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ON TYPICALLY REAL FUNCTIONS 
WHICH OMIT TWO CONJUGATED VALUES 

Abstrac t . In this paper we discuss the class Tp,e consisting of typically real functions 
which do not admit values wo = pelB and wo- We estimate the second and the third 
coefficients of a function / 6 TPi$ and we determine the Koebe domain for the class of 
typically real functions with fixed second coefficient. 

Let T denote the class of analytic functions / in the unit disk A = {z G 
C : \z\ < 1} and normalized by /(0) = /'(0) — 1 = 0 for which the condition 

I m z - I m / ( z ) > 0 for Z G A 

is satisfied. The class T is called the class of typically real functions. Rogosin-
ski [5] gave the explicit relation between a function / G T and a probability 
measure /i defined on [—1,1]. Namely, 

/ e r ~ / M = { r r ^ x M ' ) . 

In 1977 Goodman [1] defined the universal typically real function 

(1) G{z) — — tan • 
7r " "1 + z2 

and determined the Koebe domain for T. 

THEOREM A [1], The Koebe domain for the class T is symmetric with respect 
to the real axis and the boundary of this domain in the upper half plane is 
given by the polar equation p(9)e10, where 

0 G (0,7r) 
(2 ) P ( 9 ) = 

[ 6 = 0 or 6 = 7T. 
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In this paper we study a subclass of the class T, consisting of functions, 
which do not admit values wo = pelS and UJQ. This class we denote by Tpfi. 
The class Tpg is defined as follows 

Tp,e = {/ G T : f + pe±i9}, 0 < 9 < tt, p>p{6), 
where p{9) is given by (2). 

In our paper we will use the class TM which was investigated by Koczan 
[2]. The class TM consists of typically real bounded functions, i.e 

TM = { f e T : \f(z)\ < M, z G A}, M > 1. 

For 0 G (0, tt) let n y 
(3) He(z) = 29 + 1-2 tz + z2' 

Q 
a = 8(tt — 6») — , 

7T 

, 26 
t = 1 . 

7T 

where 

and 

(4) 

Let 
pi6 _ -i0 iHg(z) 

(5) GO(z)=p(e) ^ ^ . 

Moreover, denote by P 
<6» M = m ' 
where p(9) is given by (2). 

T H E O R E M 1. The class Tp^ can be written as follows 

TPFI = [M- ( G j o i ) : g 6 TM},6 6 (0 , t t ) , p>p(9), 

where M, p(9) and GQ are defined by (2), (5), (6), respectively. 
Proof . In the proof of this theorem we use the method which was presented 
in [4]. 

Let / G T and f(z) ± pe±ld, 9 G (0, n), p > p{9). We consider a function 
of the form 

f(z)~pei9 

ttz)-pe-V 
This function is analytic in A and omits 0. Therefore, the function 

h(z) = ^ log J \> H 
i f{z) - pe lt) 

is analytic in A, too. The branch of the logarithm is such that h(0) = 29. 
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Hence .a , 
e to _ g-i6>gi/i(z) 

M = P l — eih(z) • 

Moreover, h(z) 2/c7r, k E Z, because 1 — / 0. From this fact and 
from the equality 

we have Im z I m > 0, z € A. 
Furthermore, h(0) = 20 and for real x there is h(x) 2/c7r, k £ Z. The 

function h is typically real, so we get 0 < h(x) < 27r, x £ (—1,1). 
From these properties of h we conclude that h is subordinated to the 

univalent function Hg, which is given by (3). For H$ we have Hq(0) = 29, 
H6{ A) = C\{p e l :p(E ( - 0 0 , 0 ) U (2tt, 00)}. Hence h(z) = He(ui(z)) where 
ui(z) = Hg1(h(z)). From this fact and h,Hg£T we get Imzlmw(z) > 0. 

