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STRONG I N V A R I A N T ^ - S U M M A B I L I T Y 
W I T H R E S P E C T TO A SEQUENCE OF M O D U L U S 

F U N C T I O N S IN A S E M I N O R M E D SPACE 

A b s t r a c t . The object of this paper is to introduce some new strongly invariant 
^4-summable sequence spaces defined by a sequence of modulus functions T = ( f k ) in a 
seminormed space, when A = (ank) is a non-negative regular matrix. Various algebraic 
and topological properties of these spaces, and some inclusion relations between these 
spaces have been discussed. Finally, we study some relations between ^-invariant statisti-
cal convergence and strong invariant A-summability with respect to a sequence of modulus 
functions in a seminormed space. 

1. Introduction and preliminaries 
By w we shall denote the space of all scalar sequences, ,c and Co 

denote the spaces of bounded, convergent and null sequences x = {xk) with 
complex terms, respectively, normed by ||:r||oo = supfc A sequence 
x € ioo is said to be almost convergent if all Banach limits of x coincide 
(see Banach [2]). Let c denote the space of all almost convergent sequences. 
Lorentz [12] proved that 

c = {x G loo lim tmn(x) exists, uniformly in n}, m—too 
where tmn(x) = (m + xk+n- The space [c] of strongly almost 
convergent sequences was introduced by Maddox [15] and also independently 
by Freedman et al. [7] as follows. 

[c] = {x G £oo : lim tmn(\x — le|) = 0uniformly in n, for some/}, 
m—>oo 

where e = (1,1,1, . . . ) . 
Schaefer [26] defined the cr-convergence as follows. 
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Let a be an one-to-one mapping of the set of positive integers into itself. 
A continuous linear functional (f> on ¿OQ is said to be an invariant mean or a 
cr-mean if and only if 

(i) (f>(x) > 0 when the sequence x — (xn) has xn > 0 for all n, 
(ii) cf)(e) = 1, and 
(iii) 4>{xa{n)) = (f>(x) for all x G 
Let Va denote the set of bounded sequences which have unique cr-mean. 

It is known (see [26]) that 

Va — {x G ioo : lim tkm(x) = I uniformly in m}, 
k—too 

i 1. i . / \ xm+X<T(m.)+x
<j2im\ + ---+X krm) I = a- limx, where ifcm(x) = ^qrp — • 

Here ak(m) denotes the kth iterate of the mapping a at m. 

In case a is the translation mapping n —> n + 1, a cr-mean reduces to 
the unique Banach limit and Va reduces to c. A cr-mean extends the limit 
functional on c in the sense that 4>{x) = limx for all x G c if and only if 
a has no finite orbits; that is to say, if and only if for all n > 0, j > 1, 
(ji(n) / n (see Mursaleen [18]). 

Just as the concept of almost convergence led naturally to the concept 
of strong almost convergence, <j-convergence leads naturally to the con-
cept of strong cr-convergence. A sequence x = (x^) is said to be strongly 
cr-convergent if there exists a number I such that 

(1) {\xk-l\)eVa 

with the limit zero, (see Mursaleen [19]). We write [Va] as the set of all 
strongly cr-convergent sequences. When (1) holds, we write [Va]-limx = I. 
Taking cr(n) = n + 1, we obtain [Va] = [c] so that strong cr-convergence 
generalizes the concept of strong almost convergence. Note that c C [V ]̂ C 
Va C 

Let A = (anfc) be an infinite matrix with real or complex numbers. 
A number sequence x = ( ) is called j4-summable to a number I if the 
series Anx = Ylk~Li ankxk converge for all n G N and limn Anx = I. A 
matrix method A is called regular if all convergent sequences x = (xk) are 
A-summable and limn Anx = lim^ x^. It is known (see [5], Theorem 4.1, II) 
that A is regular if and only if 

(Ti) lim„ ank = 0 (fc 6 N), 
(T2) lim„ J2k ank = 1, 
(T3) sup n£fc |anfc| < oo. 

We will denote the set of all non-negative regular matrices by T + . Cesaro 
method C\ = (cnk), where cnk — l/n ii k < n and cnk = 0 otherwise, is 
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a well-known example of matrix method of summability. It is clear that 
C\ G T + . A similar summability method is defined as follows. 

An increasing sequence of non-negative integers 0 = (kr) with ko = 0 is 
called a lacunary sequence if hr = kr — fcr_i —> oo as r —> oo. The intervals 
determined by 6 will be denoted by Ir = (kr-i, kr}. A sequence x = (xk) is 
called lacunary convergent to I if limr h~l Ylkelr

 Xk = ^ ^ ^ = (arfe) 
is the matrix, where ae

rk = l/hr if k E IT and aPrk = 0 otherwise, then the 
Afl-summability reduces to lacunary convergence. Clearly Ag G T + . 

