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ON SOLUTIONS OF A GENERALIZATION 
OF THE REYNOLDS FUNCTIONAL EQUATION 

A b s t r a c t . Let (X, •) be a group endowed with a topology and F : C —> X . Under 
some assumptions on X and F, we describe the solutions / : X —> C of the functional 
equation 

f(F(f(y))-x) = f(y)f(x), 

that are continuous at a point or (universally, Baire, Christensen or Haar) measurable. 
We also show some consequences of those results. 

Throughout the paper N, Z, R and C stand, as usual, for the sets of 
positive integers, integers, reals and complex numbers, respectively. 

In a very simple and natural way one may come across the problem of 
solving the following two functional equations 

(1) f(x + f(y)) = f(x) + f(y), 
(2) g(xg(y)) = g(x)g(y). 

Namely let K be a field and / : K -» K, g : K\ {0} -> K\ {0}. Define binary 
operations * : K x K ^ K, o : (K \ {0}) x (K \ {0}) K \ {0} by: 

x * y = x + f(y), x o y = xg(y). 

It is easy to check that the operation * (o, respectively) is associative if and 
only if / (g, respectively) satisfies equation (1) ((2), respectively). Some 
further information concerning equations (1), (2) and the subsequent two 
similar functional equations 

(3) h(x + h(y)) = h(x)h(y), 

(4) j{xj(y))=j(x)+j(y) 

one can find in [l]-[5], [9]—[14], [17] and [18]. 
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All these four equations are connected with the problem of multiplicative 
symmetry originating in the operator theory (see e.g. [1]~[4]). Moreover, 
equation (2) arises in the averaging theory applied to the turbulent fluid 
motions (see e.g. [1, p. 330-1]). It is also one of conditions defining the 
Reynolds operator (see e.g. [15] and [18]); therefore we suggest to name it 
the Reynolds equation. 

Z. Darôczy [9] has determined the solutions of (2) (in the class of functions 
/ : M —• R) that are differentiate, the continuous solutions, and the solu-
tions that are bounded; he has also proved that there exist nonmeasurable 
solutions of (2). Later the equation has been studied by N. Brillouët-Belluot 
[2]-[5], J. Dhombres [10]-[14], C.F.K. Jung, V. Boonyasombat, G. Barbançon 
and J.R. Jung [17], and Y. Matras [18]. The integrable solutions has been 
determined in [17]. For recent results, concerning the Hyers-Ulam stability 
of equations (l)-(4), we refer to [19] and [20]. 

Let XQ € R and a : M —> R be an additive function (i.e. a(x + y) = 
a{x) + a(y) for x,y € R) with a(a(x)) = a(x) for x <E R. Define / : R —» R, 
g : R \ {0} -> R by: f(x) = a(x + x0), g(y) = exp o/( ln |y|) for x,y € R, 
¡/ / 0. Then it is easy to check that the functions / , g are solutions of 
equations (1), (2), respectively. If a is continuous we obtain thus continuous 
solutions of the equations. 

Note yet that if / , j : R —• R are solutions of (1) and (4), respectively, 
then / = exp of and j = exp o j satisfy the functional equations 

(5) f(x + ln / (y) ) = f{x)f(y), 

(6) j(x\nj(y)) =j(x)j(y). 

Let ( X , •) be a group and F : C —> X. Then each of the equations (2), 
(3), (5) and (6) is a particular case of the functional equation 

(7) f(F(f(y))-x) = f ( y ) f ( x ) , 
where the unknown function is / : X —* C. On the other hand (7) is a 
particular case of the subsequent pexiderization of (2) 

g(G(y)x) = h(y)h(x), 

considered in [5] for continuous functions g, h, G : IK —> K with K G {R, C}. 
(For yet another justification for equation (7) see Corollary 5). In this pa-
per we deal with equation (7) in the situation where X is endowed with a 
topology. Under some additional assumptions on F and X we give descrip-
tions of the solutions / : X —> C of (7) that are continuous at a point or 
(universally, Baire, Christensen or Haar) measurable. We generalize in this 
way in particular Theorem 5 and (to some extent) Theorem 7 in [17] (see 
Remark 4). 



Reynolds functional equation 861 

Let us start with the following very simple fact. 

