

V. B. L. Chaurasia, Hari Singh Parihar

CERTAIN SUFFICIENCY CONDITIONS
ON FOX-WRIGHT FUNCTIONS

Abstract. The main object of this paper is to find certain conditions for the function $z\{{}_p\psi_q(z)\}$ to be a member of certain subclasses of analytic functions. Our results provides generalization of some recent results due to Swaminathan [19] and Chaurasia and Srivastava [20].

1. Introduction

As usual, let A denote the class of functions of the form

$$(1.1) \quad f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

analytic in the open unit disk $\Delta = \{z : |z| < 1\}$ and S denote the subclass of A that are univalent in Δ . We begin with the following.

DEFINITION 1.1 ([2]). Let $f \in A$, $0 \leq k < \infty$, and $0 \leq \alpha < 1$. Then $f \in k - UCV(\alpha)$ if and only if

$$(1.2) \quad \operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \geq k \left| \frac{zf''(z)}{f'(z)} \right| + \alpha.$$

This class generalizes various other classes which are worthy of mention. The class $k - UCV(0)$ called the k -uniformly convex is due to Kanas and Wiśniowska [8] and has its geometric characterization given in the following way: let $0 \leq k < \infty$. The function $f \in A$ is said to be k -uniformly convex in Δ , if f is convex in Δ , and the image of every circular arc γ contained in Δ , with center ζ , where $|\zeta| \leq k$, is convex.

Key words and phrases: univalent function, Fox-Wright function, starlike functions, convex functions.

2000 *Mathematics Subject Classification:* 30C45, 33C45, 33A30.

The class $0 - UCV(\alpha) = \kappa(\alpha)$ is the well known class of convex functions of order α that satisfy the analytic conditions

$$\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha.$$

In particular, for $\alpha = 0$, f maps the unit disk onto a convex domain (for details, see [6]). We have $1 - UCV(0) = UCV$ [7]. Denoting

$$p(z) = \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \quad (z \in \Delta)$$

and assuming that $f \in UCV(\alpha)$ we have that p is in conic region

$$\Omega = \{ \omega \in C : (\operatorname{Im} \omega)^2 < 2 \operatorname{Re} \omega - 1 \}.$$

The classes $UCV(\alpha)$ and $ST(\alpha)$ are unified and studied using certain fractional calculus operator methods in [13]. We refer to [8, 9, 10] and references therein for basic results related to this paper.

For $\tau \in C \setminus \{0\}$, Swaminathan [19] introduce the class $P_\gamma^\tau(\beta)$, with $0 \leq \gamma < 1$ and $\beta < 1$, as

$$(1.3) \quad P_\gamma^\tau(\beta)$$

$$:= \left\{ f \in A : \left| \frac{(1-\gamma)\frac{f(z)}{z} + \gamma f'(z) - 1}{2\tau(1-\beta) + (1-\gamma)\frac{f(z)}{z} + \gamma f'(z) - 1} \right| < 1, z \in \Delta \right\}.$$

We list a few particular cases of this class discussed in the literature.

- (i) The class $P_\gamma^\tau(\beta)$, with $0 \leq \gamma < 1$ and $\beta < 1$ was studied by Dixit and Pal in [3]. Properties of that class related to the operator $I_{a,b;c}(f)(z) = zF(a, b; c; z) * f(z)$ were considered in [5].
- (ii) The class $P_\gamma^\tau(\beta)$, with $0 \leq \gamma < 1$ and $\beta < 1$ for $\tau = e^{i\eta} \cos \eta$ where $-\pi/2 < \eta < \pi/2$ was examined in [12] and discussed by many authors with the reference to the Carlson-Schaffer operator $G_{b,c}(f)(z) = zF(1, b; c; z) * f(z)$ using duality techniques (for example, see [1, 4, 11, 12, 14, 15]).