A sequence x = (x^) is said to be strongly A-summable with index 
p > 0 to I if (see [13]) 1™« S ^ ! ank\xk ~ Ap = 0- The set of all strongly 
A-summable sequences is denoted by wp

A. 
Recall [16, 23] that / : [0, oo) —> [0, oo) is called a modulus function if 

(i) f(t) = 0 if and only if t = 0, 
(ii) f(t + u)< f{t) + f(u) for all t > 0, u > 0, 
(iii) / is increasing, 
(iv) / is continuous from the right at 0. 

Because of (ii), | f ( t ) — f(u)\ < f(\t — u|) so that in view of (iv), / 
is continuous everywhere on [0, oo). A modulus may be unbounded (for 
example, f(t) — tp,0 < p < 1) or bounded (for example, f(t) = jq^). 

Ruckle [23], Maddox [16] and other authors used modulus function to 
construct new sequence spaces. In [10, 11, 22] some new sequence spaces 
are defined by means of a sequence of modulus functions T = (fk)-

The main object of this paper is to introduce and study the sequence 
spaces JVQ(Aa, T, q), wp(Aa, !F, q) and w^0(Aa, T, q) defined by means of se-
quence of modulus functions T in a seminormed space, when A e T + . The 
definition of these sequence spaces is given in the following section. In §3, 
we propose to study various algebraic and topological properties of these 
spaces, and some inclusion relations between these spaces have been dis-
cussed. In §4, a new concept of ^4-invariant statistical convergence in a 
seminormed space is introduced. Some relations between ^4-invariant sta-
tistical convergence and strong invariant ^4-summability with respect to a 
sequence of modulus functions has been investigated. 

2. Notation and definitions 
Throughout the paper X denotes a seminormed space with seminorm 

q, T = (fk) is a sequence of modulus functions and A = (ank) is a non-
negative regular matrix. The symbol w(X) denotes the space of all X- valued 
sequences. We define the following sequence spaces 
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WQ{Ac,!F,q) = {x £ w(X) : limTnj(:c) = Oun i fo rmly inz}, 
71 

wp(A<j,Jr, q) = {x G w(X) : x — le E ^{A^T, q) for someZ G X } , 

v%x>{A(J,J:,q) = { i £ w{X) : s u p T n i ( x ) < oo}, 
n,i 

w h e r e rni(x) = ank[fk(q(x<Tk^))]p a n d p > 1. 
Some well-known spaces are obtained by specializing X, q, A, a, T and p. 

(i) If X = C , q ( x ) = \x\Jk(t) = t for all k, A = Cua{i) = i + 1 a n d 
p = 1, then ^(ApjPjq) = [co], wp(Acr, T, q) = [c] (Freedman et 
al. [7], Maddox [15]). 

(ii) If X = C , q ( x ) = \x\,fk{t) = t for all k, A = Ci a n d p = 1, t h e n 
wp(A<7,J:,q) = \vj\ (Mursaleen [19]). 

(iii) If X = C, q{x) = |a;|, fk(t) = t for all k and A = C\, then wp(A(T, T, q) 
= [Va]p (Savas [25]). 

(iv) If X = C , q ( x ) = \x\,F = ( / ) a n d p = 1, t h e n <u%(Aa,T,q) = 
w0(Aa,f) and wp(Aa,Jr,q) = w(Aa,f) (Nuray and Savas [20]). 

(v) If T = ( / ) and A = / , the unit matrix, then WQ{A<J, F, q) = 
co(f,a,q), wp{A(T,Jr,q) = c(f,a,q) a n d wlo{Aa,F, q) = £oo(f,<r,q) 
(Altin and Isik [1]). 

(vi) If fk(t) = t for all k, A = Aff and a(i) = i + 1, then v%{Aa, T, q) = 
(W,9,q)0,wp(A(r,T,q) = ( W , 9 , q ) a n d v&(A,,F,q) = (W,6,q)oo 
(Colak et al. [3]). 

W e d e n o t e u%(Aa, T, q), wp(Aa, F, q) a n d w^,(Aa, T, q) by u^(Aa, / , q), 
wp(A(T,f,q) a n d / , <?) w h e n T = ( / ) a n d by w^{Aa,q),wp(Aa,q) 
and vj^o(Aa, q) when fk(t) = t for all k. If x G wp(Aa-,F, q), we say that x is 
strongly invariant ^4-summable to I with respect to the sequence of modulus 
functions T and a sequence x G w^0(A(T,Jr,q) is called strongly invariant 
^-bounded with respect to T . 

