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ON T H E C R I T E R I A F O R INITIAL OPERATORS 
POSSESSING ( c ) -PROPERTY 

AND GENERALIZED ( c ) -PROPERTY 

Abstract . This paper gives the criteria for the system of initial operators to possess 
the c(ii)-property and the generalized c(ii)-property. 

1. Introduction 
In 1988, D. Przeworska-Rolewicz was the first who introduced and con-

sidered the general interpolation problems induced by a right invertible op-
erator with initial operators (see [1]—[7]). In 1990, one of us gave the nec-
essary and sufficient condition for the general interpolation problems to be 
well-posed (see [4]). Note that all results in mentioned works are based 
on the (c)-property of the initial operators. It is known that every initial 
operator F of the right invertible operator D possesses (c)-property if and 
only if dim ker D = 1 (see [1]). In particular, if D is the right invertible 
operator in the linear space X and dim ker D > 2, then there exists a class 
of initial operators of D which does not possess the (c)-property. In [5], the 
authors introduced so-called generalized (c)-property of the system of initial 
operators and studied some general interpolation problems. However, there 
is a lack of an acceptable general criterion for a system of initial operators 
to possess the (c)-property or the generalized (c)-property. If dim ker D > 1, 
there exist many initial operators that still possess the (c)-property, only. 
The initial operators of the right invertible operators play a key role for 
solving interpolation problems, and initial value problems (see [2], [5], [6], 
[7] and references therein). 
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The main result of this paper is to give the necessary and sufficient 
condition for the system of initial operators to possess the (c)-property or 
the generalized (c)-property. 

2. Initial operator 
Let X be a linear space over a scalar field K. In most application, one 

has K. — R or K, = C. Denote by L(X) the set of all linear operators having 
domain and image in X. Write Lq{X) = {A G L(X) : domvl = X}. Denote 
by R(X) the set of all right invertible operators belonging to L(X) (see [1]). 
For a given operator D G R(X), set KD = {R G L0(X) : DR = I}. In the 
sequel, we assume that dim ker D > 0, i.e. D is not invertible. 

DEFINITION 2.1 ([1]). The operator F G L0(X) is said to be an initial 
operator of D G R(X), if the following conditions are satisfied 

1. lmF = kerD, F2 = F, 
2. There exists an R G TZd such that FR = 0. 

For every operator D € R(X), denote by J~O the set of all initial operators 
of D. 

DEFINITION 2.2 ([1]). Let D e R(X), R e 7Zd- We say that the operator 
F 6 J-£) possesses c(ii)-property if for every k G N, there exists c^ e K such 
that 

FRkz = ckz for all z G kerD, 

where we admit R° = I. 
DEFINITION 2.3 ([5]). Let D G R{X),R G KD, and let FI G TD,i = 
1 ,2 , . . . , n . The system of the initial operators {F i \ i = i ^ is said to possess 
the generalized c(i?)-property if there are nontrivial subspaces Z\, Z2,..., ZP 

of ker D such that following conditions hold 

1. kerD = 0 ZV. 
V=1 

2. For any i = 1, 2 , . . . , n, j G N there exists c^v G /C, v = 1 ,2 , . . . ,p, 
such that 

FIRJz = Cijuz, for all z G ZV. 

From Definition 2.3 it follows that if every initial operator F\, F2,..., FN 

possesses the c(i?)-property, then the system of initial operators 
possesses the generalized c(ii)-property. The following example shows that 
there exist the initial operators possessing the generalized c(i?)-property, 
but they do not possess c(i?)-property. 
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EXAMPLE 2 .1 . L e t 
t s 

X=C(R), D = d2/dt2, R = \\. 
oo 

Obviously, dim ker D = 2 and e\ = l,e2 = t are the basic vectors of ker D. 
Consider the operators F g i v e n by the following 

(Fkx)(t) = x(0) + tx'{0) + l{l + t)x"(k) + l(l-t)x"(-k), k = 1,2. Ld ¿t 
It is clearly that Fk G Td, ker D = lin{ei} © lin{e2}, and 

k2i~2 
F k R 3 e i = 

k2i~2 

F k W e 2 = ( 2 j ^ T ) e 2 ' 

where k = 1,2, j G N. Thus, two initial operators (F\, F^) possess the 
generalized c(i?)-property, but they do not possess the c(i?)-property. 

