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ON THE CRITERIA FOR INITIAL OPERATORS
POSSESSING (c)-PROPERTY
AND GENERALIZED (c)-PROPERTY

Abstract. This paper gives the criteria for the system of initial operators to possess
the c(R)-property and the generalized ¢(R)-property.

1. Introduction

In 1988, D. Przeworska-Rolewicz was the first who introduced and con-
sidered the general interpolation problems induced by a right invertible op-
erator with initial operators (see {1]-[7]). In 1990, one of us gave the nec-
essary and suflicient condition for the general interpolation problems to be
well-posed (see [4]). Note that all results in mentioned works are based
on the (c)-property of the initial operators. It is known that every initial
operator F' of the right invertible operator D possesses (c)-property if and
only if dimker D = 1 (see [1]). In particular, if D is the right invertible
operator in the linear space X and dimker D > 2, then there exists a class
of initial operators of D which does not possess the (¢)-property. In [5], the
authors introduced so-called generalized (c)-property of the system of initial
operators and studied some general interpolation problems. However, there
is a lack of an acceptable general criterion for a system of initial operators
to possess the (c)-property or the generalized (c¢)-property. If dimker D > 1,
there exist many initial operators that still possess the (c)-property, only.
The initial operators of the right invertible operators play a key role for
solving interpolation problems, and initial value problems (see [2], [5], [6],
[7] and references therein).
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The main result of this paper is to give the necessary and sufficient
condition for the system of initial operators to possess the (c)-property or
the generalized (c)-property.

2. Initial operator

Let X be a linear space over a scalar field K. In most application, one
has £ = R or K = C. Denote by L(X) the set of all linear operators having
domain and image in X. Write Lo(X) = {A € L(X) : dom A = X}. Denote
by R(X) the set of all right invertible operators belonging to L(X) (see [1]).
For a given operator D € R(X), set Rp ={R € Lo(X) : DR = I}. In the
sequel, we assume that dimker D > 0, i.e. D is not invertible.

DEFINITION 2.1 ([1]). The operator F € Lo(X) is said to be an initial
operator of D € R(X), if the following conditions are satisfied

1. InF =kerD, F?=F,
2. There exists an R € Rp such that FR = 0.

For every operator D € R(X), denote by Fp the set of all initial operators
of D.

DEFINITION 2.2 ([1]). Let D € R(X), R € Rp. We say that the operator
F € Fp possesses c(R)-property if for every k € N, there exists ¢ € K such
that

FR*z = ¢z for all z € ker D,
where we admit R® = I.

DEFINITION 2.3 ([5]). Let D € R(X),R € Rp, and let F; € Fp,i =
1,2,...,n. The system of the initial operators {F;}, 17, is said to possess
the generalized c¢(R)-property if there are nontrivial subspaces Z1, Z3, . .., Zp
of ker D such that following conditions hold

p
l.ker D= @ Z,.
v=1
2. For any ¢ = 1,2,...,n, j € N there exists ¢;;,, € K, v =1,2,...,p,

such that
F,Riz = cijuz,forall z € Z,.

From Definition 2.3 it follows that if every initial operator F, Fs,..., F,
possesses the c(R)-property, then the system of initial operators {F;},_13
possesses the generalized c¢(R)-property. The following example shows that
there exist the initial operators possessing the generalized c(R)-property,
but they do not possess ¢(R)-property.
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EXAMPLE 2.1. Let
is
X =C(R), D=d*/dt*, R=1{.
00

Obviously, dimker D = 2 and e; = 1,e3 = t are the basic vectors of ker D.
Consider the operators Fj given by the following

(Frz)(t) = z(0) + tz'(0) + %(1 +t)z" (k) + %(1 —t)z"(-k), k=1,2.

It is clearly that Fy, € Fp, ker D =lin{e;} @ lin{e2}, and

. k2i—2
FkR]el = —F=€1,
(25 —2)
_ j2i—2
FyRleg = ———ey,
(25 —1)

where £k = 1,2, j € N. Thus, two initial operators (Fj, F3) possess the
generalized c¢(R)-property, but they do not possess the ¢(R)-property.

