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SUBCLASSES OF TYPICALLY-REAL FUNCTIONS
DEFINED BY RUSCHEWEYH DERIVATIVE

Abstract. For each A > —1 let 7r(A) be the class of all functions f analytic in
D= {2€C: |z| <1} of the form f(z) = z + Y 5o, ax2*, z € D, having real coefficients
and satisfying the condition

Re 1—z2M >0, z €D,
{a-»Dial

where Ly denote the Ruscheweyh derivative. Some basic properties of functions in 7z (\)
are presented.

1. Introduction
1.1. For0<r<1llet D, ={z2€C:|z|<r}, and let D =D;. By A we
denote the class of functions f of the form
o0
(1.1) f(2) =z+Zakzk, z €D,
k=2
which are analytic in D. Let P denote the class of functions p of the form

o0
(1.2) p(z) =1+ Y p2", z €D,
k=1

which are analytic in D and have positive real part there. By Pr we denote
the class of functions p € P whose coefficients are real, i.e. pr = pg in (1.2)
for all kK € N.

1.2. For two analytic functions f and g of the form

F@) =Y ak,  g) = bt
k=0 k=0
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the Hadamard product (the convolution) of f and g is defined as follows:

o0

(1.3) fxg(z)= Z arbr 2.

k=0
1.3. By Ly, A > —1, will be denoted the Ruscheweyh derivative (see
[10]) over the class A deﬁned as follows:

(14) L,\f(Z) = Z‘——‘ZY\—_H f(Z) feA zeD.

For k € N and A > —1 denote
_ A+1D(A+2).. ()\+k:—1)

We see that

o0
z
m =z+ ZBk()\)Zk, z € D,

and consequently by (1.3) and (1 4) we obtain

(1.5) L,\f =z+ ZB"’ akzk, z €D,

where f € A is of the form (1.1).
1:4. From the identity

z _ z . A P + 1 z cD
122 (1—2 \OW+11-2z A+1(1-2)2)" “=5
it follows that
(1.6) z(Lxf) (2) = (A+ 1)Lag1f(2) — AL\ f(2), z €D,
for all A > —1.

Let us notice that for every A > —1 holds
/
z
M) LLafE) = ) () =2 (o 1)

(1 ))‘+1 (Zf,(Z)) = LA (zfl(z)) = LALlf(Z)) zeD.
For A =n € Ng = NU {0} the formula (1.4) can be written as
2 (z”_lf(z))(n)

n!

(1.8) L,f(2) =
Moreover then

k—1
Bk(n)=(n+ ) keN, neN,.

, feA z€D.

n
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1.5. In this paper we examine the classes Tgr(\) defined below.

DEFINITION 1.1. Let A > —1. A function f € A belongs to the class Tr())
if f has real coefficients and if

(1.9) Re{(1—z2)L*—J;(z—)} > 0, z€D.

Since Lo f = f, so for A = 0 the condition (1.9) defines well known class
Tr(0) of functions called typically-real introduced by Rogosinski [9] (see
also [2], vol. I, p. 185). For short let Tg = 7r(0). If A = 1, then L, f(z) =
zf'(z), z € D, and the condition (1.9) describes the class Tg(1) of functions
f convex in the direction of the imaginary axis with real coefficients. The
class Tr(1) will be denoted by CVR (7). It was introduced by Robertson {7]
(see also [2], vol. I, pp. 205-206).

2. Integral formulas

Now we write the integral representation for functions in the class 7g(n),
n € Ny.

From (1.8) and (1.9) we have

THEOREM 2.1. 1. Let A > —1. If f € Tr()\), then Lyf € Tg.

2. Let n € N. If g € TR, then the function f € A being the solution of
the differential equation g(2) = Lnf(2), z € D, is in Tr(n). Moreover, if
n =1, then

f(z)=§¥du, z €D,

0
and if n € N\ {1}, then

ZUul uz Un—1 Un)
SIS

- - dugduy, z € D.

fz) =

Let M (0,2m) denote the set of all functions m : [0,27] — R which are
nondecreasing in the interval [0, 27| and satisfy the condition S dm(t)=2m.
From (1.9) we see that f € Tp()\), A > —1, if and only if there exists a
function p € Pg such that
zp(2)

(2.1) L) = 222,

Using the integral representation for functions p € Pg (see [2], vol. I, p.
186) we state from the above

z€D.
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THEOREM 2.2. Let A > —1. Then f € Tg()) if and only if there exists a
function m € M(0,2n) such that

2n
(22) Lrf(2) = 5= § J(z 0)dm(d),
0
where
(2.3) J(z,t) = ? 2D, telo,2n].

1—2zcost + 22’

For A = 0 and A = 1 we get from the above the well known integral
representations for functions in 7z and CVR(7), respectively.

COROLLARY 2.3 ([6]). Every f € Tg is of the form

27

S J(z,t)dm(t), zeD,
0

fz) =5

for some m € M(0,2m).
COROLLARY 2.4 ([7]). Every f € CVR(3) is of the form

2r z T i

J( t) 1 1 1—ze ™
=5 d dm(t) = — -
SS (®) 27 gsmt o8 1 — ze®t

dm(t),

z € D, for some m € M(0,2).

