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SUBCLASSES OF TYPICALLY-REAL FUNCTIONS 
DEFINED B Y R U S C H E W E Y H DERIVATIVE 

Abstract. For each A > —1 let 7r(A) be the class of all functions / analytic in 
B = { z e C : \z\ < 1} of the form f(z) = z + akZk, 2 é D , having real coefficients 
and satisfying the condition 

Re | ( l — z 2) i j i i i f l | > 0, 

where L\ denote the Ruscheweyh derivative. Some basic properties of functions in 7r(A) 
are presented. 

1. Introduction 

1.1. For 0 < r < 1 let Dr = {z <E C : \z\ < r}, and let D = ID>i. By A we 
denote the class of functions / of the form 

oo 
( 1 . 1 ) f ( z ) = z + J2akZk, 

k=2 

which are analytic in D. Let V denote the class of functions p of the form 
oo 

(1 .2) p{z) = \ + Y,PkZk, z e B , 
k=1 

which are analytic in D and have positive real part there. By Vr we denote 
the class of functions p G V whose coefficients are real, i.e. Pk =Pk in (1-2) 
for all k e n . 

1.2. For two analytic functions / and g of the form 
oo oo 

f{z) = akzk, g(z) = Y^ hzk 

k=0 k=0 
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the Hadamard product (the convolution) of / and g is defined as follows: 
oo 

(1.3) f * g ( z ) = Yl a k b kZ k -
k=0 

1.3. By L\, A > — 1, will be denoted the Ruscheweyh derivative (see 
[10]) over the class A defined as follows: 

(1.4) Lxf(z) = (1_*)A+1 * f(z), feA,zeB. 

For k e N and A > - 1 denote 
(A + 1)(A + 2 ) . . . (A + fc — 1) 

B k i x ) = (jTW ' 
We see that 

oo 

and consequently by (1.3) and (1.4) we obtain 
oo 

(1.5) L x f ( z ) = z + Y l B k W a k z k , z e B , 
k=2 

where f £ A is of the form (1.1). 

1.4. Prom the identity 
z z ( A z 1 

( X _ z ) A + 2 ( i - s J A + i \\ + l l - z A + 1 (1 — z)2 

it follows that 

(1.6) z(Lxf)'(z) = (X + l)Lx+1f(z)-XLxf(z), z e B, 

for all A > - 1 . 
Let us notice that for every A > — 1 holds 

(1.7) L\Lxf{z) = z (Lxf)' (z) = z ((1_*)A+1 * /(*)) 

= ( l - z ) A + i * ( z / / ( 2 ) ) = L x ( 2 / ' ( z ) ) = z 6 

For A = n e N o = NU {0} the formula (1.4) can be written as 

ziz^fiz))™ (1.8) Lnf(z) = ^ " , f€A,z€B. 

Moreover then 
„ / ^ in + k — l\ Bk(n)=i n J , A; € N , n e N 0 . 
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1.5. In this paper we examine the classes Tr(\) defined below. 

DEFINITION 1.1. Let A > - 1 . A function / G A belongs to the class TR(A) 
if / has real coefficients and if 

(1.9) R e | ( l - 2 2 ) ^ ® | > 0 , * g D . 

Since Lof = / , so for A = 0 the condition (1.9) defines well known class 
7R(0) of functions called typically-real introduced by Rogosinski [9] (see 
also [2], vol. I, p. 185). For short let TR = 7r(0). If A = 1, then ¿1/(2) = 
zf'(z), Z £ D , and the condition (1.9) describes the class TR{ 1) of functions 
/ convex in the direction of the imaginary axis with real coefficients. The 
class TR{ 1) will be denoted by CVTZ(i). It was introduced by Robertson [7] 
(see also [2], vol. I, pp. 205-206). 