We denote by T a subclass S with negative coefficients, e.g.

$$(1.4) \quad f(z) = z - \sum_{n=2}^{\infty} a_n z^n, a_n \geq 0.$$

This class is due to H. Silverman [17] and has many interesting results (see [17] and [18]).

In the link of $k - UCV(\alpha)$ the following class was defined in [2].

DEFINITION 1.2 ([2]). Let $k - UCT(\alpha)$ be the class of functions $f(z)$ of the form (1.4) that satisfies the condition (1.2). Using the analytic condition (1.2) and an Alexander type theorem, the following classes are defined in [2].

DEFINITION 1.3 ([2]). Let $0 \leq k < \infty$, and $0 \leq \alpha < 1$. Then

(i) $f \in k - ST(\alpha)$ if and only if f has the form (1.1) and satisfies the condition

$$(1.5) \quad \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \geq k \left| \frac{zf'(z)}{f(z)} - 1 \right| + \alpha.$$

(ii) $f \in k - STT(\alpha)$ if and only if f has the form (1.4) and satisfies the inequality given by the expression (1.5).

For $k = 0$, we obtain the well known class of starlike functions of order α , which has the analytic characterization $\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha (z \in \Delta)$. In particular, for $\alpha = 0$, f maps the unit disk onto starlike domain (for details, see [4]). We further note that, $1 - ST(\alpha)$ is the well known class discussed in [16]. We also need the following sufficient condition on the coefficients for the functions in the class $k - UCV(\alpha)$.

LEMMA 1.1 ([2]). *If f of the form (1.1) satisfies a condition*

$$(1.6) \quad \sum_{n=2}^{\infty} n[n(k+1) - (k+\alpha)] |a_n| \leq 1 - \alpha$$

for some $0 \leq k < \infty$ and $\alpha \in [0, 1]$, then $f \in k - UCV(\alpha)$. Moreover, the above condition is necessary and sufficient for f to be in $k - UCT(\alpha)$, further the condition

$$(1.7) \quad \sum_{n=2}^{\infty} [n(k+1) - (k+\alpha)] |a_n| \leq 1 - \alpha$$

is sufficient for f to be in $k - ST(\alpha)$ and it is both necessary and sufficient for f to be in $k - STT(\alpha)$.

Another sufficient condition is also given for the class $k - UCV(\alpha)$ in [8] which is given by the following

LEMMA 1.2 ([8]). *If $f \in S$ and be of the form (1.1) satisfies a condition*

$$(1.8) \quad \sum_{n=2}^{\infty} n(n-1) |a_n| \leq \frac{1}{k+2},$$

for some k , $0 \leq k < \infty$ then $f \in k - UCV(\alpha)$. The number $1/k + 2$ cannot be increased.

LEMMA 1.3 ([19]). *If f of the form (1.1) satisfies a sufficient condition*

$$(1.9) \quad \sum_{n=2}^{\infty} [1 + \gamma(n-1)] |a_n| \leq |\tau| (1 - \beta),$$

then $f \in P_{\gamma}^{\tau}(\beta)$. This condition is also necessary if f is of the form (1.4) and $\tau = 1$.

The Fox-Wright function [21, p. 50, equation 1.5] appearing in the present paper is defined by

$$(1.10) \quad {}_p\psi_q(z) = {}_p\psi_q \left[\begin{matrix} (a_j, \alpha_j)_{1,p}; \\ (b_j, \beta_j)_{1,q}; \end{matrix} z \right] = \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n)} \cdot \frac{z^n}{n!},$$

where $\alpha_j (j = 1, \dots, p)$ and $\beta_j (j = 1, \dots, q)$ are real and positive and $1 + \sum_{j=1}^q \beta_j > \sum_{j=1}^p \alpha_j$.