3. The criterion for initial operators to possess the c(i?)-property 
or the generalized c(i?)-property 
Let D G R{X) and let 1 < dim ker D = q < +oo. Denote by E = 

IEM}M=TQ the system of basic vectors of ker D. Suppose that F € TO is the 
initial operator of D corresponding to an R € TZq. Note that FRL G Lq(X) 
for every i g N . By the restriction the domain X to ker D, one can consider 
FRL the operator belonging to Lo(ker D). In the sequel, we write 

Ti := FR\evD, i e N . 
g 

For every i G N, assume that T ^ j = Y1 cijm^m, where Cijm G K,, j = 1, 2, 
m=1 

..., q, i G N. Put 

(3-1) Ci — [cijm]j,m= 
i.e. Ci are the square matrices of order q. We say that the operators 
Ti are represented by the matrix Ci under the system of basic vectors 
E = {em}m=Trq, and write T^E) = Ci(E). 

THEOREM 3.1. The operator F G Td possesses the c(R) -property if and 
only if Ci = ail, where ai G 1C and I is the identity matrix in ker D. 
In another words, the operator F G To possesses the c(R)-property if and 
only if there is a system of basic vectors of ker D such that the matrices C{ 
are diagonal simultaneously. 
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P r o o f . Suppose that F G To possesses the c(/?)-property. Prom Definition 
2.2 it follows that for any ¿ G N, there exists Q G K, such that 

Ti&j = Ciej, j = 1,2, . . . ,</ . 

Then 
Ci = [$jmCi]j!m=, 

where Sjm is the Kronecker's symbol. Thus, Ci are the diagonal matrices. 
Conversely, suppose that for every ¿ G N, Ci defined by (3.1) are of the 

form Ci = ail. We have Tej = Ciej = «¿ej, j = 1 , 2 , . . . , q, for all ¿ G N. It 
means that F possesses the c(ii)-property. The proof is complete. • 

Now we deal with the system of initial operators. Let be the 
system of the initial operators of D corresponding to R G HD- Write 

Tij FiHP |ker D• 

Suppose that 
9 

(3.2) Tij(em) = ^2cijmkek, ¿ = 1 , 2 , . . . , « , m = l , 2 , . . . , g , i € N . 
fc=i 

For every ¿ = 1, 2 , . . . , n and j G N, we set 

(3.3) Cij = [Cijmfc]mifc=i^ > 

i.e. Cij are the square matrices of order q. We say that operators Tij are rep-
resented by the matrices Cij under the system of basic vectors E = {em}m=j- (7-
Set 

(3.4) Tij(E)=Cij(E). 

THEOREM 3.2. The system { F j } p o s s e s s e s the generalized c(R)-prop-
erty if and only if there exists an invertible matrix S so that for every 
i — 1 , 2 , . . . , n, j G N, the operator S^CijS are the diagonal matrices. 
In another words, {^}i=Tn possesses the generalized c(R)-property if and 
only if there exists a system of basic vectors E* = {Zm}m=Tq of ker D such 
that all operators T\j are represented by the diagonal matrices under sys-
tem E*. 

P r o o f . Necessity. Suppose that ker£) = 0 £ = 1 Zu, and 

(3.5) TijZ = 7 i j V z for every 2 G Zu, v = 1 , 2 , . . . ,p. 

In the subspaces Zv (v = 1, 2 , . . . ,p) we choose the system of basic vectors 
as follows 
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where pu = dim Zv. Obviously, E* = t X = i is the system of basic vectors 
of ker D. From (3.5) it follows 

Tijetk = lijvKk, ^ = 1 , 2 k = l,2,...,p„. 

We then write 

(3.6) Tij(E*) = Tij(E*). 

Put 

There exists a linear transform S domain E to image E*, provided E and 
E* are together the systems of basic vectors of ker D. From (3.4) and (3.5) 
it follows 

rij = S~1CijS, i = 1 , 2 , . . . , n, j e N. 

Sufficiency. Suppose that there exists an invertible matrix S so that for 
every i = 1, 2 , . . . , n and for j € N, S~1CijS = Tl3 are the diagonal matrices. 
Suppose that 

Tij = [7ijkmhm] kj7n=^ i = 1 , 2 , . . . , n , j G N. 

From the invertibility of S it implies that E* = S(E) is the system of 
basic vectors of ker D. Hence, the operators FlW can be represented by the 
diagonal matrices under E*, i.e. 

Tij = [ j i jkmhm]k i r n =m, i = 1) 2 , . . . , n, j e N. 

