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ASYMPTOTIC BEHAVIOUR OF REAL TWO-DIMENSIONAL 
DIFFERENTIAL SYSTEM WITH A FINITE NUMBER 

OF CONSTANT DELAYS 

Abstract. In this article stability and asymptotic properties of a real two-dimensional 
system x'(t) = A(t)x(t) + B j ( t ) x ( t — r , ) + h ( t , x ( t ) , x ( t — r i ) , . . . ,x(t — r „ ) ) are 
studied, where r\ > 0, ...,rn > 0 are constant delays, A , B i , . . . , B „ are the matrix 
functions and h is the vector function. Generalization of results on stability of a two-
dimensional differential system with one constant delay is obtained using the methods 
of complexification and Lyapunov-Krasovskii functional and some new corollaries and an 
example are presented. 

1. Introduction 
The investigation of the problem is based on the combination of the 

method of complexification and the method of Lyapunov-Krasovskii func-
tional, which is to a great extent effective for two-dimensional systems. 
This combination was successfully used in [2] for two-dimensional system 
of ODE's and in [1] for system with one constant delay and led to interest-
ing results. 

This article is related to paper [3] where asymptotic properties of system 
with finite number of constant delays were studied. The aim is, under some 
special conditions, to improve the results presented in [3] and to illustrate 
the advancement with an example. 

The subject of our study is the real two-dimensional system 
n 

(0) x'(t) = A ( t ) x ( t ) + J2 Bj(t)z{t - r j ) + h(i, x(t), x{t- n ) , . . . , x(t - r„)), 
j=l 

where A(t) = (aik(t)), Bj(t) = (bjik(t)) (i,k = 1,2) for j G { l , . . . , n } are 
real square matrices and 

1991 Mathematics Subject Classification: 34K20, 34K25, 34K12. 
Key words and phrases: stability; asymptotic behaviour; two-dimensional system with 

delay; Lyapunov method. 



846 J. Rebenda 

h(f, x, 2/1,..., yn) = (hi(t, x,yi,..., yn), h2(t, x, 2/1,..., yn)) 

is a real vector function. We suppose that the functions a ^ are locally 
absolutely continuous on [¿o, oo), bjik are locally Lebesgue integrable on 
[¿o, oo) and the function h satisfies Carathéodory conditions on 

[io.oo) x {[xi,®2] G M2: xj + x¡ < R2} x {[2/11,2/12] G M2: 2/?i + vli < 
X . . . X {[2/ni,yn2] € M2: y2

nl + y2
n2 < R2}, 

where 0 < R < 00 is a real constant. 
The following notation will be used throughout the article: 

R set of all real numbers 
M+ set of all positive real numbers 

set of all nonnegative real numbers 
C set of all complex numbers 
N set of all positive integers 
Re z real part of z 
Im z imaginary part of 2 
z complex conjugate of 2 
AC\oc(I, M) class of all locally absolutely continuous functions I —• M 
Lioc(/, M) class of all locally Lebesgue integrable functions I —> M 
K(I x il, M) class of all functions I x f2 —» M satisfying Carathéodory 

conditions on I x i). 

Introducing complex variables z = x\ + ix2, w\ = 2/11 + W12, . . . , wn = 
2/ni + Wn2, we can rewrite the system (0) into an equivalent equation with 
complex-valued coefficients 

n 
z'(t) = a(t)z(t) + b(t)z(t) + J2[Mt)z(t - rj) + Bjitpit - rj)] 

i=i 
+ 9(t, z(t), z(t - n ) , ...,z(t- rn)), 

where 
1 i 

a(t) = ~{an(t) + a22(t)) + ^(a2i(t) - a12(t)), 

b(t) = ¿(an(t) - a22(t)) + %-(a2l(t) + a12(t)), 

Mt) = l&jn(t) + bj22(t)) + l-(bj2i(i) - bjl2(t)), 
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Bj(t) = \(bjn(t) - bj22(t)) + £(6j2i(i) + 6ji2(t)), 

g(t,z,ti;i,...,«;n) = hi(t, ^ ( z + z), ^ ( z - z), ^(wi + W[), 

- w^) ) + i/i2(i, ^ ( z + z) , ^ { z - z ) , + W[), 

- W ) , • • • i ^ K + ^ K - « i ) ) -
2 ¿1 

Conversely, the last equation can be written in the real form (0) as well, 
the relations are similar as in [2]. 