We have . . 
= /i'(0) = #¿ (0 ) • u/(0) = a • u/(0), 

therefore, 

Hence 

Let 

p • a 

P 
p{9) v ' pW 

= ~p(0) 

where M is given by (6). We have 
pie _ p-iejh(z) je _ p-i6piHe{SML) / r \ 

m = p , = p .. ^ = M - Go 9 { z ) 
l _ eih(z) r °\M 

where G$ is given by (5). • 

Observe that the function (5) we can extend onto limiting cases 9 = 0 
and 9 = tt. When 9 = 0 we have 

2; 
H0(z) = 0 a n d G0(z) = l i m Ge(z) = ———r^. 

0—»0 (1 + z)2 

If 9 = 7r then we get 

Hn(z) = 2tr and Gn(z) = lim Ge{z) = 

3ve that the function ( 

(7) Ge(z) = 

One can prove that the function (5) could be written in the form 

G ( m ) - G ( c ) 

(1 — c2)G'(c) ' 

where G is given by (1) and c = c(9) = . 
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o, 
71" 

P*(0) = P1 

LEMMA 1. Let 

(8) 

and 

(9) 

Then 

(10) p(9) < p*(9), 

where p(9) is given by (2) and p*(9) is described in (9), 9 G [0,7r]. 

P r o o f . We shall prove the inequality (10). Observe that for 9 = 0 this 
inequality is obvious. Let 9 G (0, | ) . Then (10) is equivalent to 

(29 - Tr) sin 9 + 29(n - 9) cos 9 > 0. 

Let us denote 

1(9) = (20 -7 r ) s in0 + 20(7r-0)cos0, 0G 

Because 

I"(9) = -3(Tr - 29) sin 9 - 29(ir - 0) cos 0 < 0, 9 G (0, 

so the function 1(9) attains its lowest value in 0 or in Hence 

1(9) > minjl im 1(9), lim 1(9)} = 0, 
e 

7T 
2 '7 r 

• 

and consequently (10) is true. Moreover, 

p(9) = p(ir - 9) < Pl(n - 9), 9e 

Therefore, 
p(9)<p*(9), 9 G [0,7r]. 

In the next theorem we estimate the second and third coefficients of a 
function from the class 

T H E O R E M 2. If f G TPtg and f ( z ) = z + a2z2 + a3z3 + ... then 

1 ( sin 
(11) 

1 /sine 
(11) 

A « " 
and 
(12) 

( sin2 6 i 
3 p* X> 

( sin2 6 i 
3 p* X> 

«3 > i 
o 4 / sin# 0 P ^TT-0 
q 4 ( sin 6 

\ 6 p \ B 

COS0 2 <a2< 7T -9 
+ cos9 +2, 9 G [0,7R], 

(p,9)e A 
2 e I sin 29 , 2 cos2 0+1 

COS 
/ K 

M , 1 ( sin21 
0) + -? ^ - g r 

+ 7T — Ô + { ) , M G B 

e 
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and 

(13) a3 < 3 + -
P 

<9(tt - 9) cos2 0 sin 6 

7rsin0 7r 
1 - cos0 + sin2 6 

3 p2 

The sets A, B, C are described as follows: 
A = {(p, 9),p > p*(9),9 e[0,n}}, 
B = up,0),p(0)<p<pi(o),0e[ 0, f ] } , 
C = {(p,e),p(9) < p < Pi(tt - 9), 9 G [f ,7r]}, 
where p\{0), p*{9) are defined by (8) and (9). 

P r o o f . Let f(z) = 2 + a2z2 + a3z3 + • • • £ Tpß, 9 £ [0,tt], p > p{9), p{9) is 
given by (2), and let Gg(z) = z + A2(9)z2 + A3(9)z3 + From Theorem 1 
f(z) = M - G 0 ( 4 t ) , where Ge is given by (7) and g(z) = z+c2z+c3z3-l <E 
Tm, M is defined by (6). Hence 

(14) 

and 

(15) 

where M is defined by (6). We have 

(16) 

a3 = c3 + c 2 ^ - G £ ( O ) + ^ G ' 0 " ( O ) , 

CM = S t t • (1 - c2) 
G'(c) 

2c 

and 

(17) 

From 

(18) 

and 

(19) 

rmtto (1 - c2)2G'"(C) (1 -C 2 )G"(C) 2 
( 0 ) = — m c ) 6 c g ' ( c ) + 6 c -

G"{c) _ —2c(3 - c2) 2tt(1 - c2) 
G"(c) 1 - c 4 + (1 + c2)2 

tan 
7TC 

1 + C2' 

1 _ 2tt 
c + c ~ 29 1 + c2 

and (16) we get 

(20) A2(0) = = - (tt - 20 - 20(tt - 9) cot 9). 
2 7T 

Using (6) and (20) in the formula (14) we have 

sin0 
a2 = c2 + 20(tt - 6»)/? 

