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ON SOLUTIONS OF A GENERALIZATION
OF THE REYNOLDS FUNCTIONAL EQUATION

Abstract. Let (X, ) be a group endowed with a topology and F : C — X. Under
some assumptions on X and F, we describe the solutions f : X — C of the functional
equation

FF(f(v) - z) = f(y)f (),

that are continuous at a point or (universally, Baire, Christensen or Haar) measurable.
We also show some consequences of those results.

Throughout the paper N, Z, R and C stand, as usual, for the sets of
positive integers, integers, reals and complex numbers, respectively.

In a very simple and natural way one may come across the problem of
solving the following two functional equations

1) flz+ ) = f(@) + Fv),

(2) 9(zg(y)) = 9(x)g(y).

Namely let K be a field and f : K — K, g : K\ {0} — K\ {0}. Define binary

operations ¥ : K x K - K, o: (K \ {0}) x (K\ {0}) — K\ {0} by:
zxy=z+f(y), zoy=uzg(y)

It is easy to check that the operation * (o, respectively) is associative if and

only if f (g, respectively) satisfies equation (1) ((2), respectively). Some

further information concerning equations (1), (2) and the subsequent two
similar functional equations

3) h(z + h(y)) = h(z)h(y),
(4) 3z (y)) = j(z) +5(v)
one can find in [1]-[5], [9]-[14], [17] and [18].
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All these four equations are connected with the problem of multiplicative
symmetry originating in the operator theory (see e.g. [1]-[4]). Moreover,
equation (2) arises in the averaging theory applied to the turbulent fluid
motions (see e.g. [1, p. 330-1]). It is also one of conditions defining the
Reynolds operator (see e.g. [15] and [18]); therefore we suggest to name it
the Reynolds equation.

Z. Daroczy [9] has determined the solutions of (2) (in the class of functions
f : R — R) that are differentiable, the continuous solutions, and the solu-
tions that are bounded; he has also proved that there exist nonmeasurable
solutions of (2). Later the equation has been studied by N. Brillouét-Belluot
[2]-[5], J. Dhombres [10]-[14], C.F.K. Jung, V. Boonyasombat, G. Barbangon
and J.R. Jung [17], and Y. Matras [18]. The integrable solutions has been
determined in [17]. For recent results, concerning the Hyers-Ulam stability
of equations (1)—(4), we refer to [19] and [20].

Let zo € R and a : R — R be an additive function (ie. a(z +y) =
a(z) + a(y) for z,y € R) with a(a(z)) = a(x) for z € R. Define f : R — R,
g R\ {0} — R by: f(z) = a(z + o), g(y) = expof(lnly]) for z,y € R,
y # 0. Then it is easy to check that the functions f, g are solutions of
equations (1), (2), respectively. If a is continuous we obtain thus continuous
solutions of the equations.

Note yet that if f,j : R — R are solutions of (1) and (4), respectively,
then f = expof and j = exp oj satisfy the functional equations

(5) flz+In f(y) = f(@) ),

(6) j(znj(y)) = §()j(y)-
Let (X,-) be a group and F : C — X. Then each of the equations (2),
(3), (5) and (6) is a particular case of the functional equation

(7) FF(f()-2) = fv)f(2),

where the unknown function is f : X — C. On the other hand (7) is a
particular case of the subsequent pexiderization of (2)

9(G(y)z) = h(y)h(z),
considered in [5] for continuous functions g, h,G : K — K with K € {R, C}.
(For yet another justification for equation (7) see Corollary 5). In this pa-
per we deal with equation (7) in the situation where X is endowed with a
topology. Under some additional assumptions on F' and X we give descrip-
tions of the solutions f : X — C of (7) that are continuous at a point or
(universally, Baire, Christensen or Haar) measurable. We generalize in this

way in particular Theorem 5 and (to some extent) Theorem 7 in [17] (see
Remark 4).
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Let us start with the following very simple fact.

