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ASYMPTOTIC BEHAVIOUR OF REAL TWO-DIMENSIONAL
DIFFERENTIAL SYSTEM WITH A FINITE NUMBER
OF CONSTANT DELAYS

Abstract. In this article stability and asymptotic properties of a real two-dimensional
system z'(t) = A(t)z(t) + >i=1 Bit)z(t — r5) + h(t,z(t),2(t — r1),...,2(t — rn)) are
studied, where 71 > 0,...,r, > 0 are constant delays, A, Bi,...,B, are the matrix
functions and h is the vector function. Generalization of results on stability of a two-
dimensional differential system with one constant delay is obtained using the methods
of complexification and Lyapunov-Krasovskii functional and some new corollaries and an
example are presented.

1. Introduction

The investigation of the problem is based on the combination of the
method of complexification and the method of Lyapunov-Krasovskii func-
tional, which is to a great extent effective for two-dimensional systems.
This combination was successfully used in [2] for two-dimensional system
of ODE’s and in [1] for system with one constant delay and led to interest-
ing results.

This article is related to paper [3] where asymptotic properties of system
with finite number of constant delays were studied. The aim is, under some
special conditions, to improve the results presented in [3] and to illustrate
the advancement with an example.

The subject of our study is the real two-dimensional system

(0) '(t) = A(t)z(t)+ > Bj(t)z(t—r;) +h(t,z(t),z(t—r1),...,2(t—7s)),
j=1

where A(t) = (aic(t)), B;(t) = (bjir(t)) (3,k =1,2) for j € {1,...,n} are
real square matrices and
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h(t’ LYy ay'n) = (hl(th.’yl) s )yn), h‘z(t’ T,Y1. - ,yn))
is a real vector function. We suppose that the functions a;, are locally
absolutely continuous on [tg,00), bj;; are locally Lebesgue integrable on
[to, 00) and the function h satisfies Carathéodory conditions on
[to, 00) x {[z1,22] € R?: 2% + 23 < R*} x {[y11,912] € R®: 4; +47p < R’}
- X {[y’nl)y’n2] € R2: y121,1 +y1?z2 < R2}’
where 0 < R < oo 1s a real constant.
The following notation will be used throughout the article:

R set of all real numbers

R4 set of all positive real numbers

]R?F set of all nonnegative real numbers
C set of all complex numbers

N set of all positive integers

Rez real part of 2

Imz imaginary part of z

z complex conjugate of 2z

ACoc(I, M) class of all locally absolutely continuous functions I — M
Lioc(I,M)  class of all locally Lebesgue integrable functions I — M
K(I x Q,M) class of all functions I x Q — M satisfying Carathéodory

conditions on I x €.

Introducing complex variables z = z1 + iz2, w1 = y11 + Y12, ..., W =
Yn1 + 1Yn2, We can rewrite the system (0) into an equivalent equation with
complex-valued coefficients

Z(t) = a(t)2(t) ) + Z (t)2(t — 5) + B;(8)Z(t — 75)]

+ g(t, z(t), z(t — rl), oo 2(t—14)),

where
at) = %(au(t) +an(®) + 5 () - an(®),
b(t) = 3 (@ (1) — azn(t) + 5(an(t) + an(t),

A;(t) = §(bj11( ) + bjaa(t)) + 2'( bjo1(t) — bj12(t)),
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B;(t) = %(bjll(t) — bjaa(t)) + %(bﬂl(t) + bj12(t)),
oty 2wn, - um) = ha(t 5(2 4 2), 52 = 2), 5 (n +w_1),2ii(w1 _w@),..

1 . ) 1 1 1 __

E(wn — Wr)) + tha(t, 5(2 + %), ﬁ(z -2), E(wl + W),

1 1 1 __

(0 = T0), .., 5 (0 + TR, - (1 — ).
Conversely, the last equation can be written in the real form (0) as well,

the relations are similar as in [2].

2. Results
We study the equation

(1) 2'(@t) = a(t)z(t) + b(t)z(t) + Z[Aj(t)Z(t —r5) + B;(1)z(t — 5]
j=1
+g(t, 2(t), z(t — r1),...,2(t — T0)),
where 7; are positive constants for j = 1,...,n, Aj, Bj € Lioc(J,C), a,b €
ACioe(J,C), g € K(J x Q,C), where J = [tg,00), Q = {(z,wl,...,wn) €
C™1: |z] < Rylwj| < R, j = 1,...,n}, R > 0. Denote r = max{r;: j =

1,...,n}.
In this article we consider the case
(2" litm inf (|Im a(t)| — |b(t)|) > 0
— 00

and study the behavior of solutions of (1) under this assumption.