2. Integral formulas 
Now we write the integral representation for functions in the class TR(n), 

n G N0. 
From (1.8) and (1.9) we have 

T H E O R E M 2 . 1 . 1. Let A > - 1 . I f f G TR( A), then Lxf G TR. 
2. Let n G N. If g & 7K, then the function f G A being the solution of 

the differential equation g(z) — Lnf(z), z G B, is in TR(n). Moreover, if 
n = 1, then 

f(z) = \9-^du, zeD, 
0 u 

and ifn G N\ {1}, then 
I ZUl U2 Un-1 / \ 

/(*) = £ ï l S ! " S g-^dun...du2du s e D . 
z 0 0 0 0 n 

Let M(0,2ir) denote the set of all functions m : [0,27r] —> R which are 
nondecreasing in the interval [0,2ir] and satisfy the condition dm(t) — 2-k. 

From (1.9) we see that / G TR(A), A > —1, if and only if there exists a 
function p G VR such that 

(2.1) Lxf(z) = z G 0. 

Using the integral representation for functions p G VR (see [2], vol. I, p. 
186) we state from the above 
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T H E O R E M 2 . 2 . Let A > - 1 . Then f G TR(A) if and only if there exists a 
function m € M(0,2ir) such that 

(2.2) Lxf(z) = —\j(z,t)dm(t), 
5 

where 

( 2 " 3 ) 1 - 2 , c o s t + ^ , ^ [ 0 , 2 . ] . 

For A = 0 and A = 1 we get from the above the well known integral 
representations for functions in 7R and CVlZ(i), respectively. 

COROLLARY 2 . 3 ( [ 6 ] ) . Every f £TR is of the form 
j 27T 

f(z) = —\J{z,t)dm(t), 2 GB, 
5 

for some m G M(0, 2n). 

COROLLARY 2 . 4 ( [ 7 ] ) . Every f G CV1l(i) ¿ s of the form 

/ ( Z ) = — T \ i ^ Î ï d u d m ( t ) = J - \ ^ L log i ^ ^ d m ( i ) , 
2 t J J u w 27ri ^ sini 6 l - 2 e l t w ' 

z e D , /or some m G M(0, 27t). 

Using (1.8) and (2.2) we can generalize the above integral formulas and 
we can obtain the integral representation for functions in TR{U) for n > 2. 

T H E O R E M 2 . 5 . Let n G N \ { 1 } . Then f ETR(U) if and only if there exists 
a function m G M(0, 2n) such that 

i 2-rrzui « n - i j / 
= S J-^dun...duldm(t), zeB. 

z 7 r z 0 0 0 0 U n 

3. Coefficient estimates 
In this section estimates of the coefficients of functions in TR{A) are 

presented. 
It is well known (see e.g. [2, p. 183]) that the function J defined by (2.3) 

is of the form 
OO . 

(3.1) J(z,t) = z + Z 6 l , t G [0,27r]\{0,7T,27r}. 
sini fc=2 

Since 
sinkt sinkt , sinkt . „.lii, 

lim = lim — = k, lim — = ( - 1 )k+1k, 
t—*o sini t-»27r sini t—>7r sini 
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we see that J can be continuously extended to t = 0, t = TT and t = 2TT. 

Using now Theorem 2.2 and (1.5) we have 

THEOREM 3 .1 . Let A > —1. If f € TR(X) and f is of the form (1.1), then 

1 sin kt 
dk dm(t), A; = 2, 3 , . . . , m € M(0, 2tt). 

2nBk(X) J sini 

Let now 
sin kt , , sin kt 

rrik — mm , Mk — max —: , 
te[o,2ir] sini te[o,27r] smi 

where k = 2 ,3 , . . . . But = k, m^ = — k if k is even and mk > —k if k is 
odd. Hence and by Theorem 3.1 we get immediately coefficient bounds for 
functions in TR(A). 

THEOREM 3 .2 . Let A > - 1 . If f e 7R(A) and f is of the form (1.1), then 

Especially, if k is even, then 
-k k 

<ak< 
BK{ A ) " ~ -Bfc(A)' 

Estimates (3.2) are sharp. The upper bound is achieved by the function 
/ satisfying (2.1) with p(z) = (1 + z)/( 1 — z), z G ED, i.e. for / such that 

L a / ( * ) = ( T ^ P * e D -

On account of (2.3) and (3.1), the lower bound is realized by the function 
/ such that L\f(z) = J(z,6), z £ D , where 9 € [0, n] is choosen such that 
mk is achieved for t = 0. 