LEMMA 1. Let (X,-) be a group and F : C — X. Suppose f: X — C s
a solution of equation (7) and f(X) # {0}. Then f(X) is a multiplicative
subgroup of C and

(8) fFE(@)"-2) = f)"fz) forzyeX,nel

Proof. For every x,y € X we have

©)  SOFEFE) T 2) = FFEW) FEW) ™ 2) = f(2),
which means that f(y) # 0 and f(y)~1f(z) € f(X). Next, from (7) and (9),
by induction we obtain (8). =

COROLLARY 1. Let X and F be as in Lemma 1 and f : X — C be a solution
of equation (7). Suppose f(X) C B(e,r) :={a € C: |c—a| < r} for some
ceCandr eR with0<r<|c|. Then f=1.

Proof. Lemma 1 implies f(X) C B(c,r) is a multiplicative subgroup of C.
So 1 € B(e,r). Since 0 ¢ B(c,r), it is easily seen that the set {1} is the
only multiplicative subgroup of C that is contained in B(c,r). Consequently
f(X)={1}. =

COROLLARY 2. Let (X,-) be a group, G : C —» X and g : X — R be a
solution of

(10) 9(G(g(y)) - =) = 9(y) + 9()-
Suppose there is ¢ € R with g(X) C (¢,00) or g(X) C (—oo,c¢). Then g =0.

Proof. Let f = expog, F(z) = Goln|z| for z € C\ {0} and F(0) = 0.
Then it is easy to check that (7) holds for every z,y € X. Since, according
to Lemma 1, f(X) is a multiplicative subgroup of R and f(X) C (e, 00) or
f(X) - (0766)’ f=1ln

In the next proposition we need the following three hypotheses.

(H) (X,-) is a group with the neutral element e, endowed with a topology
such that the translations X > ¢ - z-yand X 5 ¢ — y-x are
continuous for every y € X.

(@) F:C — X and F(1)* € lim,_ F(z*#)! with some k,l € Z, 1 # 0
(ie. for every neighbourhood V C X of F(1)* there exists r € R,
r > 0, such that F(z¥8!)! ¢ V for every z € B(0,r), z # 0).

(8) There exist m,j € Z, j # 0, such that F(1)™ € lim,_,_; F(z)’.
REMARK 1. Clearly () holds if F is continuous at 0 and F(1)* = F(0) for
some k,l € Z,1 > 0, or if F(1)* = lim,_,o F(%)l for some k,l € Z, 1 < 0; (/)
is valid if F is continuous at —1 and F(1)™ = F(—1)? for some m,j € Z,

j#0.
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PROPOSITION 1. Suppose that (H) and () hold, r € R, c€ C, 0 <1 < |c|,
f : X — C is a solution of equation (7), the set f(X) is not finite, and
D := f~Y(B(c,r)). If f(X) C R or (B) holds, then e & int (D - DY), where
D-D':={z-y':z,ye D}
Proof. For the proof by contradiction suppose that there is a neighbourhood
UcXofewithUcD-D™L.

First assume that |f(z)| # 1 for some z € X and [ > 0 (I < 0, respec-
tively). Then, by Lemma 1, there is a sequence {z, : n € N} ¢ X with

limy, oo f(zn) = 0 (limp—oo | f(Zn)| = 00, respectively). Thus, on account
of (&), there exists m € N such that
g le=r

and F(f(zm))' - F(1)~* € U, which means that

le[ -7 e[ =
2

e = fam)'el > le] = |f (zm)'c| > |e] - 5
and there are y1,y2 € D with F(f(zm))' - F(1)™* - y1 = yo. Hence
B(e,r) N [f(zm)'B(e,r)] = B(c, 7’) N B(f(zm)'e, |f (zm)'Ir) = 0,
B(e,r) 3 f(y2) = f(F(f(zm))' - F(1) ™ -31) = f(zm)' f(1) € f(zm)'Ble,r).
This is a contradiction. Since the set f(X) is not finite, that completes the
proof in the case f(X) C R.
It remains to consider the case f(X) C S :={a € C: |a| = 1}. Then, by