For every m = 1, 2 , . . . , q we have 

k e r L » = 0 1 i n { e ^ } , 
m=1 

rji * -p * * 
ij m ~ 1 ij m ~ njem-

Thus, the system { ^ } i = r n possesses the generalized c(i?)-property cor-
responding to subspaces Zv = lin {e*n}, rri = 1,2, ...,q. The theorem is 
proved. • 

Note that if the system of initial operators {F i } i = Y^ possesses the gener-
alized c(i?)-property with respect to subspaces Z\, Z2, •.., Zv, then this sys-
tem also possesses the generalized c(i?)-property with respect to subspaces 
{ z v s } u = w h e r e Zvs <Z Zv, pv = dimZ„. Hence, the following prob-
lem arises: Let the system of the initial operators be given. Find 
the minimal number p such that {Fi}i=Y^ possesses the generalized c(R)-
property with respect to p subspaces Z\, Z2,. •., Zp. 
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Now we determine the minimal number p if possible. Suppose that 
the system of the initial operators {Fi}i=y-^ possesses the generalized c(R)-
property. By Theorem 3.2 we can assume that E* = Um=i em i s the system 
of basic vectors of ker D so that the operators Ttj are represented by the 
diagonal matrices F^- under E*. Suppose that 

Tij = [Smk~fijrn]m ' ® ~ 1) 2 , . . . , w, i G N. 

Then 
= ^/ijmemi 2 = 1, 2 , . . . , 71, j G N. 

For every m = 1 , 2 , . . . , q, set 

Am = {7 i jm,i = 1 , 2 , . . . ,n, j G N}, m = 1 ,2 , . . .,q. 
We say that A^ is equivalent to A; if for alH = 1 , 2 , . . . , n, j G N, ryl]k = 7^7. 
In this case, we write A^ = A W e divide the set E* into equivalent classes 
as follows 

e* = e* if and only if A j = A j . 

Suppose that the system E* is divided into p disjoint classes, i.e. 

E* = U Et, E ; [ ) E ; = 0. 

i/=l i/Ne/i 
We set 

z ; = im{E;}, 1/ = 1 , 2 

It is clearly that 
p 

(3.7) ker£> = 0 Z ; , 
u=l 

and 

FiRjz = TijZ = ~tijuz for all z e Z*, i = 1 , 2 , . . . , n, j G N. 

Thus, the system of initial operators possesses the generalized 
c(i?)-property corresponding to Z*, ..., Z*. However, the decomposition 
(3.7) is minimal by mean that if {i^O^Tn possesses the generalized c(R)-
property respect to Z[, Z'2,..., Z'q, then q > p. 

References 

[1] D. P r z e w o r s k a - R o l e w i c z , Property (c) and interpolation formulae induced by right 
invertible operators, Demonstratio Math. 21 (1988), 1023-1044. 

[2] D. P r z e w o r s k a - R o l e w i c z , Algebraic Analysis, PWN-Polish Scientific Publishers 
and D. Reidel Publishing Company, Warszawa-Dordrecht, 1988. 



Criteria for initial operators 811 

[3] D. P r z e w o r s k a - R o l e w i c z , Logarithms and Antilogarithms, An Algebraic Analysis 
Approach, Kluwer Academic Publishers, Dordrecht-Boston-London, 1998. 

[4] Nguyen V a n M a u , Interpolation problems induced by right and left invertible op-
erators and its applications to singular integral equations, Demonstration Math. 23 
(1990), 191-212. 

[5] Nguyen V a n M a u , Pham Q u a n g H u n g , Generalized c(R) property and interpolation 
problems induced by right invertible operators, Demonstratio Math. 28 (1995), N. 4, 
975-984. 

[6] Z. B i n d e r m a n , Initial operators for generalized invertible operators, Comment. Math. 
31 (1991), 25-37. 

[7] Z. B i n d e r m a n , Applications of sequential shifts to an interpolation problem, Collect. 
Math. 44 (1993), 47-57. 

Nguyen Van Mau 
DEPARTMENT OF MATHEMATICAL ANALYSIS, UNIVERSITY OF HANOI 
334, NGUYEN TRAI STR., HANOI, VIETNAM 
E-mail: maunv@vnu.edu.vn. 

Corresponding author: 
Nguyen Minh Tuan 
DEPARTMENT OF MATHEMATICAL ANALYSIS, UNIVERSITY OF HANOI 
334, Nguyen Trai Str. 
HANOI, VIETNAM 
E-mail: nguyentuan@vnu.edu.vn. 

Received November 25, 2007. 