Obviously, this case is included in the case lim inf;_, (|a(t)| —[b(t)|) > 0
considered in [3], but in this special case we are able to derive more useful
results as we will see later in an example. The idea is based upon the
well known result that the condition |a| > |b| in an autonomous equation
2 = az + bz ensures that zero is a focus, a centre or a node while under
the condition |Ima| > |b] zero can be just a focus or a centre. Details are
contained in [2].

The inequality (2’) is equivalent to the existence of T' > to+7 and p > 0
such that

(2) Ima(t)| > |b(t)| +p fort>T —r.
Denote

(3)  (t) =Ima(t) + v/(Ima(t))? — |b(t)|2sgn(Ima(t)), c(t) = —ib(t).
Since |y(t)| > |Ima(t)| and |c(t)] = |b(¢)|, the inequality

(4) Iy (@®)] > [e(®)] + 1
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is true for all ¢ > T —r. It is easy to verify that v,c € AC\o([T —r, 00),C).
For the purpose of this paper we denote
o) = B (@) —et)d(t) + [y()e(2) - +'(B)e(t)]
(5) (t) = : : .
YA (t) — le(t)]
In the text we will consider following conditions:

(i) The numbers T > to + r and pu > 0 are such that (2) holds.
(ii) There are functions kg, K1, . . ., kn, A: [T,00) — R such that

[Y(#)g(t, 2, w1, - ., wn) + c(£)g(¢, 2, w1, - -, wn))|

< ko) (8)2(8) + c(t)z(2)| + Z ki ()| (¢ = rj)w; + et — r)wz| + M)

for t > T, |2 < R and |w;} < R for j = 1,...,n, where ko, \ €
Ly ([T, 0), R).
(iii) B € ACioc([T, 00), RY) is a function satisfying
(6) B(t) > ¥(t) a.e. on [T,00),
where 1) is defined for every ¢t > T by
@ 0= max {x500+ (4500 + 150

7=1,..,

) [y ()] + 1e)| } '
[yt =ri)l = le(t — )l
(iv) The function A € Ljyc([T,0),R) satisfies the inequalities F'(t) <
A(t)B(t), 0(t) < A(t) for almost all ¢t € [T,00), where the function
@ is defined by
(8) 6(t) = Rea(t) + 9(t) + ko(t) + no(t).
Clearly, if Aj, Bj, x; are absolutely continuous on [T',00) for j =1,...,n
and ¥(t) > 0 on [T, 00), we may choose 3(t) = ¥(¢).
Under the assumption (i), we can estimate

1< LRy e+ e =o'l _ (W1+ (b + e
: P[P =TT e
Y[+ Ic| 1. '
= T < 2y + 1)),
i —tel = 571D

hence the functions ¥ and 6 are locally Lebesgue integrable on [T, 00). More-
over, if B € AC\,([T, 00), Ry ), then in (iv) we may choose

_ B'()
from which one can see that we slightly generalized the situation considered
in [3].
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Notice that the condition (ii) implies that the functions x;(t) are non-
negative on [T, 00) for j = 0,...,n, and due to this, ¥(t) > 0 on [T, o).
Finally, if A(¥) = 0 in (ii), then equation (1) has the trivial solution 2(¢t) = 0.

In the proof of the main theorem we will need

LEMMA 1. Let a1, ag, b1, by € C and |a2| > |b2| Then
a1z + b1z Re(ala_g — blg) + |(11b2 — a2b1|
€ 5 S 2 2
agz + boZ |a2| — |b2|
forze€ C, z#0.
For the proof see [3] or [2].
THEOREM 1. Let the conditions (i), (ii), (iii) and (iv) hold and A(t) = 0.

a) If
t
(9) lim supSA(s)ds < 00,

t—o0

then the trivial solution of (1) is stable on [T, 00);

b) if
¢
(10) lim {A(s)ds = —oo,
t—00
then the trivial solution of (1) is asymptotically stable on [T, 00).

Proof. The proof is similar to that of Theorem 1 from [3].

Choose arbitrary t; > T. Let z(t) be any solution of (1) satisfying the
condition z(t) = zo(t) for t € [t1 —r,t1], where 2o(t) is a continuous complex-
valued initial function defined on t € [t; —r,t1]. Consider Lyapunov function

noot
(11) Vi) =U®+B81)), | Uls)ds,
j=1 t-1;
where U(t) = |y(t)2(t) + c(t)Z(t)|-

To simplify the computations, denote w;(t) = 2(t — r;) and write the
functions of variable ¢ without brackets, for example, z instead of z(t).