(7T - 20 - 20(tt - 0) cot 0) 
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and, consequently, 

_ (7r — 20) sin 0 cos 0 
< 2 1 ) < ,2 = C 2 + » ( « - » ) , - — • 

Taking advantage of the precise estimation of the second coefficient for func-
tions in Tm (see [2]) 

and equality (21) we have 

/ 7rsin0 \ sin0(7r — 29) cos0 
V ~ 40(tr - 0)p) + 20(tr - 0)p ~ ° 2 

< 2 I 1 ^ ^ ^ + ~~ ^ C O S ^ 
40(tt - 0)py 20(tt - 0)p p 

The above inequality is equivalent to (11). 
Now we are going to estimate the third coefficient of / G Using 

n - r ^ ^ l - - 6 ( 1 - C 2 ) ( C 4 - 6 C 2 + 1) n O ( 1 - C 2 ) 4 

1 j G'{c) ~ (1 + C2)2 + ** (1 + c 2)4 

127TC(1 - c 2 ) 2 (c 2 - 3) TTC J l - C 2 ) 4 0 2 TTC 
+ ^ tan + 67^ 7+tTT2 tan2 

(1 + c 2 ) 3 1 + c 2 (1 + c 2 ) 4 1 + c 2 ' 

(18) and (19) in the formula (17), we get 

M ( 0 ) = = - 1 + 4 ' 6 \ 7T 

16(20 - W r - « ) M - Q ^ t f + -
7T2 \ 7T / 37T2 

From the fact and equalities (15) and (20), we have 

c 2 f (it-20) shiO n A sin2 0 
o 3 = c 3 + — T7 J—rr 2 cos 0 1 

p \ 0(tt-0) J 4p29(ir-0) 
2 cos2 0 + 1 _ {it-20) sin 20 

+ 2/92(7T — 0)0 ' 

Applying (2) and (4) we get 

C2/ . „ m 2 4ip(0) cos0 1 + 2cos2 0 
a 3 = c 3 + - 4ip 0 - 2cos0) + {At - l ) ^ 1 - + ^ . 

p pz p^ op^ 
Prom now on to the end of this proof we take M, t as in the formulae (6) 
and (4), respectively. In order to estimate the coefficient <23 we shall use the 
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region of values (02,03), where g(z) = Z + C2Z2 + C3Z3 -\ 6 Tm- This region 
is of the form [3] 

A2,3(TM) = { (C 2 ,C 3 ) : - 2 ( i - ¿ ) < c2 < 2 ( l - , 

J 
M2 M - 1 J ' 

Let C2 = x, C3 = y. We consider a function 

x ,t ,„, „ ^ 2 4 ip(0)cos6 1 + 2 c o s 2 0 
k{x,y) = y + - 4ip(0) - 2 c o s 0 + 4 i 2 - l ^ ^ + . 

From the inequalities, given in the description of the set A2$(Tm), we have 

4 1 x2 2x 
(22) k ( x t y ) < Z - - + w - + - (2 tp{9) - cos 

a. (Ai2 _ U ^ l _ 4tp(g)cosg 1 + 2cos 2 fl 
+ l J p2 p2 + Sp2 

and 

(23) > x 2 - 1 + + y ( 2 i p ( 0 ) - cos0) + (4t2 - 1 ) ^ 

_ 4tp(fl)cosfl 1 + 2 cos2 6 
p2 + —3^i • 

If we want to determine the upper estimate of 0,3, we shall find the maximum 
of the function 