2. Main results

THEOREM 2.1. *If $\sum_{j=1}^q |b_j| > \sum_{j=1}^p |a_j| + 2, a_j > 0$ and $1 + \sum_{j=1}^q \beta_j > \sum_{j=1}^p \alpha_j$, then a sufficient condition for the function $z \{{}_p\psi_q(z)\}$ to be in the class $k - UCV(\alpha)$, and both necessary and sufficient conditions for $z \{{}_p\psi_q(z)\}$ to be in $k - UCT(\alpha), (0 \leq k < \infty, 0 \leq \alpha < 1)$ is*

$$(2.1) \quad \left(\frac{1+k}{1-\alpha} \right) {}_p\psi_q \left[\begin{matrix} (a_j + 2\alpha_j, \alpha_j)_{1,p}; \\ (b_j + 2\beta_j, \beta_j)_{1,q}; \end{matrix} 1 \right] + \left(\frac{3+2k-\alpha}{1-\alpha} \right) {}_p\psi_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j)_{1,p}; \\ (b_j + \beta_j, \beta_j)_{1,q}; \end{matrix} 1 \right] + {}_p\psi_q \left[\begin{matrix} (a_j, \alpha_j)_{1,p}; \\ (b_j, \beta_j)_{1,q}; \end{matrix} 1 \right] \leq 1 + \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j}.$$

Proof. By virtue of Lemma 1.1, equation (1.6), it suffices to prove that

$$(2.2) \quad \sum_{n=2}^{\infty} n[n(1+k) - (k+\alpha)] \left[\frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!} \right] \leq 1 - \alpha.$$

The above inequality may be expressed as

$$(1+k) \sum_{n=1}^{\infty} (n+1)^2 \left[\frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) n!} \right] - (k+\alpha) \sum_{n=1}^{\infty} (n+1) \left[\frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) n!} \right] \leq 1 - \alpha.$$

The left hand side of the above inequality is equal to

$$\begin{aligned} & (1+k) \sum_{n=2}^{\infty} \left[\frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) (n-2)!} \right] \\ & + (3+2k-\alpha) \sum_{n=0}^{\infty} \left[\frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n+1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n+1)] n!} \right] + (1-\alpha) \sum_{n=1}^{\infty} \left[\frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) n!} \right] \\ & = (1+k)_p \psi_q \left[\begin{matrix} (a_j + 2\alpha_j, \alpha_j)_{1,p}; 1 \\ (b_j + 2\beta_j, \beta_j)_{1,q}; 1 \end{matrix} \right] + (3+2k-\alpha)_p \psi_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j)_{1,p}; 1 \\ (b_j + \beta_j, \beta_j)_{1,q}; 1 \end{matrix} \right] \\ & + (1-\alpha) \left\{ {}_p \psi_q \left[\begin{matrix} (a_j, \alpha_j)_{1,p}; 1 \\ (b_j, \beta_j)_{1,q}; 1 \end{matrix} \right] - \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j} \right\}, \end{aligned}$$

and is bounded by $(1-\alpha)$ if and only if (2.1) holds. It ends the Theorem.

THEOREM 2.2. *If $\sum_{j=1}^q |b_j| > \sum_{j=1}^p |a_j| + 1$, $a_j > 0$ and $1 + \sum_{j=1}^q \beta_j > \sum_{j=1}^p \alpha_j$, then a sufficient condition for the function $z \{{}_p \psi_q(z)\}$ to be in the class $k - ST(\alpha)$ and it is both necessary and sufficient conditions for $z \{{}_p \psi_q(z)\}$ to be in $k - STT(\alpha)$ ($0 \leq k < \infty$, $0 \leq \alpha < 1$) is*

$$(2.3) \quad \left(\frac{1+k}{1-\alpha} \right) {}_p \psi_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j)_{1,p}; 1 \\ (b_j + \beta_j, \beta_j)_{1,q}; 1 \end{matrix} \right] + {}_p \psi_q \left[\begin{matrix} (a_j, \alpha_j)_{1,p}; 1 \\ (b_j, \beta_j)_{1,q}; 1 \end{matrix} \right] \leq 1 + \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j}.$$