2. Results 
We study the equation 

n 

(1) z ' ( i ) = a(t)z(t) + b(t)z(t) + Y\Aj{t)z{t - r j ) + Bj{t)z{t - rj)] 

3=1 

+g{t, z(t), z(t - r i ) , ...,z(t- rn)), 

where rj are positive constants for j = 1 , . . . , n, Aj, Bj € L\oc(J, C ) , a, b E 

AC\oc(J,C), 3 € /("(J x ft,C), where J = [io, oo), f2 = { ( z , to i , . . . ,wn) € 

C n + 1 : |z| < i?, ItOjl < R, j = 1 , . . . , n } , i? > 0. Denote r = m a x j r j : j = 

In this article we consider the case 

(2') l iminf(|Imo(i )| - |6(i)|) > 0 
t—»oo 

and study the behavior of solutions of (1) under this assumption. 
Obviously, this case is included in the case liminft_>00(|a(i)| — |&(t)|) > 0 

considered in [3], but in this special case we are able to derive more useful 
results as we will see later in an example. The idea is based upon the 
well known result that the condition \a\ > |6| in an autonomous equation 
z' = az + bz ensures that zero is a focus, a centre or a node while under 
the condition | Ima| > |6| zero can be just a focus or a centre. Details are 
contained in [2]. 

The inequality (2') is equivalent to the existence of T > to + r and /x > 0 
such that 

(2) |Im a( t ) j > j b(t) \+fi for t > T - r. 

Denote 

(3) 7 ( i ) = Imo ( t ) + \/ ( Ima( i ) ) 2 - \b(t)\2 sgn ( Imo( i ) ) , c(t ) = -ib(t). 

Since |7 ( i )| > |Ima(i)| and |c(i)| = |6(i)|, the inequality 

(4) l 7 ( t ) l > K t ) | + /i 
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is true for all t > T — r. It is easy to verify that 7, c € AC\oc(\T — r, 00), C). 
For the purpose of this paper we denote 

_ Ml(th'(t) - c{t)c'{t)) + 1-y(t)c'(t) - -y>(t)c(t)| V[T) — 27 1 /.\i2 • 
72( i) - |c(t)|2 

In the text we will consider following conditions: 
(i) The numbers T > to + r and n > 0 are such that (2) holds. 

(ii) There are functions /to, K i , . . . , nn, A: [T, 00) —> R such that 

|7 (t)g(t, z,wi,...,wn) + c(t)g(t, z,w 1,..., w„) | 
n 

< K0(t)\i(t)z(t) + c(t)z(t)| + Y^ «¿(i)l7(i - + c(i - rj)«37| + A(i) 
3=1 

for i > T, |z| < i? and |tUj| < i i for j — 1 where ko,A € 
Lioc([T,oo),M). 

(iii) /? € ylCioc([r, 00), R+) is a function satisfying 

(6) (3(t) > ip(t) a. e. on [T, 00), 

where 1/> is defined for every i > T by 

(7) V(t) 

(iv) The function A € Lioc([T, 00), M) satisfies the inequalities f3'(t) < 
A(£)/?(£)> < A(í) for almost all í G [T, 00), where the function 
0 is defined by 

(8) 6(t) = Rea(t) + 0(t) + «o(í) + n/3(t). 

Clearly, if A,, Bj, fa j &I6 absolutely continuous on [T, 00) for j = 1 , . . . , n 
and ^( í ) > 0 on [T, 00), we may choose (5{t) = ip(t). 

Under the assumption (i), we can estimate 

| R e ( 7 7 ' - c c Q | + | 7 c ' - 7 ' c | < (IVI + KIXM + |c|) 
1 1 - 7 2 - |c|2 " 7 2 — |c|2 

IVI + \A 1 ,, i m 
| 7 | - | c | - / ' 7 l ' U ' 

hence the functions 1? and 9 are locally Lebesgue integrable on [T, 00). More-
over, if P E AC\oc ([T, 00), R+), then in (iv) we may choose 

A(t) = m a x ( * ( t ) , ^ ) , 
m 

from which one can see that we slightly generalized the situation considered 
in [3], 
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Notice that the condition (ii) implies that the functions Kj(t) are non-
negative on [T, oo) for j = 0 , . . . , n, and due to this, il>{t) > 0 on [T, oo). 
Finally, if \{t) = 0 in (ii), then equation (1) has the trivial solution z(t) = 0. 