LEMMA 1. Let (X, •) be a group and F : C —> X. Suppose f : X —> C is 
a solution of equation (7) and f{X) ^ {0} . Then f(X) is a multiplicative 
subgroup of C and 

(8) f(F(f(y))n • x) = f(y)nf(x) for x,yeX,ne Z. 

Proof . For every x, y G X we have 

(9) f(y)f{F(f(y))~1 • x) = f(F(f(y)) • FUG/))"1 • x) = f(x), 
which means that f(y) ± 0 and /(y)_1/(®) € f(x)- Next. from (7) and (9). 
by induction we obtain (8). • 

COROLLARY 1. Let X and F be as in Lemma 1 and f : X —> C be a solution 
of equation (7). Suppose f(X) C B(c,r) := {a G C : \c — a| < r} for some 
c € C and r G R with 0 < r < |c|. Then f = 1. 

Proof . Lemma 1 implies f(X) C B(c,r) is a multiplicative subgroup of C. 
So 1 G B(c,r). Since 0 ^ B(c,r), it is easily seen that the set {1} is the 
only multiplicative subgroup of C that is contained in B{c, r). Consequently 
f(X) = {!}• • 
COROLLARY 2. Let ( X , •) be a group, G : C -» X and g : X —> R be a 
solution of 

(10) g(G(g(y)) • x) = g(y) + g(x). 
Suppose there is c E R with g(X) C (c, oo) or g(X) C (—oo, c). Then g = 0. 

Proof . Let / = expog, F(x) = G o In \x\ for x € C \ {0} and F(0) = 0. 
Then it is easy to check that (7) holds for every x,y G X. Since, according 
to Lemma 1, f(X) is a multiplicative subgroup of R and f(X) C (ec, oo) or 
f(X) C (0, ec), / = 1. -

In the next proposition we need the following three hypotheses. 

(H) (X, •) is a group with the neutral element e, endowed with a topology 
such that the translations X 3 x —> x • y and X 3 x —* y • x are 
continuous for every y G X. 

(a) F : C -» X and F(l)k G l im z- 0 F(zsi^nl)1 with some k,l G Z, I ^ 0 
(i.e. for every neighbourhood V C X of F(l) f c there exists r G R, 
r > 0, such that F(zs'^nl)1 G V for every 2 G 5(0, r), z ^ 0). 

(/?) There exist m,j G Z, j + 0, such that F(l)m G l i m ^ . j F(Zy. 

REMARK 1. Clearly (a) holds if F is continuous at 0 and F(l)k = F(0) ' for 
some k, I G Z, I > 0, or if F(l)k = l i m ^ 0 F{\)1 for some fc, I G Z, I < 0; (0) 
is valid if F is continuous at —1 and F ( l ) m = 1)J for some m,j G Z, 
3 + 0. 
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PROPOSITION 1. Suppose that (H) and ( a ) hold, r e l , c e C , 0 < r < \c\, 

f : X —> C is a solution of equation (7), the set f ( X ) is not finite, and 

D := f~l(B(c,r)). If f ( X ) C R or (/3) holds, then e £ int (D • D'1), where 

D • D~l : = { ; x - y : x,y E D}. 

P r o o f . For the proof by contradiction suppose that there is a neighbourhood 
U C X of e with U C D • D~l. 

First assume that |/(a:)| ^ 1 for some x G X and I > 0 (I < 0, respec-
tively). Then, by Lemma 1, there is a sequence {xn : n G N } C X with 
limn-Kx>/(^n) = 0 (lim^^oo \f(xn)\ — oo, respectively). Thus, on account 
of (a ) , there exists m E N such that 

i / W l < ^ 

and F { f ( x m)) ' • -^(1) k £ U, which means that 
_ _ y » y » 

|c - f(xm)lc\ > |c| - \ f(xm)lc\ > |c| - = r + > r + \f{xm)l\r 

and there are 2/1,2/2 S D with F(f(xm))1 • F(l)~~k • y\ = 2/2- Hence 

B(c, r) n [f(xm)lB(c, r ) ] = B(c, r) n B(f(xm)lc, \ f(xm)l\r) = 0, 

B(c,r) 3 f(y2) = f(F(f(xm))1 • F(l)~k-Vl) = f ( x m ) l f ( y i ) G f(xm)lB(c,r). 

This is a contradiction. Since the set f { X ) is not finite, that completes the 
proof in the case f ( X ) C M. 