Proof. Since

$$z\{\mathbf{p}\psi_q(z)\} = \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j} z + \sum_{n=2}^{\infty} \frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]z^n}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!}$$

then, by virtue of Lemma 1.1 (equation (1.7)), we only need to show that

$$(2.4) \quad \sum_{n=2}^{\infty} [n(1+k) - (k+\alpha)] \left[\frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!} \right] \leq 1 - \alpha.$$

Now, we have

$$\begin{aligned} & \sum_{n=2}^{\infty} [n(1+k) - (k+\alpha)] \left[\frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!} \right] \\ &= \sum_{n=0}^{\infty} [(n+2)(1+k) - (k+\alpha)] \left[\frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n+1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n+1)](n+1)!} \right] \\ &= (1+k) \sum_{n=0}^{\infty} \left[\frac{\prod_{j=1}^p \Gamma[(a_j + \alpha_j) + n\alpha_j]}{\prod_{j=1}^q \Gamma[(b_j + \beta_j) + n\beta_j]n!} \right] \\ &+ (1-\alpha) \left[\sum_{n=0}^{\infty} \left[\frac{\prod_{j=1}^p \Gamma[(a_j + \alpha_j)n]}{\prod_{j=1}^q \Gamma[(b_j + \beta_j)n]n!} \right] - \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j} \right] \\ &= (1+k)\mathbf{p}\psi_q \begin{bmatrix} (a_j + \alpha_j, \alpha_j)_{1,p}; 1 \\ (b_j + \beta_j, \beta_j)_{1,q}; 1 \end{bmatrix} + (1-\alpha)\mathbf{p}\psi_q \begin{bmatrix} (a_j, \alpha_j)_{1,p}; 1 \\ (b_j, \beta_j)_{1,q}; 1 \end{bmatrix} \\ &\quad - (1-\alpha) \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j} \leq 1 - \alpha \end{aligned}$$

by the assertion (2.3). Hence $z\{\mathbf{p}\psi_q(z)\} \in k - ST(\alpha)$.

REMARK 1. In the special case, when $k = 2 - \alpha$, Theorem 2.2 corresponds to a result given earlier by Chaurasia and Srivastava [20, p. 2, Theorem 2.1].

THEOREM 2.3. *If $\sum_{j=1}^q |b_j| > \sum_{j=1}^p |a_j| + 1$, $a_j > 0$ and $1 + \sum_{j=1}^q \beta_j > \sum_{j=1}^p \alpha_j$, then a sufficient condition for the function $z\{{}_p\psi_q(z)\}$ to be in the class $k-UCV(\alpha)$, $(0 \leq k < \infty)$ is*

$$(2.5) \quad (k+2) {}_p\psi_q \left[\begin{matrix} (|a_j + 2\alpha_j|, \alpha_j)_{1,p};_1 \\ (|b_j + 2\beta_j|, \beta_j)_{1,q};_1 \end{matrix} \right] + 2(k+2) {}_p\psi_q \left[\begin{matrix} (|a_j + \alpha_j|, \alpha_j)_{1,p};_1 \\ (|b_j + \beta_j|, \beta_j)_{1,q};_1 \end{matrix} \right] \leq 1.$$

The number $1/k + 2$ cannot be increased.

Proof. By virtue of Lemma 1.2, equation (1.8), it suffices to prove that

$$(2.6) \quad \sum_{n=2}^{\infty} n(n-1) \left| \frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!} \right| \leq \frac{1}{k+2},$$

we note, that

$$\begin{aligned} & \sum_{n=1}^{\infty} (n+1)^2 \left| \frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) n!} \right| - \sum_{n=1}^{\infty} (n+1) \left| \frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) n!} \right| \\ &= \sum_{n=2}^{\infty} \left| \frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) (n-2)!} \right| + 2 \sum_{n=1}^{\infty} \left| \frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n) (n-1)!} \right| \\ &= {}_p\psi_q \left[\begin{matrix} (|a_j + 2\alpha_j|, \alpha_j)_{1,p};_1 \\ (|b_j + 2\beta_j|, \beta_j)_{1,q};_1 \end{matrix} \right] + 2 {}_p\psi_q \left[\begin{matrix} (|a_j + \alpha_j|, \alpha_j)_{1,p};_1 \\ (|b_j + \beta_j|, \beta_j)_{1,q};_1 \end{matrix} \right] \end{aligned}$$

which is bounded by $1/k + 2$ if (2.5) holds. Hence the theorem is proved.