From (11) we get

n t
(12) V=U+p . | Uls)ds+nblyz + czl
=1 t=rj
=B It = ry)w; + c(t — ;)]
Jj=1

for almost all ¢ > ¢; for which z(t) is defined and U’(t) exists.
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Denote K = {t > t;: z(t) exists, U(t) # 0} and M = {t > ¢1: 2(t) exists,
U(t) = 0}. It is clear that the derivative U’(t) exists for almost all t € K,
and the existence of the derivative almost everywhere in the set M can be
proved in the same way as in [3].

In particular, the derivative U’ exists for almost all ¢ > ¢; for which z(t)
is defined, thus (12) holds for almost all ¢ > ¢; for which z(t) is defined.

Now turn our attention to the set K. For almost all ¢t € K it holds that
UU' = U(y/(v2 + c2)(7Z + ¢2)) = Re[(vZ +82) (Y2 +v2' + ¢Z+¢Z)]. As
z(t) is a solution of (1), we have

n
UU’ = Re{(’ﬁ +¢z) [7'2 +cdz+ 7(az +bz+ ) (Ajw; + Bjwg) + 9)
7=1

n
+c<ﬁ+52 + Z(A_]'w_J+FJw]) +§)}}
j=1

= Re{('yf +¢z) ['y'z +dZ+ (ya + cb)z + (b + ca)z

+ W(Zn:(Ajwj + B;w;) + ) + c(i(“‘_f“’_i +Bju;) +79)| }

for almost all £ € K. Short computation gives (ya + cb)c = (yb + c@)7y, and
from this we get

UU' < Re{(7Z +t2)(Yz + ¢Z)} + Re{(’y? +22)(va + ¢b) (z + sz) }

+ Re{(’y? +©2) (7 i(Ajwj + Bjw;) + ci(A_J'“’_J' + Fjwj)) }
j=1 Jj=1

+ Re{(vZ +e2)(vg + c9)}-

Consequently,

o n
UV < U Re((a+ 25) + Ul +1el) (3 14j; + Bji3)
=1
"2+ 'z
+Ulyg + ¢g| + U2Re 222
Yz +cZ

for almost all ¢ € K. Applying Lemma 1 to the last term, we obtain
! Ui
Re 12T

Y2 +cz

Using this inequality together with (7), the assumption (ii) and the relation
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Re(a + %5) = Rea, we obtain

UU' <U?(Rea+ 9+ ko) + Uz(njh'(t — rj)w; + c(t — r;)w;])

=1
vl (3 ML BT 130 1)1 - et~ 1)
: - -+
<U (Rea+19+n0)+U{;[ (1451 +1B3) Tj)|_|c(t_rj)|}

X [(t = r)w; + elt - 1;)T51}

n
< U*(Rea+ 9+ ko) + Uy Y _ |y(t — rj)w; + c(t — r;)5]
j=1
for almost all £ € K. Consequently,

n
(13) U' < U(Rea+19+mg)+¢2|'y(t—rj)wj+c(t—rj)w_j|
j=1
for almost all t € K.

Recalling that U'(t) = 0 for almost all ¢ € M, we can see that the
inequality (13) is valid for almost all ¢ > ¢; for which z(t) is defined.
From (12) and (13) we have

n

V' <URea+ 9+ ko +npB) + Z (t —rj)w; + c(t — r;)w;|

+B3 | hle)a(s) + e97(s)lds

JltTJ

As f(¢) fulfills the condition (6), we obtain

n t

Vi) <UD + 81D | Iv(s)z(s) + c(s)Z(s)|ds,

and from the assumption (iv) (which is more general than relation (7) in
[3]) we get

(14) V() - AV () <0

for almost all t > ¢, for which the solution z(t) exists.
The rest of the proof is same as in the proof of Theorem 1 in [3]. =
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REMARK 1. Since
Re(yy' —ed) + v —='ef _ (W14 1EDUrl +1el) _ W]+
72 = le? - 72— e Iyl —lel’
it follows from (4) that we can replace the function 4 in (8) by %(l'y’ [+ ).

9 =

The proofs of following two corollaries are identical to the proofs of
corresponding corollaries in [3].

COROLLARY 1. Let the assumptions (i), (ii) and (iii) be fulfilled and A(t) = 0.
If for some K € Ry and Ty > T the function ((t) satisfies 8(T1) = K,
B(t) < K for allt > Ty and
t
tlim S[Q*(s)].;.ds < 00,

where 6*(t) = 0(t) — nB(t) + nK and [0*(t)]+ = max{6*(¢),0}, then the
trivial solution of (1) is stable.