Lemma 1, f (X ) is dense in S. Thus, according to (3), there exists yo € X
with F(f(y))? € U-F(1)™ and

=r+ >r+|f(:cm)l|7'

) +11 < A2
Consequently yo = F(f(yo))’ - F(1)™™ - y; for some y1,y2 € D and
le = f(yo) el = 2le| = |e+ f(yo) el > 2|e] — (le] =) = || + 1 > 2.
Further, in view of Lemma 1, f(F(1)™™ - y1) = f(y1). Since |f(yo)] =1,
B(e,r) N [f(y0)’ Blc,7)] = B(e,r) N B(f(yo) c,r) =0,
B(c,7) 3 fy2) = f(F(f(yo)) - F()™™ - 31) = f (o)’ f(y1) € f(wo)’ B, ).

This contradiction completes the proof. =

In the sequel, for every k € N, we write Uy := {z € C: Zk = 1}. Next we
say a subset of a topological space is Baire measurable provided it has the
property of Baire (see e.g. [21]).

Let us recall that, under suitable assumptions on the group (X,-) (see
e.g. conditions (i)—(iv) of Theorem 1), a function f : X — C is universally
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(Baire, Christensen or Haar, respectively) measurable provided, for every
open set P C C, the set f~!(P) is universally (Baire, Christensen or Haar,
respectively) measurable. Please note that in the subsequent Theorem 1 we
assume less than a measurability of a function f; namely we only assume
that f~!(P) is measurable for one particular open set P. The next two
theorems are the main results of this paper.

THEOREM 1. Let (H) and (o) be fulfilled and f : X — C be a solution of
(7). Assume that there existc € C,r € R, 0 < r < |c|, and a set P C B(c,T)
such that f~1(int P) # 0 and one of the following four conditions is valid:

(i) X is abelian and metrizable with a complete metric and f~(P) is uni-
versally measurable (see e.g. [7] or [8]).
(ii) X is a Baire space (see e.g. [21]) and f~1(P) is Baire measurable.
(iii) X is a Polish topological abelian group and f~1(P) is Christensen mea-
surable (see e.g. [16]).
(iv) X is a locally compact topological group and f~1(P) is Haar measurable.

Further suppose f(X) C R or (B) holds. Then f(X) = Uy for some k € N.
Moreover k must be odd if additionally
(y) there exist m,j € Z with F(~1)%~! = F(1)™.

Proof. Write Py := int P and T := f~!(P). Since T # @, we have f(X)
# {0}, whence, by Lemma 1, f(X) is a multiplicative subgroup of C and
consequently
fxXyc |J b Ry=B,.
bef(X)
Note that By, as a topological subspace of C, has a countable basis of topol-
ogy and therefore is a Lindelof space. So there is a set {b, : n € N} C f(X)
with
fXycbn P
neN
Take € X. There is n € N with f(z) € b, - Py. Next, by Lemma 1,
F(F(bn)™" - z) = b, f() € b, 'bp Py = Po.
Hence z € F(b,) - T.
In this way we have shown that
X=|JF(bn) T
neN

Further, for every n € N, the set F'(b,)-T is, respectively, universally, Baire,
Christensen, or Haar measurable. Thus there is m € N such that

e €int [F(by) -T-T71- F(by)™] =: Ty,
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(see e.g. Theorem 1 in [7], Proposition 1 in [6], Theorem 2 in [8] and Theorem
in [22], respectively) and consequently

e=F(by) ' F(by) € F(by) ™ - To - F(by) = int [T - T,

(Here it seems that only the case of (iv) needs some comments. Note that
then, for a compact neighbourhood V' C X of e, we have V. C |,y F(bn) T
Thus there is m € N such that V N [F(by,) - T is of positive Haar measure
and consequently we may apply the result in [22]).

Let D := f~1(B(c,r)). Clearly e € int (D-D™!), because T C D. Hence,
according to Proposition 1, f(X) is finite, whence, by Lemma 1, f(X) = Uy
with some k € N.

