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STRONG INVARIANT A-SUMMABILITY
WITH RESPECT TO A SEQUENCE OF MODULUS
FUNCTIONS IN A SEMINORMED SPACE

Abstract. The object of this paper is to introduce some new strongly invariant
A-summable sequence spaces defined by a sequence of modulus functions F = (f¢) in a
seminormed space, when A = (anx) is a non-negative regular matrix. Various algebraic
and topological properties of these spaces, and some inclusion relations between these
spaces have been discussed. Finally, we study some relations between A-invariant statisti-
cal convergence and strong invariant A-summability with respect to a sequence of modulus
functions in a seminormed space.

1. Introduction and preliminaries

By w we shall denote the space of all scalar sequences. f,,c and cgy
denote the spaces of bounded, convergent and null sequences z = (zj) with
complex terms, respectively, normed by ||z|l.c = supg|zx|- A sequence
x € £ is said to be almost convergent if all Banach limits of z coincide
(see Banach [2]). Let é denote the space of all almost convergent sequences.
Lorentz [12] proved that

é={x €lx: lim ty,,(x)exists, uniformly in n},
m—0o0
where tpn(z) = (m + 1)1 31 Zkn. The space [¢] of strongly almost

convergent sequences was introduced by Maddox [15] and also independently
by Freedman et al. 7] as follows.

€] = {z € bo : lim tpu(|z — le]) = Ouniformly in n, for somel},

where e = (1,1,1,...).
Schaefer [26] defined the o-convergence as follows.
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Let o be an one-to-one mapping of the set of positive integers into itself.
A continuous linear functional ¢ on £ is said to be an invariant mean or a
o-mean if and only if

(i) ¢(x) > 0 when the sequence z = (z,,) has z,, > 0 for all n,

(ii) ¢(e) =1, and

(iil) ¢(zy(n)) = ¢(x) for all z € L.

Let V,; denote the set of bounded sequences which have unique o-mean.
It is known (see [26]) that

Vo={z€ls: klim tkm (z) = luniformly in m},
—00

:Em+:ta(m)+I02(m)+...+zak(m)
k+1 '
Here o*(m) denotes the k*! iterate of the mapping o at m.

l = o-limz, where tg,(z) =

In case o is the translation mapping n — n + 1, a o-mean reduces to
the unique Banach limit and V, reduces to é. A o-mean extends the limit
functional on c in the sense that ¢(z) = limz for all z € ¢ if and only if
o has no finite orbits; that is to say, if and only if for all n > 0, j > 1,
o7(n) # n (see Mursaleen [18]).

Just as the concept of almost convergence led naturally to the concept
of strong almost convergence, o-convergence leads naturally to the con-
cept of strong o-convergence. A sequence z = (zy) is said to be strongly
o-convergent if there exists a number [ such that

(1) (lzx —Ul) € Vo

with the limit zero, (see Mursaleen [19]). We write [V,] as the set of all
strongly o-convergent sequences. When (1) holds, we write [V,]-limz = [.
Taking o(n) = n + 1, we obtain [V;] = [¢] so that strong o-convergence
generalizes the concept of strong almost convergence. Note that ¢ C [V,] C
Vo Clx.

Let A = (ank) be an infinite matrix with real or complex numbers.
A number sequence z = (z) is called A-summable to a number [ if the
series Apx = ) i ankzy converge for all n € N and lim, A,z = 1. A
matrix method A is called regular if all convergent sequences z = (xj) are
A-summable and lim,, A,z = limy . It is known (see [5], Theorem 4.1, II)
that A is regular if and only if

(Ty) lim,, apg = 0 (k € N),
(Tg) limn Zk Ank — 1,
(Ts) sup, Yy lank| < oo.

We will denote the set of all non-negative regular matrices by 7. Cesaro
method C; = (cpk), where cpp = 1/n if k < n and cpr = 0 otherwise, is
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a well-known example of matrix method of summability. It is clear that
Cy € T*. A similar summability method is defined as follows.