3. The criterion for initial operators to possess the c(R)-property
or the generalized c(R)-property
Let D € R(X) and let 1 < dimkerD = q¢ < +o0o. Denote by E =
{em} 15 the system of basic vectors of ker D. Suppose that F' € Fp is the
initial operator of D corresponding to an R € Rp. Note that FR* € Lo(X)
for every i € N. By the restriction the domain X to ker D, one can consider
FR! the operator belonging to Lo(ker D). In the sequel, we write

T; := FRYyerp, i € N.

q
For every ¢ € N, assume that Tie; = Y° cijjmem, where cijm € K, j = 1,2,
m=1
..,q,1 € N. Put
(3.1) Ci = [Cijmljm=17>

ie. C; are the square matrices of order q. We say that the operators
T; are represented by the matrix C; under the system of basic vectors
E = {em},_15 and write T;(E) = C;(E).

THEOREM 3.1. The operator F € Fp possesses the c(R)-property if and
only if C; = a;I, where a; € K and I is the identity matriz in ker D.

In another words, the operator F € Fp possesses the c(R)-property if and
only if there is a system of basic vectors of ker D such that the matrices C;
are diagonal simultaneously.
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Proof. Suppose that F' € Fp possesses the ¢(R)-property. From Definition
2.2 it follows that for any ¢ € N, there exists ¢; € K such that

Tiej =ciej, j=1,2,...,q.
Then
Ci = [8jmCil; m=17>
where 0, is the Kronecker’s symbol. Thus, C; are the diagonal matrices.
Conversely, suppose that for every i € N, C; defined by (3.1) are of the

form C; = a;I. We have Tie; = Cie; = aze5, j = 1,2,...,q, foralli € N. It
means that F' possesses the c(R)-property. The proof is complete. 0O

Now we deal with the system of initial operators. Let {F;},_ 1 be the

i=1,n

system of the initial operators of D corresponding to R € Rp. Write
Tij = ERj|kerD-
Suppose that

q
(32) Tijlem) =) _ cijmker, i=1,2,...,n, m=1,2,...,q, i€ N.
k=1

For every i =1,2,...,n and j € N, we set

(3.3) Cij = [Cijmklm p=17

i.e. C;; are the square matrices of order g. We say that operators T;; are rep-
resented by the matrices C;; under the system of basic vectors E={e, }
Set

(34) T;;(E) = Ci; (E).

THEOREM 3.2. The system {F;};_1;, possesses the generalized c(R)-prop-
erty if and only if there exists an invertible matric S so that for every
i=1,2,...,n,7 € N, the operator S‘ICijS are the diagonal matrices.

In another words, {Fi}izl,_n possesses the generalized c(R)-property if and
only if there exists a system of basic vectors E* = {e,*n}m:m of ker D such
that all operators T;; are represented by the diagonal matrices under sys-
tem E*.

m=1,g’

Proof. Necessity. Suppose that ker D = @F_; Z,, and

(3.5) Tijz = yijuz for every 2 € Z,, v=1,2,...,p.
In the subspaces Z, (v = 1,2,...,p) we choose the system of basic vectors
as follows

E; = {eh k1m0
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where p, = dim Z,,. Obviously, E* = {J/_, E} is the system of basic vectors
of ker D. From (3.5) it follows

Tijepr = Yijveor, V=1,2,...,p, k=1,2,...,p,.
We then write
(3.6) Tii(E™) =Ty (E7).
Put
Lijy = [0rsYijolr o=t

Lij = [bvulijil, 1 -
There exists a linear transform S domain E to image E*, provided E and
E* are together the systems of basic vectors of ker D. From (3.4) and (3.5)
it follows
Ty =871CyS, i=1,2,...,n, jEN.

Sufficiency. Suppose that there exists an invertible matrix § so that for
everyi=1,2,...,nand for j € N, S_lcijS = I';; are the diagonal matrices.
Suppose that

Fij = ['Yijkm‘skm] kan=T1p’ i=1,2,...,n, jEN

From the invertibility of S it implies that E* = S(F) is the system of
basic vectors of ker D. Hence, the operators F; 7 can be represented by the
diagonal matrices I';; under E*, i.e.