Finally suppose () holds and there is z € X with f(z) = —1. Then,
according to Lemma 1, we have

—1=f(z) = f(F(=)"" F(-1)¥".2) = - f(F()™ - 2) = = f(2) = 1.
This is a contradiction. Consequently —1 ¢ f(X). =

REMARK 2. If the function f in Theorem 1 takes only real values and (v)
holds, then f = 1, because f(X) = Uy with some odd &k € N.

COROLLARY 3. Let (X, ") be a locally compact topological group, (c) be valid,
p be the Haar measure on X, u(X) = 0o, and f : X — C be a solution of (7).
Suppose f(X) C R or (B) holds. Then f is integrable if and only if f = 0.

Proof. Suppose f # 0 is integrable. Then so is |f|. Since p(X) = oo and,
by Theorem 1, |f| = 1, this is a contradiction. =

THEOREM 2. Let (H) and (o) be fulfilled and f : X — C be a solution of (7),
continuous at a point o € X. Suppose f(X) C R or (B) holds. Then f=0
or f(X) = Uy for some k € N. Moreover k must be odd if additionally ()
1s valid.

Proof. Suppose that f(X) # {0}. Then, by Lemma 1, f(zo) # 0. Take
r € R with 0 < » < |f(zo)|- There is a neighbourhood U C X of e with
f(U - zo) C B(f(xg),r). Thus e € int (D - D71) for D := f~Y(B(f(z0),7))-
Consequently, on account of Proposition 1, f(X) is finite. We complete the
proof in the same way as in the case of Theorem 1. =

COROLLARY 4. Assume (H), (a) and (v). Let f : X — R be a solution
of (7), continuous at a point. Then f =1 or f =0.

Proof. Suppose f(X) # {0}. Then Theorem 2 implies f(X) = Uy with
some odd k € N. Since f(X) C R, we must have f(X)=U;. =

COROLLARY 5. Assume that (H), (a) and () are valid and define a binary
operation o : (X x C)2 — X x C by: (y,w)o(z,2) = (F(w)-z,wz). Suppose
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f: X — R is continuous at a point xg € X. Then gr f := {(z, f(z)) : xz €
X} is a subgroupoid of the groupoid (X x C,0) if and only if f =0 or f = 1.

Proof. Assume gr f is a subgroupoid of the groupoid (X x C, o). Then
(F(f(y) =, fW)f (@) = (v, f(y))o (2, f(x)) € g f

for every z,y € X. Hence f is a solution of (7) and consequently, by Corol-
lary 4, f=0or f = 1.
The converse is trivial. =

REMARK 3. Replacing, in the proof above, Corollary 4 by Remark 2 we
obtain an analogous result for measurable functions f : X — R.

COROLLARY 6. Assume (H) and (a). Suppose X is connected and f : X —
C is a continuous solution of (7). If f(X) C R or (B) holds, then f =1 or
f=o.

Proof. Since f(X) is connected, Theorem 2 implies f(X) = {0} or f(X)
=U;. n

REMARK 4. In the case where one of the following two conditions is valid:
1° (X,) = (C,+) and F(z) = z for z € C;

2° (X,) = (R,4), f(X) C R, and F(z) = R(z) (the real part of z) for
z e C,

(7) takes the form

(11) f(F(y) + ) = f(2)f(y)

and conditions (a), (3), (y) hold with m = —1,l = j =1 and k = 0. Thus
Theorems 1 and 2, Remark 2, and Corollaries 3 and 4 generalize Theorem 5
and (to some extent) Theorem 7 in [17].

In view of the results that we have obtained so far, the solution f : X — C
of (7) with finite f(X') seems to be quite significant. The subsequent theorem
describes such solutions for commutative X. In the theorem we use the
following notions: {d} := {d" : n € Z} for d € X and rj := cos 2F + isin 2T
for k € N. Moreover, for k,n € Z, we write k|n provided n = km with some
m € Z.