An increasing sequence of non-negative integers 8 = (k) with kg = 0 is
called a lacunary sequence if h, = k, — kr—1 — 00 as r — 00. The intervals
determined by 6 will be denoted by I, = (k,—1,kr]. A sequence z = (zy) is
called lacunary convergent to ! if lim, hyt Y, .; @ = I. So, if Ag = (%))
is the matrix, where afk =1/h, if k € I, and afk = 0 otherwise, then the
Ag-summability reduces to lacunary convergence. Clearly Ag € 7.

A sequence x = (zy) is said to be strongly A-summable with index
p > 0 to L if (see [13]) lim, 322, ank|zk — I|P = 0. The set of all strongly
A-summable sequences is denoted by w?.

Recall [16, 23] that f : [0,00) — [0, 00) is called a modulus function if

(i) f(t) =0 if and only if t = 0,

(i) f(t+u) < f(t) + f(u) for all ¢t > 0,u > 0,
(iii) f is increasing,

(iv) f is continuous from the right at 0.

Because of (ii), |f(t) — f(u)| < f(|t — ul|) so that in view of (iv), f
is continuous everywhere on [0,00). A modulus may be unbounded (for
example, f(t) = t?,0 < p < 1) or bounded (for example, f(t) = 1L+t)

Ruckle [23], Maddox [16] and other authors used modulus function to
construct new sequence spaces. In [10, 11, 22] some new sequence spaces
are defined by means of a sequence of modulus functions F = (fi).

The main object of this paper is to introduce and study the sequence
spaces wh(Aqs, F,q), wP(As, F,q) and wh(Ay, F,q) defined by means of se-
quence of modulus functions F in a seminormed space, when A € 71. The
definition of these sequence spaces is given in the following section. In §3,
we propose to study various algebraic and topological properties of these
spaces, and some inclusion relations between these spaces have been dis-
cussed. In §4, a new concept of A-invariant statistical convergence in a
seminormed space is introduced. Some relations between A-invariant sta-
tistical convergence and strong invariant A-summability with respect to a
sequence of modulus functions has been investigated.

2. Notation and definitions

Throughout the paper X denotes a seminormed space with seminorm
g, F = (fx) is a sequence of modulus functions and A = (a,x) is a non-
negative regular matrix. The symbol w(X') denotes the space of all X-valued
sequences. We define the following sequence spaces
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wh(As, F,q) = {z € w(X) : lim () = O uniformly in4},

wP(As, F,q) = {z € w(X) : z — le € wf(As, F, q) for somel € X},
wio(As, F,q) = {z € w(X) : sup 7s(z) < 00},

where 71;(z) = 3 ¢ ank[fi(9(zor(;)))]P and p > 1.
Some well-known spaces are obtained by specializing X, ¢, A, o, F and p.

(i) If X = C,q(z) = |z|, fx(t) = t for all k, A = C;,0(:) =i+ 1 and
p = 1, then wg(Aaa]:a q) = [60]7wp(A0'af,Q) = [é] (Freedman et
al. [7], Maddox [15]).

(ii) If X = C,q(z) = |z|, fu(t) = t for all k, A = C; and p = 1, then
wP(Ags, F,q) = [Vo] (Mursaleen [19]).

(iii) If X = C, q(z)=|z|, fe(t)=t for all k and A = C}, then wP(4,,F,q)
= [V5]p (Savas [25)).

(iv) If X = C,q(z) = |z|,F = (f) and p = 1, then wh(A,,F,q) =
wo(Aq, f) and wP(As, F,q) = w(As, f) (Nuray and Savas [20]).

(v) If F = (f) and A = I, the unit matrix, then wh(A,, F,q) =
co(f,0,9), wP(As, F,q) = c(f,0,q) and wh(As, F,q) = Lo(f,0,q)
(Altin and Isik [1]).

(vi) If fx(t) =t for all k, A = Ap and o(i) =i+ 1, then wh(4,,F,q) =
(Colak et al. (3]).

We denote wg(AU) ]:7 q)1 wp(AO" ]:7 q) and w&(Aa'a ]:) q) by w(])J(Aa’ f, Q),
wP(As, f,q) and who (Ao, f,q) when F = (f) and by wh(As,q), wP(As,q)
and wh,(A,,q) when fi(t) = t for all k. If z € wP(A,, F,q), we say that z is
strongly invariant A-summable to [ with respect to the sequence of modulus
functions F and a sequence z € wh,(A,,F,q) is called strongly invariant
A-bounded with respect to F.