* < * > - -ITTI + 7 ( 2 i p W ~ ^ + 3 " F + a P + ( 4 t 2 -
_ Up{6) cos e 1 + 2 cos2 0 

J 2 + V ' 

when x 6 [—2(1 — j^), 2(1 — j^)]. Observe that K is a quadratic function of 
the form 

K{x) = — ^ x 2 + - ( 2 t m - cosO) + 3 - 4 ^ + 4 i 2 ^ 
p - p(6) p p p2 

_ tepjo)cose 1 + 2 c o s 2 e 
J 2 + v ' 

which attains its local maximum in the point 

_ (2tp(0) -cose) (p-p(e)) 

PP(0) 
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It is easy to check that xw G [ - 2 ( 1 - - ^ ) , 2 (1- -^) ] for p > p{9) and 9 G [0,7r]. 
The maximum of K is equal to 

_ (p — p(9))(2tp(9) — cos26) , „ tP{6) 
-t*-max — n / I O 

P2P(0) 
A 2p2{°) _ 4tPÌe) c o s 6 > 1 + 2cos2(9 

or equivalently 

o 1 ( — 9) cos2 0 sin2 9 4sin0 , \ 
Kmax = 3 + - —^ r ^ + 4tcos0 . 

p \ itsm.9 3p 7r / 
Prom (22) we have k(x,y) < Kmax and consequently 03 < Kmax, p > p(9) 
9 G [0,7r]. Hence (13) is true. 

Let us denote 
1 2 r 

K{x) = x 2 ~ 1 + m2+ ~(2tP(0) ~ cos°) 

+ (412
 - 1) 

p2{9) Atp{9) cos 0 1 + 2 cos2 9 + p* p' 3 p2 

Now, we shall find the minimum of the function /C. The function JC is 
quadratic function having its local minimum in the point 

cos 9 - 2tp{9) 
X11) — 

There are three possible cases: I. xw G [—2(1 — — II. xw > 
2(1 - III. ^ < - 2 ( 1 -

I. The case xm G [—2(1 — jj), 2(1 — jj)} holds only if the inequality 

-2{p - p{9)) < cos 9- 2tp{9) < 2(p - p{9)) 

is satisfied. Prom the inequality 

cos9-2tp(9) < 2(p-p(0)) 

we get 
1 

p> -H ~ 2 COS0 + 
sin# 
7T — 9 

Similarly, from, the inequality 

-2(p - p{9)) < cos 9- 2tp(0) 

we have 
1 

P > -H ~ 2 
sin0 
~9~ 

— cos 9 
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Hence xw E [ -2(1 - 2(1 - when (p, 9) E A = {(p, 9) : p > p*(9),9 € 
[0,7r]} and p* given by (9). 

For (p, 0) E A the function JC attains the minimum in the point xw and 
it is equal to 

_ sin2 9 
3 p2 

- 1. 

Prom (23) it follows that ICmin < k(x,y) and consequently <23 > K,min for 
(P,9)eA. 

II. Let now xw > 2(1 — This inequality, conditions (2) and (4), and 
Lemma 1 give us p < p\ {0). Hence the minimum of K for (p, 0) E B = 
{(p,9) : p(0) < p < pi(0),6 E [0, f ) } is attained in the point x = 2(1 -
This minimum is equal to 

„ 4 / sin0 1 
/Cmin = 3 - - I + COS 0 I + — 

7 r - 0 ' J ' p2 \(ir-Ô)2 ' 7 T - e 

sin2 6 sin 26 2 cos2 0 + 1 
+ x + ^ 

Therefore, from (23) we conclude that k(x,y) < K.min and consequently 
03 > K-min for (p, 0) E B. 

III. Consider the case xw < — 2(1 — JJ). This condition is equivalent to 
p < pi(ir - 6). Prom this fact it follows that for (p, 6) E C = {(p, 9) : p{9) < 

p < pi(ir — 9), 9 E (§,tt]} the function fC attains its minimum in the point 
x = — 2(1 — jj). The minimum is equal to 

„ 4 /sin9 \ 1 /s in 2 6 sin29 2cos26» + l 
icmin = + r - + — 3 — 

Prom (23) we get k(x,y) < K.min and consequently 03 > K,min for (p, 9) E C. 
So we have proved (12). • 

In the two following figures there are the regions of values (p, «2) and 
(p,a3) for 9 = f . 