In particular, from the above theorem we get the well known results. 

COROLLARY 3 .3 . 1 ([9]). If f eTR, then 

mk < dk < k, k — 2, 3, . . . 

2 ([7]). If f eCVR(i), then 

< ak < 1, k = 2, 3, . . . 

4. Inclusion relations 
In this section we will examine inclusion relations between classes 7r (A ) 

in view of parameter A. 
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Let S* C A be the class of starlike functions, i.e. / G S* if and only if 

K e { ^ M } > 0 , 

By 
oo 

K { z ) = 7 = z + J 2 k z k ' * G D ' 
^ ' k=2 

we denote the Koebe function. Clearly, K G S*. 
Define 

OO f. 

k=2 

The following theorem was proved by Robertson. 

THEOREM 4.1 ([8]). / / / , 5 e TR, then f*g*heTR. 

For each c € C \ { - 1 , - 2 , - 3 , . . . } define - L i 2 0 0 1 -1 
( 4 . 1 ) Fc(f)(z) = J i^VWdi = ^ + E ^ X T 0 ^ " ' ^ G 

z 0 k = 2 C + K 

where / G A is of the form (1.1). The operator Fn : A —» A, n G No, was 
introduced by Bernardi [1]. In particular, the operator Fi was examined 
by Libera [5]. The general case, when c is a complex number was studied 
by various authors. Lewandowski, Miller and Zlotkiewicz [4] proved the 
following theorem. 
THEOREM 4.2 ([4]). I f f G S*, then Fc{f) G S* for every c G C such that 
Rec > 0. 

It is well known that typically-real functions and functions convex in the 
direction of the imaginary axis with the real coefficients are connected by 
the following Alexander type theorem. 

THEOREM 4 . 3 ( [ 7 ] ) . / G CVTl(i) if and only if g G TR, where g(z) = 
zf'{z), z e D . 

LEMMA 4 . 4 . For every f G A and A > 0, holds L\f = L\+1F\. 

Proof . Fix A > 0. From (4.1) by differentiating we have 

z{Fx(mz) + XFx(f)(z) = (X + l)f(z). 

Hence 

Lx (z(Fx(f))'(z)) + A L x F x ( f ) ( z ) = (A + 1 )Lxf(z). 

Combining (1.6) and (1.7) with the above gives the assertion. • 
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If / G TR{\) for A > 0, then by Theorem 2.1 we see that Lxf E 
By Lemma 4.4 we have LA + 1FA E TR. This shows that Fx € 7R(A + 1). 
Therefore we have 

THEOREM 4.5. Let A > 0. Then f E T^A ) if and only if Fx(f) G 7^(A + 1). 

THEOREM 4.6. If f E TR, then Fc(f ) E /or every C > 0. 

P roo f . Fix c > 0. Since, as easy to verify, 
, -I z oo . 1 

FC(K)(Z) = 5 t c ( i - ty2dt = z + T 2 6 B> 
2 0 k=2 

by (4.1) we have 
Fc(f) = / * FC(K) * h. 

By Theorem 4.2, FC(K) e 5*. Moreover FC(K) has real coefficient so it is 
typically-real. Applying now Theorem 4.1 we deduce at once that Fc(f) is 
typically-real also which ends the proof. • 

Applying the last theorem we are able to prove the following theorem. 

THEOREM 4.7. TR{A + 1) C TR(X) for every A > 0. 

Proo f . Fix A > 0 and let / G TR(A + 1) be arbitrary. By Theorem 2.1, 
L\+if £ IR. Hence, in view of (1.6) and Theorem 4.6 the function 

Lxf(z) = Fx (Lx+1f ) (z) = ^ J tx~lLx+lf{i)dt, z G P, 
z o 

is in TR. Thus again by Theorem 2.1 we see that / E TR(X). 

Now we prove that TR{A+l) is the proper subclass of TR(A). To this end, 
fix A > 0. The function p(z) = 1 - z4, z G D, is in VR. Setting p into (2.1) 
we have Lxf(z) = z + z3, z G D. Clearly, the function / is in TR(A). Using 
(1.6) we get from the above that Lx+1f(z) = z + (A + 3)z3/(A + 1), z E D. 
But 

„ . { ( 1 - h e M } = Re { ( , - f ) ( i + } = 0 

for = ± V ( A + l)/(A + 3) G D which implies that / £ TR(A + 1). • 

From the last theorem it follows the following result. 