In the proof of the main theorem we will need 

Lemma 1. Let a\, a2, b\, b2 G C and |<X21 > |&2|- Then 

^ a\z + b{z < Re(aia2 - hb2) + \aib2 - a2h\ 
a2z + b2z~ |a,2|2 - \b2\2 

for z e C, z / 0. 

For the proof see [3] or [2]. 

Theorem 1. Let the conditions (i), (ii), (iii) and (iv) hold and A(t) = 0. 

a) If 
t 

(9) limsupj A(s)ds < 00, 
t—*oo 

then the trivial solution of (1) is stable on [T, 00); 
b) if 

t 
(10) lim \A(s)da = -00, 

t—* 00J 

then the trivial solution of (1) is asymptotically stable on [T, 00). 

Proof . The proof is similar to that of Theorem 1 from [3]. 
Choose arbitrary t\ > T. Let z(t) be any solution of (1) satisfying the 

condition z(t) = zo(t) for t € [t\ — r, ij], where zo(t) is a continuous complex-
valued initial function defined on t G [h — r, ti]. Consider Lyapunov function 

n t 
(11) v(t) = u ( t ) + m J 2 i u ^ d s > 

3=1 i~ rJ 
where U(t) = \^{t)z{t) + c(i)z(i)|. 

To simplify the computations, denote Wj(t) = z(t — rj) and write the 
functions of variable t without brackets, for example, z instead of z(t). 

From (11) we get 
n t 

(12) V' = U' + p'Y^ $ U(s)ds + n^z + cz\ 
j = l t-rj 

n 

-PYl l7(f - ri)wi + c(i - rj)w]I 
3=1 

for almost all t>t\ for which z(t) is defined and U'(t) exists. 



850 J. Rebenda 

Denote K = { i > i i : z(t) exists, U(t) ^ 0} and M. = {t > t\: z(t) exists, 
U(t) = 0}. It is clear that the derivative U'(t) exists for almost all t € K., 
and the existence of the derivative almost everywhere in the set A4 can be 
proved in the same way as in [3]. 

In particular, the derivative U' exists for almost all t > t\ for which z(t) 
is defined, thus (12) holds for almost all t > t\ for which z(t) is defined. 

Now turn our attention to the set fC. For almost all t G K, it holds that 
UU' = U ( ^ ( j z + cz)(jz + cz))' = R e [ ( 7 2 + cz)(j'z + 7 z ' + c'z + cz')]. A s 

z(t) is a solution of (1), we have 

( r n 

UU' = Rei (7z + cz) 7'z + c'z + 7(az + bz + ^ ( A j W j + Bjwj) + g\ 
{ L j=1 

n 1 

+ c(az + bz + {AjWj + BjWj) + ]fj > 

3=1 -1 J 

= Re | (72 + cz) ^7'z + c'z + (7a + cb)z + (7b + ca)z 

n n 

+ + B M ) + 9 ) + + + b)] } 
j=1 j=1 

for almost all t G K,. Short computation gives (7a + cb)c = (7b + ca)7, and 
from this we get 

UU' < Re{(7^ + cz)(j'z + c'z)} + Re j(7z + cz)(ja + cb) (z + ^ j j j 

n n 

+ Re | (72 + cz) (7 J 2 { a j w j + bjWj) + C Y 1 ( A ^ + } 

3=1 ' " 

+ Re{(7z + cz)(>yg + eg)}. 

Consequently, 

3=1 

n 

UU' < U2 R e ( a + + U(|7| + \c\) |AjWj + Bjw]|) 
7 j= i 

+ U\7g + cg\ + U 2 R e 7 ' Z + C J 
7 z + cz 

for almost all t £ 1C. Applying Lemma 1 to the last term, we obtain 

7' z + c'z 
Re < 1?. 