Using (1.8) and (2.2) we can generalize the above integral formulas and
we can obtain the integral representation for functions in 7gr(n) for n > 2.

THEOREM 2.5. Let n € N\ {1}. Then f € Tr(n) if and only if there exists
a function m € M(0,27) such that

n! 2§r§u§'”u"8_l J(up, t)

n—1
2mz 000 0

flz)= duy, - - - dugdm(t), z € D.

Un

3. Coefficient estimates

In this section estimates of the coefficients of functions in 7r(\) are
presented.

1t is well known (see e.g. [2, p. 183]) that the function J defined by (2.3)
is of the form

kt
(3.1)  J(zt)=2+ Z Sslj;t 2, zeD, te0,2q]\ {0,m,27}.
Since
sin kt sinkt . sinkt

= (_1)k+1ka

im — = lim — =k, lim —
t—0 sint t—2r sint t—r sint
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we see that J can be continuously extended to t = 0, t = m and t = 2.
Using now Theorem 2.2 and (1.5) we have

THEOREM 3.1. Let A > —1. If f € Tr()) and f is of the form (1.1), then

1 2T Sin kt
t), k=23,..., € M(0,2m).
U = 2w Bi(A (S) sint dm(t) m (0,2m)
Let now
. sinkt sin kt
mg = min ———, Mp = max ——,
te[0,2x] sint t€[0,2n] sint

where k=2, 3,.... But My =k, my = —k if k is even and my, > —k if k is
odd. Hence and by Theorem 3.1 we get immediately coefficient bounds for
functions in Tg(A).
THEOREM 3.2. Let A > —1. If f € Tr(\) and f is of the form (1.1), then
mg k
<ap < ——o, k=23,...
Be(N) =~ T By
Especially, if k is even, then
—k k
— < ap < —.
Bi(Y) ~ " T Bi(M)

(3.2)

Estimates (3.2) are sharp. The upper bound is achieved by the function

f satisfying (2.1) with p(z) = (1 + 2)/(1 — 2), z € D, i.e. for f such that
z
L = —0 D.
/\f(z) (1 — 2)2’ z €

On account of (2.3) and (3.1), the lower bound is realized by the function
f such that Lyf(z) = J(z,6), z € D, where 0 € [0, 7] is choosen such that
my, is achieved for ¢t = 6.

In particular, from the above theorem we get the well known results.

COROLLARY 3.3. 1 ([9]). If f € Tg, then

my < ai <k, k=23,...
2([7]). If f € CVR(3), then
%Sakgl, k=23,...

4. Inclusion relations

In this section we will examine inclusion relations between classes 7r(\)
in view of parameter A.
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Let S* C A be the class of starlike functions, i.e. f € 8* if and only if

Re{z]{é‘;)} > 0, 2eD.

¢}
4
K(Z)Z'(—i'_—z)§=z+2k2k, ZE]D),

we denote the Koebe function. Clearly, K € S*.
Define

h(z) =—log(1—2)=2+ Z% z € D.
k=

The following theorem was proved by Robertson.
THEOREM 4.1 ([8]). If f, g € TR, then fxgxh € Tg.
For each c€ C\ {-1,-2,-3,...} define

C+1Stc 1f(t)dt—z+z

(41)  F(f)(z) =

akz , z €D,

where f € A is of the form (1.1). The operator F,, : A — A, n € Ny, was
introduced by Bernardi [1]. In particular, the operator F; was examined
by Libera [5]. The general case, when ¢ is a complex number was studied
by various authors. Lewandowski, Miller and Zlotkiewicz [4] proved the
following theorem.

THEOREM 4.2 ([4]). If f € 8%, then F.(f) € 8* for every ¢ € C such that
Rec > 0.

It is well known that typically-real functions and functions convex in the
direction of the imaginary axis with the real coefficients are connected by
the following Alexander type theorem.

THEOREM 4.3 ([7]). f € CVR(i) if and only if g € Tg, where g(z) =
z2f'(z), z € D.

LEMMA 4.4. For every f € A and A > 0, holds Lyf = Ly41F)\.
Proof. Fix A > 0. From (4.1) by differentiating we have
2(Fa(f)) (2) + ARA(f)(2) = (A + 1) f(2).
Hence
Ly (2(FA(f))'(2)) + ALAFA(f)(2) = (A + 1) L f(2).
Combining (1.6) and (1.7) with the above gives the assertion. d
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If f € Tr(}) for A > 0, then by Theorem 2.1 we see that Lyf € Tg.
By Lemma 4.4 we have Ly 1 F) € Tg. This shows that F)\ € Tg(A + 1).
Therefore we have

THEOREM 4.5. Let A > 0. Then f € Tg(\) if and only if F)(f) € Tr(A+1).
THEOREM 4.6. If f € Tg, then F.(f) € Tg for every ¢ > 0.
Proof. Fix ¢ > 0. Since, as easy to verify,

-i-l,c

F(K)(2) = S22 {1~ o) 2t = 2

z €D,
0

by (4.1) we have
F(f)=f*F(K)*h.