It remains to consider the case f ( X ) C S : = { a G C : |a| = 1}. Then, by 
Lemma 1, f ( X ) is dense in S. Thus, according to (/?), there exists yo E X 

with F(f(y0)y E U • F ( l ) m and 

Consequently 2/2 = F(f(yo)y • F(l)_m • 7/1 for some 2/1,1J2 & D and 

|c - f(yo)jc\ > 2|c| - \ c + f{yo)jc\ > 2\c\ - (|c| - r ) = |c| + r > 2r. 

Further, in view of Lemma 1, f(F(l)~m • y\) = f{y\). Since |/(yo)| = 1, 

B{c, r) n [f(yo)jB(c, r ) ] = B(c, r) n B(f(y0yC, r) = 0, 

B(c,r) 9 / ( i / 2 ) = f(F(f(yoW • F(l)"m • 2/1) = f(yo)jf(yi) G f(yoYB(c,r). 

This contradiction completes the proof. • 

In the sequel, for every k E N, we write Uk : = {z E C : zk = 1}. Next we 
say a subset of a topological space is Baire measurable provided it has the 
property of Baire (see e.g. [21]). 

Let us recall that, under suitable assumptions on the group (X , •) (see 
e.g. conditions (i)-(iv) of Theorem 1), a function / : X C is universally 
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(Baire, Christensen or Haar, respectively) measurable provided, for every 
open set P C C, the set f~1(P) is universally (Baire, Christensen or Haar, 
respectively) measurable. Please note that in the subsequent Theorem 1 we 
assume less than a measurability of a function / ; namely we only assume 
that f~1(P) is measurable for one particular open set P. The next two 
theorems are the main results of this paper. 

THEOREM 1. Let (H) and (a) be fulfilled and f : X —> C be a solution of 
(7). Assume that there exist c G C? r G R, 0 < r < \c\, and a set P C B(c, r) 
such that / _ 1 ( i n t P) ^ 0 and one of the following four conditions is valid: 

(i) X is abelian and metrizable with a complete metric and f~1(P) is uni-
versally measurable (see e.g. [7] or [8]). 

(ii) X is a Baire space (see e.g. [21]) and f~l(P) is Baire measurable. 
(iii) X is a Polish topological abelian group and f~1(P) is Christensen mea-

surable (see e.g. [16]). 
(iv) X is a locally compact topological group and f~l(P) is Haar measurable. 

Further suppose f ( X ) c R or (/?) holds. Then f { X ) = Uk for some k E N. 
Moreover k must be odd if additionally 

(7) there exist m,j G Z with F{-l)2j_1 = F ( l ) m . 

P r o o f . Write P0 := i n t P and T := / _ 1 ( P ) . Since T ± 0, we have f ( X ) 
{0}, whence, by Lemma 1, f ( X ) is a multiplicative subgroup of C and 

consequently 
f ( X ) C ( J b-P0=:B0. 

b € f ( X ) 

Note that Bo, as a topological subspace of C, has a countable basis of topol-
ogy and therefore is a Lindelof space. So there is a set {bn : n € N} C f { X ) 
with 

f ( X ) c |J bn • P0. 
ngN 

Take x G X. There is n G N with F(x) 6 bn • Pq. Next, by Lemma 1, 

fiFibn)-1 • x) = b~lf{x) E b-'bnPo = P0. 
Hence x E F(bn) • T. 

In this way we have shown that 

X = |J F{bn) • T. 
tiGN 

Further, for every n G N, the set F(bn) • T is, respectively, universally, Baire, 
Christensen, or Haar measurable. Thus there is m E N such that 

e e int [F(bm) • T • T " 1 • F ( V ) - 1 ] = : T0, 
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(see e.g. Theorem 1 in [7], Proposition 1 in [6], Theorem 2 in [8] and Theorem 
in [22], respectively) and consequently 

e = F{bm)~l • F(bm) G Fibm)-1 • To • F(bm) = int [T • T " 1 ] . 

(Here it seems that only the case of ( iv) needs some comments. Note that 
then, for a compact neighbourhood V C X of e, we have V C (Jn e N F(bn) T. 

Thus there is m G N such that V fl [F(bm) • T] is of positive Haar measure 
and consequently we may apply the result in [22]). 

Let D := / - x (B (c , r ) ) . Clearly e G int {D D'1), because T C D. Hence, 
according to Proposition 1, f(X) is finite, whence, by Lemma 1, f ( X ) = Uk 
with some k G N. 