COROLLARY 4.8. (JA>I TFL(A ) C UA£[O,I) T R ( X ) -

COROLLARY 4.9. 1. TR(U) C TR for every n G N. 

2- TR(n) C CVR{i) for every n E N, n > 2. 

Since the class CVlZ(i) is the set of univalent functions we have 
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COROLLARY 4 . 1 0 . For every n G N the class TR(TI) is the set of univalent 
functions. 

For each A G [0,1) denote 
oo 

TR{A,OO)= Pi 7r(A + n). 
n=0 

By Theorem 4.7 we see that 7R(A, OO) C TR(A + n) for every n G No- On 
the other hand the identity I, I(z) = z, z G D, belongs to 7R(A, OO) since 
I G 7k(A + ra) for all n G No- Taking into account estimates of coefficients of 
functions in the class 7r(A + n) we see that both sides of inequalities (3.2) 
tend to zero for every fixed k = 2, 3, • • • when n tends to infinity since then 
Bk(A + n) tends to infinity. Hence and again by Theorem 4.7 it may be 
concluded the following result. 

THEOREM 4 . 1 1 . For each A G [ 0 , 1 ) TR{A,oo) = F £ L O r f l ( A + n ) = { - 0 -
Consequently, 

TR(oo) = p i Tfl(A) = {/}. 
A>0 

5. Radius problem 
Theorem 4.7 leads to the following radius problem. 

DEFINITION 5 . 1 . For each A G [0 ,1] and me N by R\tm(n), where N G NO, 
we denote the largest radius of a disk B ñ A m(n j such that every function 
/ G TR{\ + n) satisfy the condition 

R e { ( l - , * ) 2 e D « A i m ( B ) . 

THEOREM 5 . 2 . i í o , I ( 0 ) = V 2 - 1 . 

P r o o f . Observe that i?o,i(0) is the largest radius such that in the disk 
B'flo j (o) the condition 

(5.1) Re{(l-z2)f'(z)}>0, 

is satisfied for every function / G TR. 
For each z G ID) denote 

Az(f) = (l-z2)f'(z), f e A . 

Since for each z G B, Az is a continuous linear function over the class TR 
which is a convex compact subfamily of A with a standard topology, it 
suffices to prove (5.1) for the set { f x : x G [—1,1]} of extreme points in TR, 
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where for each [-1,1], 

In this way by (5.1) we will find the largest radius iio,i(0) such that 
>2 

Re Az(fx) = Re 1 - z ' 
>0, z G 

. V1 - 2xz + z2 

for all x G [—1,1]. The above inequality can be rewritten as 

•Ro,i(o)> 

(5.2) |ArgA*(/x)| = 2 Arg I Ì - * 2 ) 
\ 1 - 2xz + z2 j 2 xz + z2 

Observe that for each x G [—1,1] and r G (0,1] holds 

7T 

< 2 -

M — z : z G B, j c | l ± £ : , e D r } . 
2 xz + z2 

Hence and from (5.2) it is enough to find the largest ro G (0,1] such that 

A r g { l -2xzZ+z2) 
< 

7T 

4 ' z G T0-

From the above it is easy to see that ro is the unique solution in (0,1] of the 
equation 

2 r 7r 
arctan k = —. 

1 - r2 4 

Hence ro = \/2 — 1. Consequently, iïo^O) > y/2 — 1. 
In order to prove that iîo^ (0) = V2—1 let us consider the Koebe function 

K. Clearly, K G and K is an extreme point in 7r . We have 
2" 

ReA*(Ä") = Re 1 + z 
1 - z 

> 0 , z G "TQ 1 

a n d R e { ( l - z§) K'(z0)} = 0 a t z0 = r0i. • 

REMARK 5 . 3 . It is interesting that ^ ^ ( 0 ) = \ / 2 — 1 is equal to the radius 
of starlikeness and the radius of univalence in the class Tr (see [3]). 
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