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ON TYPICALLY REAL FUNCTIONS
WHICH OMIT TWO CONJUGATED VALUES

Abstract. In this paper we discuss the class T}, ¢ consisting of typically real functions
which do not admit values wo = pe*® and Wo. We estimate the second and the third
coefficients of a function f € T, and we determine the Koebe domain for the class of
typically real functions with fixed second coefficient.

Let T denote the class of analytic functions f in the unit disk A = {z €
C : |z| < 1} and normalized by f(0) = f/(0) — 1 = 0 for which the condition

Imz-Imf(z) >0 for z€ A

is satisfied. The class T is called the class of typically real functions. Rogosin-
ski [5] gave the explicit relation between a function f € T and a probability
measure 4 defined on [—1,1]. Namely,

1
z
T =\ ——du(t).
feT <= f(2) _Sll—2zt+z2 u(t)
In 1977 Goodman [1] defined the universal typically real function
1 mZ
(1) G(z) = ;tan T+ 2

and determined the Koebe domain for T.

THEOREM A [1]. The Koebe domain for the class T' is symmetric with respect
to the real axis and the boundary of this domain in the upper half plane is
given by the polar equation p(0)e®, where

7 sin @
e p(0) = { oy €O
%, #=0o0rf=nm.
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In this paper we study a subclass of the class T', consisting of functions,
which do not admit values wg = pe‘o and wp. This class we denote by T, ¢.
The class T}, is defined as follows

Too={feT:f#pe}, 0<0<m, p=>p8),

where p(8) is given by (2).
In our paper we will use the class Ty which was investigated by Koczan
[2]. The class T consists of typically real bounded functions, i.e

Tu={feT:|f(z)l <M, ze A}, M > 1.
For 0 € (0, 7) let

az
®) Hole) =20+ T
where 9
— 8(m — )~
a=8(r )7r’
and
26
4 =1-=.
() t=1-=
Let
¢ _ o—i8giHs(2)
(5) Go(z) = p(0) 1 _ ¢iHo(2)
Moreover, denote by
P
6 M=—,
© p(6)

where p(#) is given by (2).
THEOREM 1. The class T, ¢ can be written as follows

T, = {M' (Gaoﬁ) : gGTM},0€ (0,m), p > p(8),

where M, p(6) and Gy are defined by (2), (5), (6), respectively.

Proof. In the proof of this theorem we use the method which was presented
in [4].
Let f € T and f(z) # pet™®, 6 € (0,7), p > p(). We consider a function
of the form ,
f(2) — pe®

f(z) — pe=i®”
This function is analytic in A and omits 0. Therefore, the function

_ il
h(z) = %log fL(iz))——_%

is analytic in A, too. The branch of the logarithm is such that h(0) = 26.
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Hence ¢if _ o—ibih(2)

f(Z) =p 1 _ ¢ih(2)
Moreover, h(z) # 2kw, k € Z, because 1 — e***) # 0. From this fact and
from the equality

p —2iImh(z}\ o3
Imf(Z)Zm(l—e 2iTm A ))s1n9,

we have ImzImh(z) >0, z € A.

Furthermore, h(0) = 26 and for real x there is h(z) # 2kn, k € Z. The
function A is typically real, so we get 0 < h(z) < 27, z € (—1,1).

From these properties of h we conclude that h is subordinated to the
univalent function Hy, which is given by (3). For Hy we have Hy(0) = 26,
Hy(A)=C\{p€eR:pe (—00,0)U(2m,00)}. Hence h(z) = Hg(w(z)) where
w(z) = Hy ' (h(2)). From this fact and h, Hg € T we get Im zImw(z) > 0.

We have

9 i
2500 _ 1(0) = Hy(0)-/(0) = a-/(0),
therefore, 0 gin 0
(0) = sinf _ p(6)
p-a P
Hence p
w . LU(Z) ;(%).
Let p

where M is given by (6). We have
et _ o—i0,ih(2) et _ e—weiHo(ﬂle) 9(2)
@) =p——mm— =+ ey =M Go (_JT/I_>’
€ 1—¢ 0( M )
where Gy is given by (5). O

Observe that the function (5) we can extend onto limiting cases § = 0
and § = m. When 6 = 0 we have

) 2
Hyo(z) =0 and Go(z) = gm(lj Gy(z) = L
If 8 = & then we get
. z
Hp(z)=2r and Gr(z)= (}m}r Gy(z) = a—a

(
One can prove that the function (5) could be written in the form

G(&L) - Gle
(7) Go(z) = ((fjczz)G,((f)),

where G is given by (1) and ¢ = ¢(f) = Nﬁg—ﬁ.
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LEMMA 1. Let

(8) p(6) = % (:11_109 + cos 9) ,0 € [O, g]
and

(9) 70) =p (5|5 -6]),0 €0,
Then

(10) p(0) < p*(9),

where p(8) is given by (2) and p*(0) is described in (9), 6 € [0, 7).

