^-)| \frac{(1 + \alpha x)}{n - \alpha}. \end{aligned}$$

In order to complete the proof of the theorem it is sufficient to estimate the terms $A_n(f, x)$ and $B_n(f, x)$. Using integration by parts, Lemma 2 and setting $y = x - x/\sqrt{n}$, we have

$$\begin{aligned}
 |B_{n,\alpha}(f, x)| &= \left| \int_0^x \left(\int_u^t (f')_x(u) du \right) d_t(\beta_{n,\alpha}(x, t)) \right| \\
 &= \left| \int_0^x \beta_{n,\alpha}(x, t) (f')_x(t) dt \right| \leq \left(\int_0^y + \int_y^x \right) \left| \bigvee_t^x ((f')_x) \right| |\beta_{n,\alpha}(x, t)| dt \\
 &\leq \frac{\lambda x(2 + \alpha x)}{n} \int_0^y \bigvee_t^x ((f')_x) \frac{1}{(x-t)^2} dt + \int_y^x \bigvee_t^x ((f')_x) dt \\
 &\leq \frac{\lambda x(2 + \alpha x)}{n} \int_0^y \bigvee_t^x ((f')_x) \frac{1}{(x-t)^2} dt + \bigvee_{x-x/\sqrt{n}}^x ((f')_x) \int_{x-x/\sqrt{n}}^x dt \\
 &\leq \frac{\lambda x(2 + \alpha x)}{n} \int_0^y \bigvee_t^x ((f')_x) \frac{1}{(x-t)^2} dt + \frac{x}{\sqrt{n}} \bigvee_{x-\frac{x}{\sqrt{n}}}^x ((f')_x).
 \end{aligned}$$

Let $u = \frac{x}{x-t}$. Then we obtain

$$\begin{aligned}
 \frac{\lambda x(2 + \alpha x)}{n} \int_0^y \bigvee_t^x ((f')_x) \frac{1}{(x-t)^2} dt &= \frac{\lambda x(2 + \alpha x)}{nx} \int_1^{\sqrt{n}} \bigvee_{x-\frac{x}{u}}^x ((f')_x) du \\
 &\leq \frac{\lambda(2 + \alpha x)}{n} \sum_{v=1}^{\lfloor \sqrt{n} \rfloor} \bigvee_{x-\frac{x}{v}}^x ((f')_x).
 \end{aligned}$$

Therefore

$$(5) \quad |B_{n,\alpha}(f, x)| \leq \frac{\lambda(2 + \alpha x)}{n} \sum_{v=1}^{\lfloor \sqrt{n} \rfloor} \bigvee_{x-\frac{x}{v}}^x ((f')_x) + \frac{x}{\sqrt{n}} \bigvee_{x-\frac{x}{\sqrt{n}}}^x ((f')_x).$$

Next, we have

$$\begin{aligned}
 (6) \quad |A_{n,\alpha}(f, x)| &= \left| \int_x^{\infty} \left(\int_x^t (f')_x(u) du \right) W_{n,\alpha}(x, t) dt \right| \\
 &= \left| \int_{2x}^{\infty} \left(\int_x^t (f')_x(u) du \right) W_{n,\alpha}(x, t) dt + \int_x^{2x} \left(\int_x^t (f')_x(u) du \right) dt (1 - \beta_{n,\alpha}(x, t)) \right| dt \\
 &\leq \left| \int_{2x}^{\infty} (f(t) - f(x)) W_{n,\alpha}(x, t) dt \right| + |f'(x^+)| \left| \int_{2x}^{\infty} (t-x) W_{n,\alpha}(x, t) dt \right| \\
 &\quad + \left| \int_x^{2x} (f'(x) - f'(u)) du \right| |(1 - \beta_{n,\alpha}(x, 2x))| + \int_x^{2x} |(f')_x(t)| |1 - \beta_{n,\alpha}(x, t)| dt
 \end{aligned}$$

$$\begin{aligned}
&\leq \frac{C}{x} \int_{2x}^{\infty} W_{n,\alpha}(x, t) t^{\gamma} |t - x| dt + \frac{|f(x)|}{x^2} \int_{2x}^{\infty} W_{n,\alpha}(x, t) (t - x)^2 dt \\
&\quad + |f'(x^+)| \int_{2x}^{\infty} W_{n,\alpha}(x, t) |(t - x)| dt + \frac{\lambda(2 + \alpha x)}{nx} (|f(2x) - f(x) - xf'(x^+)| \\
&\quad + \frac{\lambda(2 + \alpha x)}{n} \sum_{v=1}^{\lfloor \sqrt{n} \rfloor} \bigvee_x^{\lfloor \sqrt{n} \rfloor x + \frac{x}{v}} ((f')_x) + \frac{x}{\sqrt{n}} \bigvee_x^{x + \frac{x}{\sqrt{n}}} ((f')_x)).
\end{aligned}$$