3. Linear topological structure of wg(Ag,]-" ,q) space and inclusion
theorems
In this section we examine some algebraic and topological properties of
wh(Ay, F,q) space and investigate some inclusion relations hetween these
spaces.

THEOREM 3.1. w§(4s,F,q),wP(As,F,q) and wh(As,F,q) are linear
spaces over the complez field C.

The proof is a routine verification by using standard techniques and
hence is omitted.
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THEOREM 3.2. For a non-negative regular matriz A = (ank), w§(As, F,q)
is a topological linear space with paranorm defined by

g(z) = sup (Z Gk [fk(q(%k(i)))]p> 1/17‘

n,i &

REMARK 3.3. From the properties of modulus function and seminorm it is
clear that ¢ is not a total paranorm.

LEMMA 3.4 ([21]). Let f be a modulus function and let 0 < § < 1. Then for
each z > &, we have f(z) < 2f(1)6 'x.

THEOREM 3.5. Let A € T and F = (fi) be a sequence of modulus functions
such that lim;_,q+ supy, fx(t) = 0. Then wh(A,,q) C wh(As F,q).

Proof. Let z € wj(As,q) and put M = supy, fx(1). Then

Z anklq ak(z) — 0 as n — oo, uniformly in <.

Since lim,_, o+ supy, fx(t) = 0, for every € > 0 there is a number § (0 < § < 1)
such that fi(t) < e (k € N) for t < . We can write

Z ank[fe(q(z e = Z ank[fr(q(zgr))IP

k, Q(mak(i))g‘s
+ Y k@@ @))P < D ank + (2M5TP 0y (3)
kv‘](zak(i))>6 k

by Lemma 3.4. Letting n — oo, it follows that z € wh(4,,F, ).

Our next result gives some sufficient conditions for wh(4,,q) =
wg(Aaa]: s Q)'

THEOREM 3.6. Let A € T and F = (fx) be a sequence of modulus func-

tions such that lim,_o+ supy, fr(f) = 0 and lim;_, infy fk(t) > 0. Then
wg(AaaQ) = wg(Aaa]:’ q)'

Proof. In view of Theorem 3.5, it is sufficient to show that w}(As, F,q) C
2(Ag,q).
wo( 094
Since lim;_, o infg Atﬂ > 0, there exists a number 8 > 0 such that
fe(t) > Bt for t > 0 and k € N. For z € wf(A,, F,q), we have

> ankla(@or@)IP < B2 anklfr(@(@,x(i)]P
k P

whence z € wh(Ay, q) and the proof is complete.
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DEFINITION 3.7 ([27]). Let ¢; and g2 be seminorms on a linear space X. Then
q1 is stronger than g if there exists a constant L such that ga(z) < Lg;(x)
for all x € X. If each is stronger than the other, ¢; and g2 are said to be
equivalent.

THEOREM 3.8. Let A€ T+, F = (fi) be a sequence of modulus functions
and q1,qa be seminorms. Then

1) w(I))(Ao‘af, (h) nwg(AUaFa (12) g wg(Aaaf) q1 + Q2);
ii) if g1 is stronger than g2, we have wh(Aq, F,q1) C wh(As, F, q2),
(iii) #f q1 is equivalent to qo, we have wWh(Ay, F,q1) = wh(As, F, q2).

P

Proof. The proof of (i) is straightforward.
(ii) Let z € wh(Ao, F,q1). Then

> anklfi(@2(@or))P <Y anklfe(Lar(@on))IP
P P
< (L+ L)Y anklfi(qr (@on )P
k

— 0asn — oo, uniformlyin 3.

Hence = € wf(As, F, ¢2).

4. Comparison with A-invariant statistical convergence

In this section we investigate some inclusion relations between A-invar-
iant statistical convergence and strong invariant A-summability with respect
to a sequence of modulus functions F.

The idea of statistical convergence was introduced by Fast [6] and studied
by various authors (e.g. [4], [9], [10], [17], [24]).

For A € 7T, Freedman and Sember [8] defined A-density as follows.

DEFINITION 4.1 ([8]). A set K = {k;} C N, with k; < k;41 for all ¢ (called
an index set), is said to have A-density 64(K) equal to d if the characteristic
sequence of K is A-summable to d, that is, lim, D, s anx = d.