COROLLARY 2. Assume that the conditions (i), (ii) and (iii) are valid with
A(t) =0. If B(t) is monotone and bounded on [T,00) and if

t
tlim S[O(s)]+ds < 00,
where [0(t)]+ = max{0(t),0}, then the trivial solution of (1) is stable.

We use following Corollary 3 to find an important example which shows,
in connection with the article [3], that it is worth to consider the condi-
tion (2).

COROLLARY 3. Leta(t) =a € C, b(t) =b € C, |Ima| > |b|. Suppose that
P05 P1s- - Pn: [T,00) = R are such that

n
(15) lg(t: 2w, - wn)| < po(®)]2l + Y ps(8) wj|
j=1
fort>T, |z| <R, |wj| <R forj=1,...,n and po € Lioc([T,0),R).
Let B € ACoc([T, ), Ry) satisfy

5 > (|22 ) max(ss() 14,01 + B0 ac. on[7,00)

forj=1,...,n. If

(16) limsup | max (Rea + (w) ’ po(s) +np(s), ﬁl(s)) ds < 00,

s [Tmal - [0 Bs)
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then the trivial solution of equation (1) is stable. If

(17) lim §max (Rea + (w) ’ po(s) + nB(s), ﬁ’(s)) ds = —o0,

t—o00 |III1 a| - |b| ,6(8)
then the trivial solution of (1) is asymptotically stable.

Proof. First part of the proof is identical to the first part of the proof of
Corollary 3 in [3]. We continue with the idea that since

1
7l +lel  |Ima|++/[Imal® — [b]* +]b] (lIma|+ |b|>§
vl = lel  |Imal 4 +/]Imal? — |b]2 — |b] |Imal| — [b] /)

in view of (8) we obtain

mal + [b 3
0(0) = max0) = (22 max{ ) + 14501 + 1B,
Cpega DUEI s o (Imal+[B]) 2
0(0) = Rea-+ P (o) + () = Rea+ (e 5t ) mule) + o).

Since ((t) is positive on [T, 00), we may choose A(t) = max(6(t), %) and
the assertion follows from Theorem 1. w
Now we are able to give an example mentioned before Corollary 3.
ExXAMPLE 1. Consider equation (1), where a(t) = —+v/5 + 23, b(t) = 1,
A;j(t) =0, Bj(t)=0for j € {1,...,n},
2 . “ 1
g(t, z, w1, ..., wy) = —\7_§e’tz +; %(\/1_— V14) et w;.

Assume that {yp = 0 and R = oo, r; may be arbitrary positive constant
delays. Put T' =ty +r. Then po(t) = %, p;(t) = 5(V/15 — V14)e™. We

have
e (lal 1 poa s <|a| + |b|)5 solt) 4+ nB(0), ﬂ’(t)>

@ ol — I 0]
(2 st B0 2
= ( 3\/5+\/§\/§+ B(t),ﬂ(t))z?)(\/é V5) >0
for
jal + o[\ | O = L (VTE - T et
8 > (24 ) me(os) + 14,01+ 1B(0]) = (VI - Vide

where j € {1,...,n}, hence we cannot apply Corollary 3 from the paper [3].
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On the other hand, if we use

B0 = SV et > (LA e, 1,014+ 8,01,

" on |Imal — |b|

where j € {1,...,n}, we have

max (Rea + (M) : po(t) +nB(t), ﬂl(t))

| Tma| — [b] (t)

B
= max(—\/5+ 2+ n\/_(\/ﬁ —V14)e™, —1)

V3
2n
3 12
S_\/g+2+-\g—_(\/15_\/14)<_m<0.

Thus Corollary 3 guarantees the stability and also asymptotic stability of
the trivial solution of the considered equation.

In the following corollary, we denote

_ [ima = A 1B
Hi(t) = || oa i Rea + o6 + nmax{ps(0) + | 45| + B},
fiTmal = o 0
Hy(t) = i ,
O =\ Tmal + ol ma{os® + 1451 7 1351}

where, for every t, the index ¢ in Ha is such that p;(t) + |4;i| + |Bi| =
max; {p;(t) + |4;] + | B;| }-

COROLLARY 4. Let a(t) = a € C, b(t) = b € C, |Ima| > |b| and
A;j(t) = A; € C, Bj(t) = B; € C for all j € {1,...,n}. Let there ex-
ist po, p1,---,0n: [T,00) = R, pg locally Lebesgue integrable and pi, ..., pn
locally absolutely continuous, such that (15) holds for t > T, |z| < R,
lwj| < R, j € {1,...,n}. Suppose max;{p;(t) +|A;| +|Bj|} >0 on [T, )
forje{l,...,n}. If
t
lim supSmax(Hl(s), Hj(s))ds < oo,

t—o0
then the trivial solution of equation (1) is stable. If
t
lim Smax(Hl(s),Hg(s))ds = —00,

t—o00

then the trivial solution of (1) is asymptotically stable.
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Proof. We can choose

Ima| + b)) 2
) = (e ) max{ns ) + 1451+ 1551}

in Corollary 3 since this function is locally absolutely continuous on [T, 00)
forje{l,...,n}. =

The proofs of following theorems and corollaries except for Corollary 5
are omitted since they are almost identical to the proofs of corresponding
propositions in [3].