Proof. We shall prove the inequality (10). Observe that for # = 0 this
inequality is obvious. Let 6 € (0, 7). Then (10) is equivalent to

(20 — 7)sin@ + 20(mw — 8) cos 6 > 0.
Let us denote
1(6) = (20 — 7)sin8 + 26(m — G) cos b, 6 € (0 W).

2
Because
1"(8) = —3(r — 20) sin 6 — 20(m — ) cosd < 0, § € (0, g),
so the function [(f) attains its lowest value in 0 or in 7. Hence
1(6) > min{lim {(9), lim 1(0)} = 0,
0—0 0—3
and consequently (10) is true. Moreover,
m
pl0) = sl = 6) < pr(x—0), 0 € | 7.7
Therefore,
o(6) < p*(8), 0 [0, o

In the next theorem we estimate the second and third coefficients of a
function from the class T, .

THEOREM 2. If f € T, and f(2) = z + agz® + a323 + ... then

1 (i i
(11) ;(ﬂ—cow) —2§azs—%(sme +cos0) +2, 6 €0,7],

0 m—0
and
(12)
%QQ _1, (p,0) € A
32§ 3= 4 (306 +coo0) + b (fy + 0 4 2eog0l) - (p0) € B
g _ % (¥ — cosb) + ;15 (sigza _ sirb20 n 2cos;0+1) ’ (p,0) € C
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and

_ 2 . )
(13) a3S3+% [G(W f)cos*f sinf (1_&9)(3080] 4 sin 0.

7 siné T T 3p?

The sets A, B, C are described as follows:

A={(p,0),p > p*(0),0 € [0,7]},

B= E(p,ﬂ),p((’) <p<pi(0),8€[0,3]},
(0:0),p(0) < p < pr(m —6),0 € [5,7]},

where p1(6), p*(8) are defined by (8) and (9).

837

Proof. Let f(2) =z+agz?+asz®+--- €Ty, 0 € (0,7, p > p(8), p(9) is
given by (2), and let Gg(z) = 2+ A2(8)2> + A3(0)23+. .. .. From Theorem 1
flz)= M~G9(%), where Gy is given by (7) and g(2) = 2+c22+c3z3+- -+ €

Ta, M is defined by (6). Hence

1
(14) az = C2 + oM G5(0)
and
(15) az = c3 + 02 -G(0) + 6M2 —— Gy (0),
where M is defined by (6). We have
G”(C) 9

(16) Gy(0) = a1 (1-=c*)—2c
and

moy _ (= A)*G"(c) _ (1-A)G"(¢) 2
(17) GO =—F b o
From

G'(c)  —2¢(3—c?)  2m(l1—c?) e
(18) Gl - 1-cd T rer Miye
and

1 2 1-c2\?> 4 0
(19) T (T) 72 (0 =)
and (16) we get
G5(0)

(20) Ay () =

_ % (70 — 20 — 26(x — 6) cot ) .
Using (6) and (20) in the formula (14) we have

sin @

m-(ﬂ'—%—%(ﬂ—ﬁ)co‘w)

a2 =co +
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and, consequently,
(m—26)sinf cosf
26(m — 0)p P
Taking advantage of the precise estimation of the second coefficient for func-
tions in Ty (see [2])

1 1
— - < < —_——
2(1 M)_c2_2(1 M)

and equality (21) we have

_of1_ 7sin 6 sinf(m —26) cosf
40(m — 0)p 20(m — 0)p P

(21) ag = C2 +

= a2

<a(1- wsinf sin@(w —26) cosé
= 46(m — 0)p 260(w — 0)p p
The above inequality is equivalent to (11).
Now we are going to estimate the third coefficient of f € T}, 9. Using

" . 2\ (A g2 _ 2\4
(1_02)26‘ (c)= 6(1 — c*)(c* — 6¢ +1)+27r2(1 c*)
G'(c) (1+¢?)? (1+c2)4
12me(1 — c2)%(c? - 3) e (1-c)* , 5 mc
ETE tan1+c2+6(1+cz)47r tan T
(18) and (19) in the formula (17), we get
G (0) 20 — m\?
)= 27 = _14+4
As(0) 6 + ( - )
16(260 — — A9(m — > 16(m — 0)%9°
+ 6(20 720(” 6) cot @ + (—G(w %) cot9> +—6(7r 29) b .
™ T 3r
From the fact and equalities (15) and (20), we have
co [ (m—20)sinf sin® @
= = —————2c0o80 } - ———
o3 =cst p ( O(m —0) 08 4020(w — 6)
+ 2cos?0 +1 _ (m—26)sin26
3p? 2p%(m —6)8