Fij = [’Y’L]km(skm] km=I¢’ = 1, 2: SRR j eN.

For every m=1,2,...,q we have
q
kerD = @ lin {e;,},
m=1

Tijem = Lijen = Vijem.
Thus, the system {Fi}i:T,E possesses the generalized c(R)-property cor-

responding to subspaces Z, = lin{e},},m = 1,2,...,q. The theorem is
proved. m|

Note that if the system of initial operators { F;};, 17, possesses the gener-
alized c¢(R)-property with respect to subspaces Zi, Zs, ..., Zp, then this sys-
tem also possesses the generalized c(R)-property with respect to subspaces
{Z,,S}V:H’s:m, where Z,s C Z,, p, = dim Z,. Hence, the following prob-
lem arises: Let the system of the initial operators {Fi}i:L—n be given. Find
the minimal number p such that {F;},_1; possesses the generalized c(R)-

property with respect to p subspaces Z1, 22, . .., Zy.
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Now we determine the minimal number p if possible. Suppose that
the system of the initial operators {F;},_1 possesses the generalized c(R)-
property. By Theorem 3.2 we can assume that E* = |J _; e*, is the system
of basic vectors of ker D so that the operators T;; are represented by the
diagonal matrices I';; under E*. Suppose that

Iy = [‘Smk’ﬁjm]m,hzﬁ;’ 1=1,2,...,n, i€ N,
Then
Tijem = Yijm€m, t=1,2,...,n, j €N,
For every m=1,2,...,q, set
Am = {Vijm,t =1,2,...,n,j €N}, m=1,2,...,q.

We say that Ay is equivalent to Ajifforall¢ =1,2,...,n,j € N, v = vij.
In this case, we write A = A;. We divide the set E* into equivalent classes
as follows

e; Ze; ifandonlyif A;=A;.

Suppose that the system E* is divided into p disjoint classes, i.e.

p
E*=|JE, E; ) E;,=0.
v=1 vNep

We set
zZ;=1ln{E}}, v=12,...,p.

It is clearly that

P
(3.7) ker D = P Z;,
v=1

and
FiRiz =Tz =iz forallz€ Z}, i=1,2,...,n, jEN.

Thus, the system of initial operators {Fi}i=1,_n possesses the generalized
c(R)-property corresponding to Z7, Z3, . . ., Z;. However, the decomposition
(3.7) is minimal by mean that if {F;},_17 possesses the generalized c(R)-
property respect to Z1, Zy, ..., Z,, then ¢ > p.

References

[1] D. Przeworska-Rolewicz, Property (c) and interpolation formulae induced by right
invertible operators, Demonstratio Math. 21 (1988), 1023-1044.

[2] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers
and D. Reidel Publishing Company, Warszawa-Dordrecht, 1988.



Criteria for initial operators 811

[3] D. Przeworska-Rolewicz, Logarithms and Antilogarithms, An Algebraic Analysis
Approach, Kluwer Academic Publishers, Dordrecht-Boston-London, 1998.

[4] Nguyen Van Mau, Interpolation problems induced by right and left invertible op-
erators and its applications to singular integral equations, Demonstration Math. 23
(1990), 191-212.

[5] Nguyen Van Mau, Pham Quang Hung, Generalized c(R) property and interpolation
problems induced by right invertible operators, Demonstratio Math. 28 (1995), N. 4,
975-984.

[6] Z. Binderman, Initial operators for generalized invertible operators, Comment. Math.
31 (1991), 25-37.

[7] Z. Binderman, Applications of sequential shifts to an interpolation problem, Collect.
Math. 44 (1993), 47-57.

Nguyen Van Mau
DEPARTMENT OF MATHEMATICAL ANALYSIS, UNIVERSITY OF HANOI
334, NGUYEN TRAI STR., HANOI, VIETNAM

E-mail: maunv@vnu.edu.vn.

Corresponding author:

Nguyen Minh Tuan

DEPARTMENT OF MATHEMATICAL ANALYSIS, UNIVERSITY OF HANOI
334, Nguyen Trai Str.

HANOI, VIETNAM

E-mail: nguyentuan@vnu.edu.vn.

Received November 25, 2007.