In particular case A = (4, the A-density is called the asymptotic density.
Using A-density, we introduce the following definition.

DEFINITION 4.2. Let A € T*. An X-valued sequence x = () is said to be
A-invariant statistically convergent to I € X, briefly st(4,,q)-limz = I, if
for each € > 0,

lim E ank = 0 uniformly in 4,
n
kGLe,i

where Le; = {k : ¢(z 5 — 1) > €}.
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We shall denote the set of all A-invariant statistically convergent se-
quences by st(As,q). If X = C,q(z) = |z|, then this definition reduces to
the definition introduced by Nuray and Savas [20].

THEOREM 4.3. Let A€ TT. If F = (fx) is a sequence of modulus functions
which satisfies

(M) lnf fe(t) >0 (t>0),

then wP(Agy, F,q)-limz =1 imphes st(Ag,q)-limz = 1.
Proof. Let € > 0. If (M;) holds then there exists a number s > 0 such that
fe(e) > s. f wP(Ay, F,q)-limz =1 and Le; = {k: ¢(zx(;) — 1) 2 €}, then
n(i) = Zank[fk(q(xak(i) )P > Z ank|fr(€)]P > sP Z Ank
k k€Le,i kELei
whence > c; ank < s7Pon(i) — 0 as n — oo, uniformly in i. Hence
st(Ag,q)-limz = 1.

THEOREM 4.4. Let A € T+ and F = (fi) be a sequence of modulus functions
which satisfies

(Mz) tgrél sup fi(t) = 0,
(Ms3) SUp SUp fr(t) < 0.

Then st(Ag, q)-limz = [ implies wP(Ay, F, q)-limz = [.

Proof. Let st(As,q)-limz =1, h(t) = supy, fx(t), h = sup, h(t) and choose
€ > 0. For every i € N, we split the sum 0y(i) = > ank[fe(q(z 50y — 1))IP
into two sums }7, and ), over Le; = {k : q(z,k) — 1) > €} and {k :
q(z,k(;) — 1) < €}, respectively. Then by (Ms),

Z < h? Z Ank
k€L ;

and by the increase of fi, we have
Y <[P ank.
2 k

Since lim,, ), L.,; %nk = 0 uniformly in ¢ and using (T3), we get limp, 4(i) <
[h(e)]P uniformly in i. By (My) it follows that limy, 0, (¢) = 0 uniformly in
i, that is, wP(As, F,¢)-limz = .

From Theorems 4.3 and 4.4, we deduce the following result.

COROLLARY 4.5. Let A€ T+ and F = (fx) be a sequence of modulus func-
tions which satisfies (M), (M2) and (M3). Then st(As,q) = wP(Aqs, F,q).
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In the case fy = f(k € N), the conditions (M;) and (Mz) hold. Thus we
get

COROLLARY 4.6. Let A € T and f be a bounded modulus function, then
St(A(h q) = wp(Aa’ f’ q)'

The next theorem establishes the relation between A-invariant statistical
convergence and strong invariant A-summability for bounded sequences.

THEOREM 4.7. Let A€ T*. If F = (fx) is a sequence of modulus functions
which satisfies (M2)r then Lo (Q) ﬂ St(Aaa Q) c eoo(‘]) ﬂ wp(Aaa F, Q)'

Proof. Assume that (M2) holds. Then h(t) = supy fi(t) < co(t > 0). If
st(Ag,q)-limz =1 and ¢(zx) < M, then

Je(@(zor@y — 1) < fo(M + q(1)) < h(M +q(1)) < o0

and wP(Agy, F,q)-limz = [ follows from the proof of Theorem 4.4 with
h(M + q(1)) instead of h.
Using also Theorem 4.3, we get

COROLLARY 4.8. Let A € T and F = (fx) be a sequence of modulus
functions which satisfies (M1) and (Ms). Then

loo(q)[) 5t(As, @) = Loo(q) [ | wP(As, F, ).
In the case fx = f(k € N) from Corollary 4.8, we deduce
COROLLARY 4.9. For any modulus function f and A€ T,

loo(@) [ ) 540, 0) = Loo(9) [0 (4o, £, 9)-
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