Finally suppose ( 7 ) holds and there is z € X with f(z) = —1. Then, 
according to Lemma 1, we have 

- 1 = f(z) = f(F(-1)"2''*1 • F ( - l ) 2 ' " 1 • z) = - f ( F ( i r • z) = - f ( z ) = 1. 

This is a contradiction. Consequently —1 ^ f(X). • 

REMARK 2. If the function / in Theorem 1 takes only real values and ( 7 ) 
holds, then / = 1, because f(X) = Uk with some odd k G N. 

COROLLARY 3. Let (X, •) be a locally compact topological group, (a) be valid, 

/i be the Haar measure on X, n(X) = 00, and f : X —> C be a solution of (7). 
Suppose f{X) C R or ((3) holds. Then f is integrable if and only if f = 0. 

P roo f . Suppose / ^ 0 is integrable. Then so is |/|. Since n{X) = 00 and, 
by Theorem 1, |/| = 1, this is a contradiction. • 

THEOREM 2. Let (H) and (A) be fulfilled and f : X —> C be a solution of (7), 

continuous at a point xq G X. Suppose f{X) C M or (/3) holds. Then f = 0 
or f(X) = Uk for some k G N. Moreover k must be odd if additionally ( 7 ) 
is valid. 

Proo f . Suppose that f{X) ± {0 } . Then, by Lemma 1, f(x0) + 0. Take 
r G M with 0 < r < |/(xo)|. There is a neighbourhood U C X of e with 
f{U-xo)(ZB{f{xo),r). Thus e G int (D • £>_1) for D := f~1(B(f(xo),r)). 

Consequently, on account of Proposition 1, f(X) is finite. We complete the 
proof in the same way as in the case of Theorem 1. • 

COROLLARY 4. Assume (H), (A) and ( 7 ) . Let f : X —> R be a solution 

of (7), continuous at a point. Then f = 1 or f = 0. 

P roo f . Suppose f(X) ± {0 } . Then Theorem 2 implies f(X) = Uk with 
some odd k G N. Since f(X) C R, we must have f(X) = Uy. • 

COROLLARY 5. Assume that (H), (a) and ( 7 ) are valid and define a binary 

operation o : (X x C)2 —»• X x C by: (y, w) o (x, z) = (F(w) • x, wz). Suppose 
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/ : X —> R is continuous at a point XQ G X. Then gr f := {(x,f(x)) : x G 
X} is a subgroupoid of the groupoid (X x C, o) if and only if f = 0 or f = 1. 

P r o o f . Assume gr f is a subgroupoid of the groupoid (X x C, o). Then 

(F(f(y)) • x, f ( y ) f ( x ) ) = (y, f(y)) o (x, f{x)) G gr f 

for every x, y G X. Hence / is a solution of (7) and consequently, by Corol-
lary 4, / = 0 or / = 1. 

The converse is trivial. • 

REMARK 3. Replacing, in the proof above, Corollary 4 by Remark 2 we 
obtain an analogous result for measurable functions / : X —> R. 

COROLLARY 6. Assume (H) and (A) . Suppose X is connected and f : X —> 
C is a continuous solution of (7). If f ( X ) c R or (/?) holds, then f = 1 or 
/ = 0. 

P r o o f . Since f ( X ) is connected, Theorem 2 implies f ( X ) = {0} or f ( X ) 
= UL . 

REMARK 4. In the case where one of the following two conditions is valid: 
1° (X, •) = (C, +) and F(x) = x for x G C; 
2° (X,-) = (R, +), f ( X ) C R, and F(x) = X(x) (the real part of x) for 
x € C, 
(7) takes the form 

(11) f ( f ( y ) + x) = f ( x ) f ( y ) 
and conditions (a), (/?), (7) hold with m = —1, I = j = 1 and k = 0. Thus 
Theorems 1 and 2, Remark 2, and Corollaries 3 and 4 generalize Theorem 5 
and (to some extent) Theorem 7 in [17]. 

In view of the results that we have obtained so far, the solution / : X —> C 
of (7) with finite f ( X ) seems to be quite significant. The subsequent theorem 
describes such solutions for commutative X. In the theorem we use the 
following notions: {d} := {dn : n G Z} for d G X and := cos ^ + i sin ^ 
for k G N. Moreover, for fc,n€Z, we write k\n provided n = km with some 
m G Z. 