Using Holder's inequality, and Lemma 1, we estimate the first two terms in the right hand side of (6) as follows:

$$\begin{aligned}
(7) \quad &\frac{C}{x} \int_{2x}^{\infty} W_{n,\alpha}(x, t) t^{\gamma} |t - x| dt + \frac{|f(x)|}{x^2} \int_{2x}^{\infty} W_{n,\alpha}(x, t) (t - x)^2 dt \\
&\leq \frac{C}{x} \left(\int_{2x}^{\infty} W_{n,\alpha}(x, t) t^{2\gamma} dt \right)^{\frac{1}{2}} \left(\int_0^{\infty} W_{n,\alpha}(x, t) (t - x)^2 dt \right)^{\frac{1}{2}} \\
&\quad + \frac{|f(x)|}{x^2} \int_{2x}^{\infty} W_{n,\alpha}(x, t) (t - x)^2 dt \\
&\leq C 2^{\gamma} O(n^{-\gamma/2}) \frac{\sqrt{\lambda x(2 + \alpha x)}}{\sqrt{n}} + |f(x)| \frac{\lambda(2 + \alpha x)}{nx}.
\end{aligned}$$

Finally the third term of the right side of (6) is estimated as follows:

$$\begin{aligned}
(8) \quad &|f'(x^+)| \int_{2x}^{\infty} W_{n,\alpha}(x, t) |t - x| dt \leq |f'(x^+)| \int_0^{\infty} W_{n,\alpha}(x, t) |t - x| dt \\
&\leq |f'(x^+)| \left(\int_0^{\infty} W_{n,\alpha}(x, t) (t - x)^2 dt \right)^{\frac{1}{2}} \left(\int_0^{\infty} W_{n,\alpha}(x, t) dt \right)^{\frac{1}{2}} \\
&= |f'(x^+)| \frac{\sqrt{\lambda x(2 + \alpha x)}}{\sqrt{n}}.
\end{aligned}$$

Combining the estimates (6)–(8), we get

$$\begin{aligned}
(9) \quad &|A_{n,\alpha}(f, x)| \leq \frac{\lambda(2 + \alpha x)}{nx} (|f(2x) - f(x) - xf'(x^+)| \\
&\quad + \frac{\lambda(2 + \alpha x)}{n} \sum_{v=1}^{\lfloor \sqrt{n} \rfloor} \bigvee_x^{\lfloor \sqrt{n} \rfloor x + \frac{x}{v}} ((f')_x) + \frac{x}{\sqrt{n}} \bigvee_x^{x + \frac{x}{\sqrt{n}}} ((f')_x) + |f'(x^+)| \frac{\sqrt{\lambda x(2 + \alpha x)}}{\sqrt{n}} \\
&\quad + C 2^{\gamma} O(n^{-\gamma/2}) \frac{\sqrt{\lambda x(2 + \alpha x)}}{\sqrt{n}} + |f(x)| \frac{\lambda(2 + \alpha x)}{nx}).
\end{aligned}$$

Finally combining (4), (5) and (9), we get the desired result. This completes the proof of Theorem 1.

REMARK 3. It may be noted that under the assumption of Theorem 1, the convergence rate of the operators $S_{n,\alpha}(f, x)$ to f is $O(\frac{1}{\sqrt{n}})$, which is the convergence rate of the classical Szasz-Mirakyan operators.

Acknowledgment. The authors are thankful to the referee, for his/her critical suggestions, for the overall improvement of the paper. We are also thankful to Professor Maciej Maczynski for his efforts in sending the reports timely.

References

- [1] R. Bojanic and F. Cheng, *Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation*, J. Math. Anal. Appl. **141** (1989), 136–151.
- [2] D. K. Dubey and V. K. Jain, *On the iterative combinations of Szasz-Mirakyan-Durrmeyer operators*, Anal. Univ. Oradea Fasc. Math., in press.
- [3] S. Jain, D. K. Dubey and R. K. Gangwar, *Rate of approximation for certain Szasz-Mirakyan-Durrmeyer operators*, Georgian Math. J., to appear.
- [4] V. Gupta and P. N. Agrawal, *Rate of convergence for certain Baskakov Durrmeyer type operators*, Anal. Univ. Oradea Fasc. Math. **14** (2007), 33–39.
- [5] V. Gupta and J. Sinha, *Direct results on certain Szasz-Mirakyan operators*, Appl. Math Comput. **195** (2008), 230–239.
- [6] V. Gupta, G. S. Srivastava and A. Sahai, *On simultaneous approximation by Szasz Beta operators*, Soochow J. Math. **21** (1) (1995), 1–11.

DEPARTMENT OF MATHEMATICS
 BAREILLY COLLEGE
 BAREILLY 243001, INDIA
 e-mail: deepak4860@gmail.com

Received November 23, 2007; revised version March 19, 2008.