Applying (2) and (4) we get

p*(0)  4tp(8) cosd + 1+ 2cos?8
p? p? 32

From now on to the end of this proof we take M, t as in the formulae (6)

and (4), respectively. In order to estimate the coefficient ag we shall use the

as = c3+ %2 (4tp(#) — 2cos ) + (4t2 — 1)
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region of values (cz, c3), where g(z) = z+ca22+c323+- -+ € Tay. This region
is of the form [3]

Aso(Tar) = {(C2,c3) . 2 (1 - %) < <2 (1 - %) ,
)

1 4 1 2
2
02‘1+W30353‘M+W*M_1}-

Let co = z, c3 = y. We consider a function

2 1+ 2cos?0
k(z, y)-y+ (4tp(0) — 2cos6)+(4 t2—1)pp(20)—4tp(?20050+ +3;;S '

From the inequahtles, given in the description of the set A3 3(Ths), we have

4 1 z? 2z
22) Kz,y)<3——=+ 5 ————+—(2tp(0) — cosb
(22) k(o) <3 37+ 373~ 3= + o (20(6) = cos)
2(6) 4tp(@)cos® 1+ 2cos’d
+( ) p2 ,02 + 3p2
and
1 2z p%(8
(23) k(z,y) > 2 —1+ﬁ2-+ (2tp(9) — cosh) + (4t — 1) p(2)
_4tp(0)cos0+1+2cos29
p? 302

If we want to determine the upper estimate of ag, we shall find the maximum
of the function

7’ ——(2tp(0) —cosf)+3— 4
M-1 M M2
_ 4tp(6) cos 8 4 1+ 2cos?0
p? 3

when z € [-2(1— 4),2(1 — £;)]. Observe that K is a quadratic function of
the form

K(z)=-

+ (4t? — 1) 2;0)

R .C)) 2z p(6) p*(6)
K(z) = e p(0)x2 + > (2tp(6) — cos ) + 3 — 47 + 4t27

_ 4tp(6) cos b + 1+2cos?8
p? 3p2

which attains its local maximum in the point

L _ (260(6) ~ c056) (o~ p(6))
Y pp(6) '
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It is easy to check that z,, € [—2(1—4),2(1—7)] for p > p(6) and 6 € [0, 7].
The maximum of K is equal to

(p = p(6))(2tp(6) —cos?8) o ,p(6)

Kma:z: =
p*p(0)

+ 42 p%(6) _ 4tp(6) cos b + 1+2cos?6
2 p2 3p2

b

or equivalently

1 (40(7r —6)cos? @ N sin®f  4siné

Kmaz=3+; —4tcos()).

msinf 3p
From (22) we have k(z,y) < Kmqz and consequently ag < Kpqz, p > p(0)
6 € [0, 7]. Hence (13) is true.

Let us denote

1 2
K(m)=mz—1+—+—x

Ve (2tp(8) — cos )

p2(0) 4tp(8) cosb + 1+ 2cos?6

p? p? 3p2
Now, we shall find the minimum of the function . The function K is
quadratic function having its local minimum in the point

_cosf — 2tp(6)

—
There are three possible cases: L z, € [-2(1 — #),2(1 — &)}, IL. 2 >
201 — &), 1L z,, < —2(1 — ).

I. The case z,, € [-2(1 — 3),2(1 — £)] holds only if the inequality
—2(p — p(0)) < cost — 2tp(6) < 2(p — p(9))
is satisfied. From the inequality
cos§ — 2tp(8) < 2(p — p(0))

+ (4% —1)

w

we get

1 sin §
> — .
p> 3 [cos@+7r_0]

Similarly, from the inequality
—2(p — p(0)) < cost — 2tp(0)

p> l [m_zf —cos@} .

we have

2
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Hence z,, € [-2(1— ££),2(1— &)] when (p,0) € A= {(p,0) : p > p*(0),0 €
[0, 7]} and p* given by (9).

For (p,0) € A the function K attains the minimum in the point z,, and

it is equal to Y

Komin = % —1.
From (23) it follows that Kpn < k(z,y) and consequently az > Kpn for
(p,6) € A.