REMARK 2. In the special case, when

$$(2.7) \quad p = 2, q = 1, \alpha_1 = \alpha_2 = \beta_1 = 1, a_1 = a, a_2 = b, b_1 = c, \alpha = 0$$

and after some manipulation, Theorem 2.3 provides a similar results obtained earlier by Swaminathan [19, p. 6, Theorem 2.10, Corollary 2.11, Corollary 2.12].

THEOREM 2.4. *If $\sum_{j=1}^q |b_j| > \sum_{j=1}^p |a_j| + 1$, $a_j > 0$ and $1 + \sum_{j=1}^q \beta_j > \sum_{j=1}^p \alpha_j$, then a sufficient condition for the function $z\{\gamma_p \psi_q(z)\}$ to be in the class $P_\gamma^\tau(\beta)$ is*

$$(2.8) \quad \gamma_p \psi_q \left[\begin{matrix} (|a_j + \alpha_j|, \alpha_j)_{1,p}; & 1 \\ (|b_j + \beta_j|, \beta_j)_{1,q}; & 1 \end{matrix} \right] + \gamma_p \psi_q \left[\begin{matrix} (|a_j|, \alpha_j)_{1,p}; & 1 \\ (|b_j|, \beta_j)_{1,q}; & 1 \end{matrix} \right] \leq |\tau| (1 - \beta) + \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j}.$$

Proof. By virtue of Lemma 1.3 (equation (1.9)) it suffices to prove that

$$(2.9) \quad \sum_{n=2}^{\infty} [1 + \gamma(n-1)] \left| \frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!} \right| \leq |\tau| (1 - \beta).$$

Now, we have

$$\begin{aligned} & \sum_{n=2}^{\infty} [\gamma n + (1 - \gamma)] \left| \frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n-1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n-1)](n-1)!} \right| \\ &= \sum_{n=0}^{\infty} \gamma(n+1) \left| \frac{\prod_{j=1}^p \Gamma[a_j + \alpha_j(n+1)]}{\prod_{j=1}^q \Gamma[b_j + \beta_j(n+1)](n+1)!} \right| \\ &+ \sum_{n=0}^{\infty} \left| \frac{\prod_{j=1}^p \Gamma(a_j + \alpha_j n)}{\prod_{j=1}^q \Gamma(b_j + \beta_j n)} \right| \frac{1}{n!} - \frac{\prod_{j=1}^p \Gamma a_j}{\prod_{j=1}^q \Gamma b_j} \end{aligned}$$

which is bounded by $|\tau| (1 - \beta)$ if (2.8) holds. It ends the proof.

REMARK 3. Applying the parametric substitutions listed in (2.7) and after some manipulation, Theorem 2.4 would yield the similar known results due to Swaminathan [19, p. 5, Theorem 2.5, Corollary 2.6, Theorem 2.7, Theorem 2.8, Corollary 2.9].

3. Particular cases

By specifying the parameters suitably, the results of this paper readily yield some results due to Swaminathan [19] and Chaurasia and Srivastava [20].

Acknowledgement. The authors are thankful to Professor H.M. Srivastava, University of Victoria, Canada for his kind help and valuable suggestions in the preparation of this paper and also thankful to the worthy referee for his remarkable efforts and fruitful suggestions.