3. Linear topological structure of ^{Aa^F^q) space and inclusion 
theorems 
In this section we examine some algebraic and topological properties of 

WQIA^,^7, q) space and investigate some inclusion relations between these 
spaces. 

THEOREM 3.1. v^{Aa,J:,q),wp{Aa,J:,q) and w^0(A(7,Jr,q) are linear 
spaces over the complex field C . 

The proof is a routine verification by using standard techniques and 
hence is omitted. 
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THEOREM 3.2 . For a non-negative regular matrix A = (ank), v^A^T, q) 
is a topological linear space with paranorm defined by 

REMARK 3.3 . From the properties of modulus function and seminorm it is 
clear that g is not a total paranorm. 

LEMMA 3 . 4 ([21]) . Let f be a modulus function and let 0 < 6 < 1. Then for 
each x > S, we have f ( x ) < 2f(l)6~1x. 

THEOREM 3.5 . Let A G T+ and J7 = ( f k ) be a sequence of modulus functions 
such that l im t^0+ supfc fk(t) = 0. Then wp(Aa, q) C w^(Aa, T, q). 

P r o o f . Let x G WQ(Aa,q) and put M = sup fe/fc(l). Then 

°n(i) = —• 0 a s n —> oo , u n i f o r m l y i n i. 
k 

Since lim t^0+ supfc fk(t) = 0, for every e > 0 there is a number <5 (0 < (5 < 1) 
such that fk{t) < e (k G N) for t < 8. We can write 

by Lemma 3.4. Letting n —> oo, it follows that x G Wq(Aa,T,q). 
Our next result gives some sufficient conditions for WQ(Aa,q) = 

wP
0(Aa,F, q). 

THEOREM 3.6. Let A G T+ and T = ( f k ) be a sequence of modulus func-
tions such that limi_>0+ suPfc fk(t) = 0 and limi_*oo inffc > 0. Then 
Wo (Acq) = w%(Aa,F,q). 

P r o o f . In view of Theorem 3.5, it is sufficient to show that q) Ç 
w%(Aa,q). 

Since limf^oo inffe ^ f 1 > 0, there exists a number ¡3 > 0 such that 
fk(t) > (3t for t > 0 and k G N. For x G (Aa, T, q), we have 

^2ank[fk(q(x(Tk{i)))]p = ank[fk(q(xak{{)))}p I P 

• £ ank[fk(q(xaHi)))}p < ep^ank + (2MÔ~1)P an(i) 

IP 

k k 

whence x G WQ(Aa, q) and the proof is complete. 
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DEFINITION 3 . 7 ([27]) . Let qi and <72 be seminorms on a linear space X. Then 
qi is stronger than q2 if there exists a constant L such that 92 < Lq\{x) 
for all x G X. If each is stronger than the other, qi and q-2 are said to be 
equivalent. 

THEOREM 3.8. Let A G T + , T = (fk) be a sequence of modulus functions 
and q\, q<i be seminorms. Then 

(i) wl(A<T,J:,qi)r\wl{AIJ,J:,q2) C w^(Aa, T, q\ + q2), 
(ii) if qi is stronger than q^, we have WQ(A(J, F, qi) C WQ(Aa,Jr,q2), 
(iii) if qi is equivalent to q2, we have w^A^, F, qi) = WQ(AO-, F, q2). 

P r o o f . The proof of (i) is straightforward, 
(ii) Let x e w%(Aa,T,qi). Then 

X!a™fc[/fc(<?2(z<7<=(i)))]P < ^an f c[ / f c(Lg1(x ( r f c ( i )))]p 

k k 

<(l + [L}yJ2ank[fk(qi(xaHi))W 
k 

—> Oasn —> oo, uniformly in i. 

Hence x £ JF, q2). 

4. Comparison wi th A-invariant statist ical convergence 
In this section we investigate some inclusion relations between A-invar-

iant statistical convergence and strong invariant A-summability with respect 
to a sequence of modulus functions T . 

The idea of statistical convergence was introduced by Fast [6] and studied 
by various authors (e.g. [4], [9], [10], [17], [24]). 

For A G T + , Freedman and Sember [8] defined A-density as follows. 