By Theorem 4.2, F.(K) € S*. Moreover F,(K) has real coefficient so it is
typically-real. Applying now Theorem 4.1 we deduce at once that F.(f) is
typically-real also which ends the proof. O

Applying the last theorem we are able to prove the following theorem.
THEOREM 4.7. Tr(A +1) G Tr()) for every A > 0.

Proof. Fix A > 0 and let f € Tr(A + 1) be arbitrary. By Theorem 2.1,
Lyi1f € Tg. Hence, in view of (1.6) and Theorem 4.6 the function

Lyaf(z) = Fx(Lay1f) () = )\+1

{2 Ly f(t)dt z €D,
0

is in 7g. Thus again by Theorem 2.1 we see that f € Tr()).

Now we prove that 7r(A\+1) is the proper subclass of 7g()\). To this end,
fix A > 0. The function p(z) = 1 — 2%, z € D, is in Pg. Setting p into (2.1)
we have Ly f(z) = 2z + 23, z € D. Clearly, the function f is in 7g()). Using
(1.6) we get from the above that Lyy1f(z) = z+ (A +3)23/(A+1), z € D.

Bu
¢ Re{(l—z2)L*+f(z)}=Re{(1 )(1+;i? )}:

for 212 = +iy/(A + 1)/(A + 3) € D which implies that f ¢ Tp(A+1). O
From the last theorem it follows the following result.

COROLLARY 4.8. |5 Tr(A) C Uxep,1) Tr(N)-

COROLLARY 4.9. 1. Tr(n) G TR for every n € N.
2. Tr(n) G CVR(i) for everyn € N, n > 2.

Since the class CVR(i) is the set of univalent functions we have
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COROLLARY 4.10. For every n € N the class Tr(n) is the set of univalent
functions.

For each A € [0,1) denote

Tr(A\, ) = (| To(A +n).
n=0
By Theorem 4.7 we see that Tg(A, 0o) g Tr(X\ + n) for every n € Ny. On
the other hand the identity I, I(z) = 2z, z € D, belongs to Tr(), 0o) since
I € Tgr(A+n) for all n € Ny. Taking into account estimates of coefficients of
functions in the class Tg(A + n) we see that both sides of inequalities (3.2)
tend to zero for every fixed k = 2, 3,--- when n tends to infinity since then
Bi(M\ + n) tends to infinity. Hence and again by Theorem 4.7 it may be
concluded the following result.

THEOREM 4.11. For each X € [0,1) Tr(A,00) = NoogTr(A +n) = {I}.
Consequently,

Tr(c0) = (] Ta(N) = {I}.

A>0

5. Radius problem
Theorem 4.7 leads to the following radius problem.

DEFINITION 5.1. For each A € [0,1] and m € N by Rj ,,(n), where n € Ny,
we denote the largest radius of a disk Dg, ,.(n) such that every function
f € Tr(A + n) satisfy the condition

Re 1—z2M > 0, z2€Dg, _(n)-
z )\,m()

THEOREM 5.2. Ro1(0) =+v2 - 1.

Proof. Observe that Rp1(0) is the largest radius such that in the disk
Dg, ,(0) the condition

(5.1) Re {(1 - z2) f'(z)} >0,

is satisfied for every function f € 7g.
For each z € D denote

Az(f) = (1_z2)f,(z)’ fEA
Since for each z € I, A, is a continuous linear function over the class Tr

which is a convex compact subfamily of A with a standard topology, it
suffices to prove (5.1) for the set {f; : z € [—1,1]} of extreme points in 7g,
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where for each z € [-1,1],

z

fz(z):1—2a:z+z2’ z€D.

In this way by (5.1) we will find the largest radius Rp;(0) such that

1-— 22 2
ReA.(fz) = Re { (m) } >0, z € DRO,I(O)’

for all z € [—1,1]. The above inequality can be rewritten as

1— 22
(5.2) |Arg Az (fe) =2 Arg{l —2:1:z+22} <

Observe that for each x € [—1,1] and r € (0, 1] holds

1— 22 1+2z
—_— D : D, p.
{1—2mz+z2 € T}C{l—z € r}

Hence and from (5.2) it is enough to find the largest ro € (0, 1] such that
1— 22 T
A —_— b <,
rg{1—2xz+z2} 4
From the above it is easy to see that rg is the unique solution in (0, 1] of the
equation

™

5"

2 € Dy,

2r m
1—72 4’
Hence ro = v/2 — 1. Consequently, Ro1(0) > v2 — 1.
In order to prove that Ry 1(0) = v/2—1 let us consider the Koebe function
K. Clearly, K € Tg and K is an extreme point in 7g. We have

1+2\2
ReA,(K) =Re - >0, z € Dy,

arctan

and Re {(1 — 2%) K'(20)} = 0 at 2o = roi. O

REMARK 5.3. It is interesting that Rp1(0) = v2 — 1 is equal to the radius
of starlikeness and the radius of univalence in the class 7Tg (see [3]).
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