7 z + cz 

Using this inequality together with (7), the assumption (ii) and the relation 
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Re(a + ^b) = Re a, we obtain 

n 

UU' < U2(Rea +1? + k0) + Uj2(Kj\-y(t ~ r i ) w i + ~ 
j=l 

+ "CM + M > ( £ - ^>1 - K t - , ) ! ) ) 

n 

< U2 (Re a +0 + K0) + U { [k, + (| A,- | + | Bj \) 
+ c 

3=1 
| 7 ( i _ r . ) | _ | c ( i _ r j ) | 

x | 7 ( i - r j ) w j + c(i - r j ) w j | } 

w j I < J72(Rea +1? + «o) + ~ r j ) w i + c ( i ~ r i ) 
j=l 

for almost all t € K. Consequently, 
n 

(13) U' < i7(Rea + 0 + kq) + ip ^ |-y(t - r^)«;, + c(f - r^w]\ 
3=i 

for almost a l i i G /C. 
Recalling that U'(t) = 0 for almost all t G .M, we can see that the 

inequality (13) is valid for almost all t > t\ for which z(t) is defined. 
Prom (12) and (13) we have 

n 

V' < U(Re a + ti + Ko + n/3) + (Tp-l3)^2 \l(t ~ r j ) w j + c(t - rrfwj\ 

3=1 
n t 

+ i h(s)z(s) + c(s)z(s)\ds. 
j = 1 t-rj 

As /5(£) fulfills the condition (6), we obtain 

V'(t) < U{t)0(t) + P'{t) £ j Ms)z(s) + c(s)z(s)\ds, 
j = 1 t T j 

and from the assumption (iv) (which is more general than relation (7) in 
[3]) we get 

( 1 4 ) V'{t) - A ( t ) V ( t ) < 0 

for almost all t>t\ for which the solution z(t) exists. 
The rest of the proof is same as in the proof of Theorem 1 in [3]. • 
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REMARK 1. Since 

0 = 
Re( 7 V - cc') + | 7c ' - jc\ < (IVI + Ic'IXH + \c\) IVI + |c'| 

7 2 — lcl2 ~ 7 2 — lc |2 ITI ~~ lcl 
< 

it follows from (4) that we can replace the function 1? in (8) by + |c'|). 

The proofs of following two corollaries are identical to the proofs of 
corresponding corollaries in [3]. 

COROLLARY 1. Let the assumptions (i), (ii) and (iii) be fulfilled and X(t) = 0. 
If for some K € R+ and T\ > T the function (3(t) satisfies (3(T\) = K, 
(3(t) < K for all t > Ti and 

lim \[0*(s)l+ds < 00, t—>00J 

where $*{t) = 6(t) - n(3(t) + nK and [9*(t)]+ = max{0*(i), 0}, then the 
trivial solution of (1) is stable. 

COROLLARY 2. Assume that the conditions (i), (ii) and (iii) are valid with 
A(t) = 0. If (3(t) is monotone and bounded on [T, 00) and if 

where [0(i)]+ = max{0(t),O}, then the trivial solution of (1) is stable. 

We use following Corollary 3 to find an important example which shows, 
in connection with the article [3], that it is worth to consider the condi-
tion (2'). 

COROLLARY 3. Let a(t) = a e C, b(t) = b e C, I Ima| > |6|. Suppose that 
po, pi, •. •, pn [T, 00) —> R are such that 

3=1 

for t >T, \z\ < R, \wj \ < R for j = 1 , . . . , n and po G Lioc([T, 00), R). 
Let ¡3 € AC\oc([T, 00), R + ) satisfy 

lim \ [0(a)]+ds < 00, 

n 
(15) 

2 
msoi(pj(t) + \Aj(t)\ + \Bj(t)\) a.e. on [T, 00) 

for j = l,...,n. If 

(16) lim sup j max I Re a + 
t—»00 
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then the trivial solution of equation (1) is stable. If 

(17) Mm J max ( i l e a + 2 * ( < ) + n0{s) , ds = - o o , 

then the trivial solution of (1) is asymptotically stable. 

