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RATE OF APPROXIMATION FOR INTEGRATED
SZASZ-MIRAKYAN OPERATORS

Abstract. Recently Jain et al. [3] proposed an integral modification of Szasz-Mira-
kyan operators Sn.o{f,z),a > 0 and studied some direct approximation theorems in
simultaneous approximation. The present paper deals with the rate of approximation of
such operators, for functions which have derivatives of bounded variation.

1. Introduction

To approximate integrable functions on the interval [0, c0), and for a > 0,
we proposed in [2] and [3] the integral modification of the Szasz-Mirakyan
operators as

(1) Snalf,x) = S Who(z,t) f(t)dt

8

O
= Z $nw(7) | bawa(t)f(t)dt, = € [0,00),

0
where the kernel W, 4(z,t) is defined as:

na-rt anv m)bnva )

and the Szasz and Beta basis functlons are given by

_ (nz)” T2 +wv+1) (at)
sno(@) = exp(=nz) =, bnoalt) = “Tw+ DI(®) (1+at)atert)

In case @ = 1, the above operators (1) reduce to the Szasz-Beta opera-
tors studied in [6]. Some direct results in simultaneous approximation on
Sn.a(f,z) for iterative combinations and without combinations were dis-
cussed in [2] and [3] respectively. Very recently Gupta and Sinha [5] in-
troduced similar type of operators, but they have considered the value of
function at zero explicitly, the operators discussed in [5] for o > 0, are
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defined as
o0 o

Vaalfiz) =(n=0) Y snu(@) | pry-1at)fB)dt+e ™ f(0), z € [0,00)
v=1 0

where sy, ,(z) is as defined above and
rEtv)  (at)
v+ DI(3) (1 +at)=™

The above two integral modifications Sy, o(f, ) and V,, o(f, z) of Szasz-
Mirakyan operators are very similar. The main difference between these two
are that V,, o(f,z) defined in [5] are discretely defined at f(0) to preserve
the constant functions, while the operators Sy, o(f, z) are the usual integral
modification of the Szasz-Mirakyan operators having the weight function of
generalized Baskakov operators. As the operators (1) are the generalization
of the operators discussed in [6], this motivated us to study further on such
operators.

We define 8y o(z,t) = Sf) Wh.o(x, s)ds, then as a special case we have
Br,a(z,00) = §5° Wy a(z,s)ds = 1. Let DB,(0,00), ¥ > 0 be the class of
absolutely continuous functions f defined on (0, c0) satisfying the growth
condition f(t) = O(t”), t — oo and having a derivative f’ on the inter-
val (0,00) coinciding a.e. with a function which is of bounded variation
on every finite subinterval of (0,00). It can be observed that all functions
f € BD,,(0,00) posses for each ¢ > 0 a representation

Prv,a (t) = F(

f(z)= flc)+ gfi/)(t)dt, z>c.

Another topic of interest is the rate of convergence for functions having
derivatives of bounded variation. Such type of problems were discussed in [1]
and [4], where the rate of convergence have been discussed for Bernstein and
some other integral operators. In the present paper, we extend the study
and obtain the rate of approximation for differential functions of bounded
variation.

2. Auxiliary results
We shall use the following Lemmas to prove our main theorem.

LEMMA 1 ([2]). Let the function pinma(x), m € R? and a > 0 be defined as

pnma(@) =Y snp(x) § bnwalt)(t —z)™dt.
v=0 0

Then by easy computation, we have
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1+azx
pnoal@ =1, tniala) = D,
(4azx + 202x? + 2) + nz(ox + 2)
(n—a)(n —2a)

Also for n > a(m + 1), we have the recurrence relation:

bn2.a(T) =

[n - a(m + 1)]#n,m+1,a(w)
= 2o (@) + [(m + 1) (1 + 202) — azinmq(T)

+ mz(az + 2)pnm—1,a(Z)-
Consequently for each x € [0, 00), it follows from the recurrence relation that
Pnm,e(T) = O(n—[(m+1)/2])‘

REMARK 1. Particularly for any number A > 1 and = € [0,00), using
Lemma 1, for n sufficiently large, we have

Ax(2+ ax
@) Snallt —2)°,2) = pmzale) < 221D
REMARK 2. In view of Remark 1, it can be easily verified by Holder’s

inequality that

Ar(2+ azx
© Snall t =2 1,2) < linpa(@)]? < 1/ 222D,
LEMMA 2. Let z € [0,00), A > 1, then for n sufficiently large, we have
y
. Az(2 + az)
(@) Bralz,y) = (S)Wn,a(ﬂv,t)dt < EICETE 0<y<u,
.. T Az(2 + az)
('L?;) 1-— ,Bn’a(.’E,Z) = § Wn,a(w,t)dt < W, Tz <z <o0.
Proof. First we prove (i), using (2), we have
Y Yo 2
[ Wha(e, t)dt < | (x—t)zwn,a(x, t)dt
0 0 (:1" - y)
_ Az(2 + ax)
<(z—y) 2 < 2 2L
— (:I,' y) ,Uzn,2,a(-'1:) = .’L'(.’L‘ _ y)2

The proof of (ii) is similar, so we omit the details.