THEOREM 3. Let (X, •) be a commutative group and F : C —> X. Then 
f : X —> C is a solution of equation (7) with the set f { X ) {0} finite 
if and only if there exist k G N and a selector S C X of the factor group 
X/{F(rk)} (i.e. S has exactly one element in common with every element 
of X/{F(rk)}) such that 

(12) if card{F(rfc)} is finite, then k\ card (F(r/C)}, 
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(13) F ( r^) • 5 C |J F{rk)m+nk •S for me Z, 
n£ Z 

(14) f(F(rk)m -x) = r% for x e S, me Z. 

Proof . Suppose first that / has the form described in the statement. Ac-
cording to (12), formula (14) defining / is correct. Take x,y e X. There 
exist xo,yo e S and l,m e Z such that x — F(rk)1 • XQ, y = F(rk)m • yo-
Since, by (13), F(r%) • x0 = F(rk)m+nk • z0 with some z0 € S, n e Z and, by 
(14), f(x) = r[, f{y) = we have f(F(f(y))-x) = f(F(r?)-F(rk)l-x0) = 
f { F { r k ) l + m + n k . Zo) = rl+m = f { y ) f { x ) . 

Now assume / : X —> C satisfies (7). On account of Lemma 1, f(X) = Uk 

with some k e N. Hence there exists u e X with rk = f{u). Let So be a 
selector of the factor group X/{F(rk)}- For every x e So there is n(x) e N 
with f(x) = rl{x). Write S = {F{rk)~n(x) • x : x e So}. It is easily seen that 
S C / - 1 ( { 1 } ) is a selector of X/{F(rk)} as well and, in view of Lemma 1, 

U F(rk)nk • S = r^il}) 
nez 

(for every x £ / - 1 ( {1 } ) , there are I G Z and y e S with x = F(rk)1 • y and 
1 = f(x) = f(F(rk)1 • y) = r{f(y) = r[, whence k\l). 

Take x e S and me Z. Then f(z) = rj™ for some z e X and, by (8), 

f(F(rkr • x) = f(F(f(u)r • x) = f(u)mf(x) = 

f(F(rk)~m • F(r™) • x) = f(u)~mf(F(f(z)) • x) = r^f(z)f(x) = 1. 
Thus we have shown (13) and (14). Since (14) implies (12), this completes 

the proof. • 

REMARK 5. Clearly (in Theorem 3), if F{rf) = F(rk)m for me Z, then 
(13) holds for every S CX. 

REMARK 6. Let / : X —> C have the form described in the statement of 
Theorem 3. Then it is easily seen that, for m = 1 , . . . , k, 

r\{r?}) = U nrk)m+nk • S = F(rk)m • ( J F(rk)nk • S 
nez nez 

= F(rk)m • /_ 1({1})-

Hence / is (universally, Baire, Christensen, or Haar, respectively) measurable 
if and only if the set 

nez 
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is (universally, Baire, Christensen, or Haar, respectively) measurable and / 
is continuous at a point z £ X if and only if, for some m e { 1 , . . . , fc}, 

z € F(rk)m • int 5 . 

COROLLARY 7. Assume (H). Let G : R —> X satisfy 

(15) G(0)feG lim G(x) x—t — oo 

with some k G Z (i.e. for every neighbourhood V C X of G(0)k there is 
b € R with G(x) € V for x € (—oo, b)) and g : X —> R be a solution of 
(10). Suppose g is continuous at a point xo £ X or there exists a bounded 
set P C R such that 5 _ 1 ( i n t P ) ^ 0 and one of the conditions (i) — (iv) of 
Theorem 1 is valid, with f~1(P) replaced by g~1{P). Then g = 0. 

P r o o f . Let / = exp og and define F : C —> X by 

F ( x ) = iG(ln(»(rr))), if » ( s ) > 0; 
W \G(0)k, if 3?(x) < 0. 

Then, on account of (15), F is continuous at 0 and F(0) = G(0)k = 
G(lnl) f c = F(l)k, which means (see Remark 1) that condition (a) is valid 
(with I = 1). Next, f ( y ) f ( x ) = e x p ( g ( y ) + g(x)) = e x p ( g ( G ( g ( y ) ) • x)) = 
exp(5(G(ln(exp(5(y)))) • x)) = f(F{f(y)) • x) for every x,y e X. Thus, by 
Theorems 1 and 2, / = 1, whence <7 = 0. • 
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