THEOREM 2. Let the assumptions (i), (ii), (iii) and (iv) hold and

n t
(18)  V(t) = y(D)2(8) + cOZ) + BE) Y | |v(s)2(s) + c(s)z(s)lds,
j=1t— r]
where z(t) is any solution of (1) defined on [t1,00), where t1 > T. Then
t t

i
(19)  wlz(t)| < V(E) < V(s) exp(SA(T)dT) +{A(r) exp(gA(a)do—)dr

S

fort>s2>t.
From Theorem 2 we obtain several consequences.

COROLLARY 5. Let the conditions (i), (ii), (iii) and (iv) be fulfilled and
t T
lim sup S A(T) exp(— S A(O’)dO’) dr < oo

t—o00 s s
for some s > T.

If z(t) is any solution of (1) defined for t — oo, then

2(t) =0 [exp(§ A(T)dr)].

Proof. From the assumptions and (19) we can see that there are K > 0
and S > s such that for £ > S we have
t t T

V(t)exp(—gA() ) Vi(s) < §A(T)exp( SA(a)da)dT§K<oo.

Then ,
pl2(t)] < V(t) < (K + V(s)) exp(SA( )dT). .
COROLLARY 6. Let the assumptions (i), (ii), (iii) and (iv) hold and let
(20) limsupA(t) < oo and A(t) = O(e™),
t—o0
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where nn > limsup,_, ., A(t). If 2(t) is any solution of (1) defined fort — oo,
then z(t) = O(e™).

REMARK 2. If A(t) = 0, from Corollary 6 we obtain the following statement:
there is an 7* < 7o < 77 such that z(t) = o(e™?) holds for the solution z(¢)
defined for t — oc.

Consider now a special case of equation (1) with g(¢, z, w1, . .. ,wn) = h(t):
(21) 2'(t) = a(t)z(t) +b(t) +Z 2(t—r;) + B;(8)Z(t —r5)) + h(t),

where h(t) € Lioc([to, 00),C).

COROLLARY 7. Let the assumption (i) be satisfied and suppose

(22) im sup((7(6)| + |e(9)]) < o

Let B e ACioc ([T, 00),R4) be such that
(23)

()] + le(®)]

A(t) > max{(|A ®)]+|B;®)]) =l = |C(t_rj)|} a.e. on [T,c0).

If h is bounded,
(24) limsup[Rea(t) + 9(t) + n,@(t)] <0 and limsup ﬁj(tt)) <0,

t—o0 t—o0

then any solution of equation (21) is bounded.

If h(t) = O(e™) for any n > 0,

lim sup [Re a(t) + 9(t) + n,@(t)] <0 and limsup ﬁ:(t) <0,

t—00 t—o00 t) -
then any solution of (21) satisfies z(t) = o(e™) for any n > 0.

REMARK 3. If h(t) = 0 in Corollary 7, then, with respect to Corollary 6
and Remark 2, we gain the following assertion:

Suppose that assumptions (i) and (22) hold and for 3 from Corollary
7 the inequality (23) is valid. If conditions (24) are satisfied, then there is
no < 0 such that z(t) = o(e™?) for any solution 2(t) of

2 (t) = a(t)z(t) + b(t) +Z i(®)2(t — ;) + B(8)Z(t — 15))

defined for ¢t — oc.
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THEOREM 3. Let the assumptions (i), (ii), (iii) and (iv) be satisfied. Let
A(t) <0 a.e. on [T*, 00), where T* € [T,00). If
t
(25) tlim SA(s)ds =—o00 and A(t) = o(A(t)),
—00

then any solution z(t) of equation (1) defined fort — oo satisfies lim;_, o0 2(t)
=0.

COROLLARY 8. Let the assumptions (i) and (22) be satisfied, and 3 €
ACioc([T, 00),Ry) satisfy (23). If the conditions (24) are fulfilled and h €
Lyoc([to, 00),C) satisfies limy_,oo h(t) = 0, then limi_,o 2(t) = 0 for any
solution z(t) of equation (21).
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