3. Main result
This section deals with the following main theorem.

THEOREM 1. Let f € DB(0,00),y > 0 and = € (0,00). Then for A > 2
and sufficiently large n, we have .
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[Vl a-+a/v e
A2+ ax x
|Sn,a(f7 .'L‘) - f( ) Z \/ \/ ((fl)z)
('U lz—z/v \/ﬁz z/\/n )
)\(2 + aa:)

(1f2z) - f(z) —=f (@) +1f (2)])

529%?£g2(C@”ourf>++fTw+”)

N e R e

2
l1+azx ot
s g @)+ P

where \/z f(z) is the total variation of fy on the interval [a,b] and the aux-
tliary function f; is defined as

f&)—f=7), 0<t<sz;
f:t(t) =<0, t=ux;
f

(t)— f(z1), z<t<oo;

+

f(z™) and f(zt) represents the left and right hand limits at x.

Proof. It is easily observed from Lemma 1 that {i° Wy o(z,t)dt = 1, so we
can write

Waa(z, t)(f(t) — f(z))dt

OB O §

Sn,al(f, ) — f(z)

(| Wha(z, t)(f (w)du)dt).

Also, we can write

[f'(z*) + f'(=7)] [f'(=%) - f'(&7)]

fl(u) = 5 + (fe(uw) + 5 sgn(u — z)
1ot (o
ey - LI, )
where
1, z=u
Xa(t) = {0, T # u.

Next, we have

oo st y) Iy
S <Sf’(a:) _Llf (z7) ;f (z )]xz(u)du> Wy alz, t)dt = 0,

0

T
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[f'(z*) = f'(=7)]

5 sgn(u — z)du)dt.

Also
S (S [f'(z*) = f'(=7)] sqn(u — m)du) Who(z,t)dt

o 2
_[FEh) = )]
= I S a(lt ~ al,2)

and
o0 t

S (£ %[f’(z+)+f'(:r')]du> Wh oz, t)dt = %[f'(:v+)+f'(x_)]Sn,a((t—:B), z).

0
We can write

'Sn,a(fa 3;) - f(:l:)'

t z

1T (30 (00) Wt = (1070 W,

T

o~

2@ = F@)Saallt—2,a)
2P + @) Snallt - ),0)
< |Ana(f,T) + Bualf,2)| + %If’(f) = @) Sna(lt - 21, 2)

1 _
+ 517 @") + f'(@7)|Snal(t — ), ).
By applying Lemma 1 and Remark 2, we have
(4)  [Snalf, ) — f(=)]

= [Analf,2) + Baalf,2)| + 51 %) = £/ @) |Snallt ~ 21,2)

FLPE) + P @) Snal(t - 2),2)

< |An,a(f, l‘) + Bn,a(f, :L')] + %|f’(l‘+) _ f,(.’L‘—)| /\.’L‘(2T—:— a;];)
1o 1+ ax)
+§If(w+)+f(z I
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In order to complete the proof of the theorem it is sufficient to estimate
the terms A,(f,z) and B,(f,z). Using integration by parts, Lemma 2 and
setting y = z — z//n, we have

xz i

|Baa(f,2)] = 1§(}(f)e(w)du)ds (Bn,a(z, 1))

T

Y T
= [V Bra@ 0 et] < (1+ DIV NNnola )
0 vy ¢

V)=t + SV (e

t z—z/\/1 z—z/vn
Az(2+ax)¥\%, 1 z '
< LN (1)) Lt + 7 V(@)
Let u = ;%;. Then we obtain "
az)¥\’ T v @
t z—Z
Ae+ar) B
w2 z\_/g((f )z)
Therefore
Vnl = z
6 Bnalfi o) < 22T (1) + = V()
v=1g-2 z—%

Next, we have

©)  Hnaldi ) = |1 (§(7)20)d0)Woala, 01t

t

rﬂo(i (f)e(u dU)Wna(-T t)dt + § (S )e(u )du)dt( ﬁn,a(m,t))’dt

2 T

I

8

IA

‘OSO f(@)) namt)dt’-i-lf +)|‘ t—x)Wna:ctdt‘

2z

S(f)z )40)[(1= Bnal 200+ T I(F)=(BIIL = Pz,
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< gOS" al(z, )|t — z|dt + —5= If(@)] ( I | Wha(z, t)(t — z)%dt
2z 2x
FIfe +>|§ W (01t~ Dldt + 22D (£(20) - (@) — o'z
)\(2+aa: [ﬂ e z+%
XD TN (14 2V (0
v=1 =z T

Using Holder’s inequality, and Lemma 1, we estimate the first two terms
in the right hand side of (6) as follows:

(7) %?Wn,a(x,t)mt :1:|dt+|f( )|§ Waalz,t)(t — x)%dt
2z 2z

N

(i Y (7 T -z
< ;(S Wi oz, )2 dt) (§, Wiz, )(t )2dt)

+ lfa(;:)l OSoWn,a(l‘, t)(t - .’1))2dt

2z

Az (2
< CT0m?) VAz(2 + aa:) @) A2+ a:v)
N nx
Finally the third term of the right side of (6) is estimated as follows:

o0

®) 1 @I Waalz, )|t - zldt < |f'( +)|§ na(2,t)[t — z|dt

2z
< |f' (=) (OSO Woa(, )(t - 2)dt) (0§0 Woa(a, t)dt )
0

i VAZ(2 + az)
|f(x )I—\/—

Combining the estimates (6)—(8), we get

[N
N

ﬂ e+3 “’+¢‘
M2 + o) z(2 + ax)
21v (1) + = V(f)z+|f(:r >|————ﬁ
+ COm-1YAT2H ) by A2+ az) (2 + aw)

NG
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Finally combining (4), (5) and (9), we get the desired result. This com-
pletes the proof of Theorem 1.

REMARK 3. It may be noted that under the assumption of Theorem 1, the
convergence rate of the operators Sy, o(f,z) to f is O(ﬁ), which is the
convergence rate of the classical Szasz-Mirakyan operators.
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