P r o o f . First part of the proof is identical to the first part of the proof of 
Corollary 3 in [3]. We continue with the idea that since 

bi + |c| _ | Ima| + y/\ Ima|2 - \b\2 + |b| _ /1 Ima| + | 
M - M | Ima| + y/\ Ima|2 - |6|2 - \b\ \JIma|-|&l 

in view of (8) we obtain 

xP(t) = m a x i p j ( t ) = 2 mflx{pi(t) + + 

6{t) = R e a + M ± M p o ( i ) + nf3{t) = R e a + f * P o ( t ) + nfi(t). 
m - \c\ V l I m a l - l 6 l / 

Since P(t) is positive on [T, oo), we may choose A(t) = max(#(i), and 
the assertion follows from Theorem 1. • 

Now we are able to give an example mentioned before Corollary 3. 

EXAMPLE 1. Consider equation (1), where a(t) = —\/5 + 2i, b(t) = 1, 
Aj(t) = 0, Bj(t) = 0 for j € { 1 , . . . , n}, 

2 n 1 
g(t,z,w!,...,wn) = z + J ^ ^ (>/l5 - VU)e~twj. 

j=i 

Assume that ¿o = 0 and R = oo, r3 may be arbitrary positive constant 
delays. Put T = t0 + r. Then p0(t) = pj(t) = - e~K We 
have 

m a x 1 1 1 1 R e a + p0(t) + n/3(t), W 1 

for 

a| VM - \b\ J P(t) J 

= m a x ( - | x / 5 + V2-j= + np(t), > f (>/6 - y/E) > 0 

m - ( r h s [ ) 2 m r ^ p j { t ) + + { B j { t ) ] ) = 

where j E { 1 , . . . , n} , hence we cannot apply Corollary 3 from the paper [3]. 
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On the other hand, if we use 

m = ^ ( v / i S - v ^ e - * > 2 m a x ^ ^ + I ^ W I + I ^ W I ) , 

where j G { 1 , . . . , n}, we have 

/ /limai + \b\\ì .. , (3'(t)\ 
max I Re a + I j— — L i p0(t) + n/3(t), H w ' 

Ima| — \b\J ruw " ¡3{t) 

( - V 5 + 2 + - V i i ) e - t , - l ) = max | — 

Thus Corollary 3 guarantees the stability and also asymptotic stability of 
the trivial solution of the considered equation. 

In the following corollary, we denote 

Hi(t) = + + p0(t) + nmax{Pj(t) + \Aj\ + \Bj\}, 

H2(t)= /|Imo|_|61 A® 
| Ima| + \b\ m&x{pj(t) + \Aj\ + |-Bj|} ' 

where, for every t, the index i in H^ is such that pi(t) + \At\ + \B%\ = 
maxj{Pj(t) + \Aj\ + \Bj\}. 

COROLLARY 4. Let a(t) = a G C, b(t) = b G C, |Ima| > |6| and 
Aj(t) = Aj G C, Bj(t) = Bj G C for all j G { 1 , . . . , n } . Let there ex-
ist po, pi,..., pn: [T, oo) —» M, po locally Lebesgue integrable and pi,...,pn 

locally absolutely continuous, such that (15) holds for t > T, \z\ < R, 
\wj\ < R, j G { 1 , . . . , n). Suppose max.j{pj(t) + \ Aj \ + l-Bj |} > 0 on [T, oo) 
forj G {1,..., n}. If 

t 
l imsupjmax(iii(s), H2(s))ds < oo, 

t—»oo 

then the trivial solution of equation (1) is stable. If 

t 
I 

t—»OO • 

then the trivial solution of (1) is asymptotically stable. 

lim \max(Hi(s),H2(s))ds = —oo, 
i 4.I-Y-) J * ' 
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P r o o f . We can choose 

m = ( ^ f m ) " + + l B j ] } 

in Corollary 3 since this function is locally absolutely continuous on [T, oo) 
for j € { 1 , . . . ,n} . • 

The proofs of following theorems and corollaries except for Corollary 5 
are omitted since they are almost identical to the proofs of corresponding 
propositions in [3]. 