IL Let now z,, > 2(1 — 7). This inequality, conditions (2) and (4), and
Lemma 1 give us p < p1(#). Hence the minimum of K for (p,0) € B =
{(p,0) : p(8) < p < p1(6),0 € [0,Z)} is attained in the point z = 2(1 — 7).
This minimum is equal to

4 ( sinf 1 ( sin®?f  sin20  2cos®6+1
’C’”"":3‘E(vr—e+c°s") TP ((w—9)2 EEET AR )
Therefore, from (23) we conclude that k(z,y) < Knin and consequently

a3 > Kuin for (p,0) € B.

ITI. Consider the case z, < —2(1 — %) This condition is equivalent to
p < p1(m —0). From this fact it follows that for (p,8) € C = {(p,0) : p(6) <
p < pr(m—0),0 € (3,7} the function K attains its minimum in the point

z = —2(1 — 4;). The minimum is equal to
4 (sinf 1 (sin?@ sin20 2cos?6+1
szn=3—;<—9——cos(9)+ﬁ( 92 - 0 + 3 )
From (23) we get k(z,y) < Kmin and consequently ag > K, for (p,0) € C.
So we have proved (12). O

In the two following figures there are the regions of values (p,a2) and
(p,a3) for 6 = %.

N
LD

.
-2

Fig. 1. The region of values of the point (p, az) (rightward of the curve)
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Fig. 2. The region of values of the point (p, as) (rightward of the curve)

Let b denote the fixed second coeflicient of a function f € T}, 9. Verifying
p, 0, p € 10,7, p > p(6), we obtain b € [-2,2]. If b = 2, then the class T,
consists of only one function f(z) = ﬁg Analogously, if b = —2, then
in this class there is only function f(z) = (1—+z—z—)7 Therefore, we can restrict
our research to the case b € (—2,2).

THEOREM 3. The Koebe domain for the class of typically real functions with
a fized second coefficient b is bounded and symmetric with respect to the real
azxis. Its boundary in the upper half plane is given by the polar equation
w = r(0)e?, where

oy =17 (32 +cos0) . 0 €[0,60)
(3¢ —cost), beclfon]

and 0y is the only solution of the equation

1 sin 0 1 sin @
(24) m(ﬂ_o—i-costﬁ?)—z—“(T—cosO),

in [0, .
Proof. From (11) for fixed az = b, we get
%(% +c030) <2-b

%(#—COS@) <2+4b ’

6 € [0,

and consequently

>L(M cosf
PZag\ao ™ ) 8 € [0, 7).
0> oy (392 - cosd)
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Then

1 sin @ 1 sin 6
> a . 1 - .
p_max{2_b(ﬂ_9+cos0>,2+b( 7 cosﬂ)}, 6 € [0,n]

Hence, the boundary of the Koebe domain is given by the following equation
1 sin @ 1 sin @
— ali S — 0 .
r(6) max{2_b(7r_0+cos0>,2+b< 7 cos0>}, € [0, ]
Observe that the equation (24) can be written as
sinf  siné sinf  sin#f
b(ﬂ'—0+7) —2(—0—*—7r_0—20080>.
The above condition is equivalent to
brsinf  2(mw —20)sinf

0r—0) " 8(r—0) —4cosb.
Hence we have 9
b=;(7r—20—0(7r—0)c0t0).

From (20) we get
b= Ax(0).

We are going to prove that A2(0) is increasing function for 8 € (0, 7). We
have

(25) AQ(O):—% (1—+—(7r—20)c0t0—9(7r—9) ! >

sin? @
But for 6 € (0, §]
sin? @ + (7 — 26) sin@cosf — O(m — 8) < 62 + (1 — 20)0 — 6(w — 6) = 0.
Hence A5(6) > 0, 8 € (0,%] and A2(0) is the increasing function in this
range. Moreover, Az(m — 6) = —Az(6). Then A5(0) > 0, 6 € (3, 7). From
these facts, we conclude that the function (20) is increasing in (0,7). The
monotonicity of (20) and the fact

lim A3(8) = -2 and lim Ay(6) =2
6—0 0—m

assure the existence of the only solution of the equation (24). This solution
is denoted by fy. Finally, we get

) {ﬁ(fjﬂg+cos0), 6 € [0,60)

%H:(gi%q—cosa), 0 € [6o, 7] -

From Theorem 3 we conclude

COROLLARY 1. The Koebe domain for the class of typically real functions
with a fized second coefficient b = 0 is bounded and symmetric with respect



844 M. Sobczak-Kneé

to both azxes, whose boundary in the ﬁrst quadrant of the complex plane is
given by the polar equation w = r(0)e®, where

r(f) = 1 (Slm9 +cos€> .

m—6

[0.4

E-0,4

Fig. 3. The Koebe domain for the class of typically real function with fixed second
coefficient b =10

This set is the superdomain of the Koebe domain for the class of all
typically real odd functions, which is still unknown.
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