References

- [1] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, *On hypergeometric functions and function spaces*, J. Comput. Appl. Math. 139 (2002), 299–322.
- [2] R. Bharati, R. Parvatham and A. Swaminathan, *On subclasses of uniformly convex functions and corresponding class of starlike functions*, Tamkang J. Math. 28 (1997), 17–32.
- [3] K. K. Dixit and S. K. Pal, *On a class of univalent functions related to complex order*, Indian J. Pure Appl. Math. 26 (9) (1995), 889–896.
- [4] R. Fournier and St. Ruscheweyh, *On two extremal problems related to univalent functions*, Rocky Mountain J. Math. 24 (1994), 529–238.
- [5] A. Gangadharan, T. N. Shanmugam and H. M. Srivastava, *Generalized hypergeometric functions associated with k -uniformly convex functions*, Comput. Math. Appl. 44 (2002), 1515–1526.
- [6] A. W. Goodman, *Univalent Functions*, Vols. I and II, Polygonal Publishing House, Washington, New Jersey, 1983.
- [7] A. W. Goodman, *On uniformly convex functions*, Ann. Polon. Math. 56 (1991), 87–92.
- [8] S. Kanas and A. Wiśniowska, *Conic regions and k -uniform convexity*, J. Comput. Appl. Math. 105 (1999), 327–336.
- [9] S. Kanas and A. Wiśniowska, *Conic regions and k -starlike functions*, Rev. Roumaine Math. Pures Appl. 45 (2000), 647–657.
- [10] S. Kanas and H. M. Srivastava, *Linear operators associated with k -uniformly convex functions*, Integral Transform. Spec. Funct. 9 (2000), 121–132.
- [11] Y. C. Kim and H. M. Srivastava, *Fractional integral and other linear operators associated with the Gaussian hypergeometric function*, Complex Variables Theory Appl. 34 (1997), 293–312.
- [12] Y. C. Kim and F. Rønning, *Integral transforms of certain subclasses of analytic functions*, J. Math. Anal. Appl. 258 (2001), 466–486.
- [13] A. K. Mishra and H. M. Srivastava, *Applications of fractional calculus to parabolic starlike and uniformly convex functions*, Comput. Math. Appl. 39 (3/4) (2000), 57–69.
- [14] S. Ponnusamy, and F. Rønning, *Duality for Hadamard products applied to certain integral transforms*, Complex Variables Theory Appl. 32 (1997), 263–287.
- [15] S. Ponnusamy, *Hypergeometric transforms of functions with derivative in a half plane*, J. Comput. Appl. Math. 96 (1998), 35–49.
- [16] F. Rønning, *Uniformly convex functions and a corresponding class of starlike functions*, Proc. Amer. Math. Soc. 118 (1993), 189–196.

- [17] H. Silverman, *Univalent functions with negative coefficients*, Proc. Amer. Math. Soc. 51 (1975), 109–116.
- [18] H. Silverman, *Convolutions of univalent functions with negative coefficients*, Ann. Univ. Mariae Curie-Skłodowska Sect. A 29 (1975), 99–107.
- [19] A. Swaminathan, *Certain sufficiency conditions on Gaussian hypergeometric functions*, J. Ineq. Pure Appl. Math. 5 (4), 83 (2004).
- [20] V. B. L. Chaurasia, and A. Srivastava, *Uniformly starlike and uniformly convex functions pertaining to special functions*, J. Ineq. Pure Appl. Math. 9 (1), 30 (2008).
- [21] H. M. Srivastava and H. L. Manocha, *A Treatise on Generating Functions*, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1984.

V. B. L. Chaurasia

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF RAJASTHAN
JAIPUR-302004, INDIA

Hari Singh Parihar

DEPARTMENT OF MATHEMATICS
POORNIMA INSTITUTE OF ENGINEERING & TECHNOLOGY
SITAPURA, JAIPUR-302022, INDIA
E-mail: harisingh.p@rediffmail.com

Received December 20, 2007; revised version June 3, 2008.