DEFINITION 4 . 1 ([8]). A set K — {fcj} c N, with ¡a < ki+\ for all i (called 
an index set), is said to have A-density 8j\{K) equal to d if the characteristic 
sequence of K is A-summable to d, that is, limn YlkeK

 anfc = d. 

In particular case A = C\, the A-density is called the asymptotic density. 
Using A-density, we introduce the following definition. 

DEFINITION 4 .2 . Let A £ T+. An X-valued sequence x = (xk) is said to be 
A-invariant statistically convergent to l e i , briefly st(Aa, q)- l imx = I, if 
for each e > 0, 

lim ^ ank = 0 uniformly in i, 

where Le<i = {A; : q(xak^ -l)>e}. 
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We shall denote the set of all ^-invariant statistically convergent se-
quences by st(Acr,q). If X = C, q(x) = |x|, then this definition reduces to 
the definition introduced by Nuray and Savas [20]. 

THEOREM 4.3. Let A € T + . If J7 = ( f k ) is a sequence of modulus functions 
which satisfies 

(Mi) inf/ f c(i) > 0 ( ¿ > 0 ) , 
k 

then wp(Aa,Jr,q)-limx = I implies st{Aa, g)-limx = I. 

P r o o f . Let e > 0. If (Mi) holds then there exists a number s > 0 such that 
/fc(e) > s. If wp(Aa,Jr,q)-limx = I and Le^ = : q(xak^ — I) > e}, then 

Vn(i) = ank[fk(q(xak{i) - l))]p > ank[fk(e)]p > sp ank 

k fc^Z/g^ k£L€ti 

whence Ylk€Lei
ank < s~pan(i) —> 0 as n —> oo, uniformly in i. Hence 

st(A<7, g)-limx = I. 

THEOREM 4.4. Let A € T + and J7 = ( f k ) be a sequence of modulus functions 
which satisfies 

(M2) lim sup fk(t) = 0, 
o+ k 

(M3) supsup/ f c( i) < oo. 
t k 

Then st(Aa,q)-\im.x = I implies wp(Aa,Jr,q)-limx = I. 

P r o o f . Let st(Aa, g)-limx = I, h(t) = s u p k f k { t ) , h = sup t h(t) and choose 
e > 0. For every i e N, we split the sum an(i) = J2k ank[fk(q(xa

k(i) ~ 0 ) P 
into two sums ^ and o v e r = {k '• Q(xak(i) ~ 0 ^ e} a n d {k : 
q(xak(j) — I) < e}, respectively. Then by (M3), 

1 fceLe.i 
and by the increase of fk, we have 

£ < [ M e ) ] p J > n f c . 
2 k 

Since limn X)feeL£ i ank = 0 uniformly in i and using (I2), we get limn an(i) < 
[h(e)]p uniformly in i. By (M2) it follows that limn an(i) = 0 uniformly in 
i, t ha t is, wp(A(T,Jr,q)-limx = 1. 

From Theorems 4.3 and 4.4, we deduce the following result. 

COROLLARY 4.5. Let A E T + and J7 = ( f k ) be a sequence of modulus func-
tions which satisfies ( M i ) , (M2) and (M3). Then st(Aa,q) = wp(Aa,J7,q). 
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In the case fk = f(k € N), the conditions (ML) and (M2) hold. Thus we 
get 

COROLLARY 4.6. Let A € T+ and f be a bounded modulus function, then 
st(Aa,q)=WP(Aa,f,q). 

The next theorem establishes the relation between ^-invariant statistical 
convergence and strong invariant A-summability for bounded sequences. 

THEOREM 4.7. Let A E T+. If T = (/*.) is a sequence of modulus functions 
which satisfies (M2), then £oo{q) D st{A<r, q) C 4»(?) H <?)• 

P r o o f . Assume that (M 2) holds. Then h(t) = supk fk{t) < 00(t > 0). If 
st(Aa, g)-l imx = I and q{xk) < M, then 

fk(q(xaHi) - I)) < fk(M + q(l)) < h{M + q{l)) < 00 

and wp(Aa,Jr,q)- l imx = I follows from the proof of Theorem 4.4 with 
h(M + q(l)) instead of h. 

Using also Theorem 4.3, we get 

COROLLARY 4.8. Let A € T + and T = (/JFC) be a sequence of modulus 
functions which satisfies (Mi) and (M2). Then 

¿00 (q) f | st(Aa, q) = i^q) f | wp(Aa, T, q). 

In the case fk = f(k 6 N) from Corollary 4.8, we deduce 

COROLLARY 4.9. For any modulus function f and A € T+, 

M s ) n 1 ) = ^ ( 9 ) n 
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