THEOREM 3. Let (X,-) be a commutative group and F : C — X. Then
f X — C is a solution of equation (7) with the set f(X) # {0} finite
if and only if there exist k € N and a selector S C X of the factor group
X/{F(rk)} (i.e. S has ezactly one element in common with every element
of X/{F(rk)}) such that

(12) if card{F(ry)} is finite, then k|card {F(rg)},
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(13) Sc|F@)™m*-8  for meL,
neZ
(14) f(F(r )™ -z) =71 for z€S,meZ.

Proof. Suppose first that f has the form described in the statement. Ac-
cording to (12), formula (14) defining f is correct. Take z,y € X. There
exist xo,yo € S and I,m € Z such that x = F(ry)" - 20, y = F(r%)™ - vo.
Since, by (13), F(rT) - zg = F(ry)™ "% . 29 with some 29 € S, n € Z and, by
(14), f(z) = rf, f(y) = ri, we have f(F(f(y))-2) = f(F(r?)-F(ry)'-20) =
F(F(ri)tmHnk . z) = it ™ = f(y)f ().

Now assume f : X — C satisfies (7). On account of Lemma 1, f(X) = Uy

with some k € N. Hence there exists u € X with 7, = f(u). Let Sy be a
selector of the factor group X/{F(ry)}. For every x € Sy there is n(z) € N

with f(z) = "(z) . Write § = {F(rg) ™% .z : z € Sp}. It is easily seen that
Sc f_l({l}) is a selector of X/{F(rg)} as well and, in view of Lemma 1,

U Fere)™ -5 =£71({1})
neZ
(for every z € f1 ({1}) there are [ € Z and y € S with £ = F(r)" - y and
1= f(@) = F(F(re)! - y) = rLf(y) = rL, whence k).
Take z € S and m € Z. Then f(z) = rJ* for some z € X and, by (8),
FF@re)™ - x) = f(F(f(u)™ - x) = fu)" f(z) =,
fF@re)™™ F(rg) - o) = fw) " f(F(f(2) - ) =, " f(2) f (=) = L.

Thus we have shown (13) and (14). Since (14) implies (12), this completes
the proof. =

REMARK 5. Clearly (in Theorem 3), if F(r}*) = F(rg)™ for m € Z, then
(13) holds for every S C X.

REMARK 6. Let f : X — C have the form described in the statement of

Theorem 3. Then it is easily seen that, for m =1,... k,
e = | Fre)™* -8 = F(re)™ - | F(ri)™* - S
neZ neZ

= F(re)™ - f71({1}).
Hence f is (universally, Baire, Christensen, or Haar, respectively) measurable
if and only if the set
§ = U F('f‘k)nk -85

nez
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is (universally, Baire, Christensen, or Haar, respectively) measurable and f
is continuous at a point z € X if and only if, for some m € {1,...,k},

z € F(ry)™-int S.
COROLLARY 7. Assume (H). Let G : R — X satisfy
(15) G(0)* € lim G(z)
r——00

with some k € Z (i.e. for every neighbourhood V. C X of G(0)* there is
b e R with G(z) € V for z € (—o0,b)) and g : X — R be a solution of
(10). Suppose g is continuous at a point rog € X or there exists a bounded
set P C R such that g~!(int P) # § and one of the conditions (i) — (iv) of
Theorem 1 is valid, with f~1(P) replaced by g~1(P). Then g = 0.

Proof. Let f =expog and define F : C — X by

_ [ca®@), if R(z) > 0;
Flw) = {G(O)k, if R(z) <0

Then, on account of (15), F' is continuous at 0 and F(0) = G(0)* =
G(In 1)k F(1)*, which means (see Remark 1) that condition () is valid

(with I =1). Next, f(y)f(z) = exp(g(y) + g(x)) = exp(9(G(g(y)) - z)) =
exp(g(G(In(exp(g(y)))) - z)) = f(F(f(y)) - ) for every z,y € X. Thus, by
Theorems 1 and 2, f =1, whence g =0. =
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