THEOREM 2. Let the assumptions (i), (ii), (iii) and (iv) hold and 
n t 

(18) y ( t ) = | 7 ( iMt) + c ( t ) z ( i ) | + / 9 ( i ) E i h(s)z(s) + c(s)z(s)\ds, 
3=1 t-rj 

where z(t) is any solution of (1) defined on [ii,oo), where t\ > T. Then 
t t t 

(19) n\z(t)| < V(t) < V(a)exp( jA(r)dr) + \ A(r) exp( j A(a)da^dr 
S S T 

for t>s>ti. 

From Theorem 2 we obtain several consequences. 

COROLLARY 5. Let the conditions (i), (ii), (iii) and (iv) be fulfilled and 

lim sup J A(r) exp ( — J A(a)da J dr < oo 
t - 0 0 b V » J 

for some s >T. 
If z(t) is any solution of (1) defined for i —> oo, then 

t 
z(t) = o[exp(jA(r)dT)] . 

s 

P r o o f . Prom the assumptions and (19) we can see that there are K > 0 
and S > s such that for t > S we have 

t t T 
V(t) exp^— J A(r)drJ -V(s) < \ A(r) e x p ( - \ A(a)da) dr < K < oo. 

s s s 

Then 

H\z(t)\ < V(t) < ( X + F ( s ) ) e x p ( j A ( r ) d r ) . . 
s 

COROLLARY 6. Let the assumptions (i), (ii), (iii) and (iv) hold and let 

(20) lim sup A(t) < oo and X(t) = O(e^), 
t—> oo 
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where 77 > limsup t_>00 A ( t ) . If z(t) is any solution of (1) defined for t —» 00, 
then z(t) = 0(e*) . 

REMARK 2. If A(i) = 0, from Corollary 6 we obtain the following statement: 
there is an 77* < 770 < r] such that z(t) = o(en°t) holds for the solution z(t) 
defined for t —> 00. 

Consider now a special case of equation (1) with g(t, z,w\,... ,wn) = h(t): 
n 

(21) z'(t) = a(t)z(t) + b(t)z(t) + £ { A j ( t ) z ( t - r j ) + Bj(t)z(t - r j ) ) + h(t), 
j=1 

where h(t) 6 Lioc([to, 00), C). 

COROLLARY 7. Let the assumption (i) be satisfied and suppose 

(22) limsup(|7(t)| + |c(t)|) < 00. 
t—>00 

Let ¡3 e ACioc([T, 00), R+) be such that 
(23) 

P(t) > max{ ( |Aj(t)l + |Bj(t) |) ^ * ^ } a . , on [T,oc). 

If h is bounded, 

(24) lim sup [Re a(t) + i?(i) + n/3(t)l < 0 and lim sup < 0, 
t—>oo t—>00 P(t) 

then any solution of equation (21) is bounded. 
If h{t) = 0(ent) for any 77 > 0, 

lim sup[Rea(i) + 19(f) + n/?(f)l < 0 and lim sup i ^ - < 0, 
i-» 00 t—>oo ^{t) 

then any solution of (21) satisfies z(t) = o{er)t) for any 77 > 0. 

REMARK 3. If h(t) = 0 in Corollary 7, then, with respect to Corollary 6 
and Remark 2, we gain the following assertion: 

Suppose that assumptions (i) and (22) hold and for ¡3 from Corollary 
7 the inequality (23) is valid. If conditions (24) are satisfied, then there is 
770 < 0 such that z(t) = o{emt) for any solution z(t) of 

n 

z'(t) = a(t)z(t) + b(t)z(t) + ~ rj) + Bj(t)z(t - rj)) 
j=1 

defined for t —> 00. 



Two-dimensional differential system 857 

THEOREM 3. Let the assumptions (i), (ii), (iii) and (iv) be satisfied. Let 
A(t) < 0 a.e. on [T*,oo), where T* G [T, oo). If 

t 

(25) l im \A(s)ds = —oo and X(t) = o(A(i)), 
t—>oo J 

then any solution z(t) of equation (1) defined fort —> oo satisfies l im^oo z( i ) 
= 0. 
COROLLARY 8. L e i the assumptions (i) and (22) be satisfied, and ¡3 € 
AC\OC(\T, OO), M+) satisfy (23). If the conditions (24) are fulfilled and h € 
Lio c([io, oo), C ) satisfies l im^oo h(t) = 0, then limt-,00 z(t) = 0 for any 
solution z(t) of equation (21). 
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