-2J-
Fig. 1. The region of values of the point (p, 02) (rightward of the curve) 
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Fig. 2. The region of values of the point (p, <23) (rightward of the curve) 

Let b denote the fixed second coefficient of a function / E Tpj. Verifying 
p, 9, p € [0,7r], p > p(0), we obtain 6 G [-2,2], If b = 2, then the class T ^ 
consists of only one function f ( z ) = jfz^jz- Analogously, if 6 = —2, then 
in this class there is only function f ( z ) = j j ^ j z - Therefore, we can restrict 
our research to the case b € (—2,2). 

THEOREM 3. The Koebe domain for the class of typically real functions with 
a fixed second coefficient b is bounded and symmetric with respect to the real 
axis. Its boundary in the upper half plane is given by the polar equation 
w = r(0)e10, where 

r(0) = _l_(sinf _ c o s 0 ) ) 0 G [ 0 O ; 7 r ] 

and 6q is the only solution of the equation 

1 ( sin0 \ 1 / s i n # 
+ cos 9 = ' (24) 

in [0,7r]. 

2 - 6 \ir-9 2 + 6 V 9 
cos 9 

P r o o f . Prom (11) for fixed a2 = 6, we get 

7; f ^ l + c o s 0 ) < 2 - 6 r n J ~ , 0 6 0 ) 7 r | l ( s m 0 _ c o s 0 ) < 2 + 6 

and consequently 

9 e [0,7r], 
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Then 
r 1 / sind A 1 /sin0 A, r„ , 

p > + c o s 0 j , — - cosf l j} , 0 G [0,*]. 

Hence, the boundary of the Koebe domain is given by the following equatio 

/«s f 1 ( sinfl A 1 / s i n 0 A , _ , 
r(9) = max{ — + cos 9 J , ~ b - cos 0 j }, 9 G [0,7r]. 

Observe that the equation (24) can be written as 
, / sin 9 sin 9 \ / sin 9 sin 9 
b « + - 7 - = 2 — - 2cos6> 

\n-9 9 J \ 9 ?x-9 
The above condition is equivalent to 

for sin 6 2(7t — 29) sin0 
9{7T - 9) 9(tt - 9) 

— 4 cos 9. 

Hence we have 

From (20) we get 

b = - (tt - 26» - 0{ir - 9) cot 0) 
7T 

b = A2(6). 

We are going to prove that A2{9) is increasing function for 9 E (0,7r). We 
have 

(25) A'2(9) = - 1 + (tt - 29) cot 9 - 9(ir - • 

But for 9 G (0, f ] 

sin2 9 + (tt - 29) sin 9 cos 9 - 9(tt - 0) < 6>2 + (tt - 29)9 - 9(ir - 9) = 0. 

Hence A'2(9) > 0, 9 G (0, § ] and A2{9) is the increasing function in this 
range. Moreover, A2(TT - 9) = -A2{9). Then A'2{9) > 0, 9 G (F, TT). From 
these facts, we conclude that the function (20) is increasing in (0,7r). The 
monotonicity of (20) and the fact 

lim A2(9) = - 2 and lim A2(9) = 2 
6^0 0—*7T 

assure the existence of the only solution of the equation (24). This solution 
is denoted by 9q. Finally, we get 

= + c o s 0 ) , 0G[O,0o) r(9) , 
I ¿ 5 O r * O e [ 0 o , M 

From Theorem 3 we conclude 

COROLLARY 1. The Koebe domain for the class of typically real functions 
with a fixed second coefficient b = 0 is bounded and symmetric with respect 
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to both axes, whose boundary in the first quadrant of the complex plane is 
given by the polar equation w = r(9)e10, where 

. . . 1 / s i n 0 
= 2 + C O S 0 J 

coefficient 6 = 0 

This set is the superdomain of the Koebe domain for the class of all 
typically real odd functions, which is still unknown. 
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