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H. E. Darwish

ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS
WITH FIXED SECOND COEFFICIENT

Abstract. Using of Salagean operator, we define a new subclass of uniformly convex
functions with negative coefficients and with fixed second coeflicient. The main objective
of this paper is to obtain coeflicient estimates, distortion bounds, closure theorems and
extreme points for functions belonging of this new class. The results are generalized to
families with fixed finitely many coeflicients.

1. Introduction
Let S denote the class of functions of the form:

(1.1) f(z)= z+Zakzk
k=2

which are analytic and univalent in the open unit disc U = {z : |z| < 1}, let
ST and CV the subclasses of S that are, respectively, starlike and convex.
Goodman ([8] and [9]) introduced and defined the following subclasses of
CV and ST.

A function f(z) is uniformly convex (uniformly starlike) in U if f(2) is
in CV(ST) and has the property that for every circular arc v contained in
U, with center ¢ also in U, the arc f(y) is convex (starlike) with respect to
f(¢). The class of uniformly convex functions is denoted by UCV and the
class of uniformly starlike functions by UST (for details see [8]). It is well
known from ([15] and [18]) that

12)  fx)e UCV@Re{l + zf”(z)} > |7 , zeUl.

f'(2) f'(2)

Later on, Ronning [19] introduced a new class S, of starlike functions related
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to UCYV defined as

2f (2) 2f'(2) _
(1.3) f(z)eS,,@Re{ ) }2 5 ll, zeU.
Note that
(1.4) f(z) eUCV & zf'(2) € 8.

Also in 18], Ronning generalized the classes UCV and S, by introducing
a parameter « in the following way.

A function f(z) of the form (1.1) is in Sp(a) if it satisfies the analytic
characterization:

S\ |G
(1.5) Re{ 10 }Z 16

and f(z) € UCV(a), the class of uniformly convex functions of order «, if
and only if zf'(2) € Sp(a).

By 8 —UCV, 3 > 0, we denote the class of all f-uniformly convex
functions introduced by Kanas and Wisniowska [13], it is known [13] that
f(z) € p—UCYV if and only if it satisfies the following condition:

(1.6) Re{1 + ZJ{C,(S)} > |2 &)

—1’,—1§a<1;z€U,

,z€U;8>0.

f'(2)
We consider the class 8 — Sy, 8 > 0, of B-starlike functions (see [14]) which
are associated with S-uniformly convex functions by the relation:

(1.7) f(z2) € B-UCV & 2§ (2) € 8- 8,.

Thus, the class 8 — Sp, is the subclass of S, consisting of functions that
satisfy the analytic condition:

S )
(18) Re{ 0 } > P

For a function f(z) € S, we define
D°f(2) = f(2),
D'f(z) = Df(2) = 2f (2),

’

—1‘,Z€U;,BZO.

and
(1.9) D"f(z) = D(D"_lf(z)) (neN=1{1,2,...}).

The differential operator D™ was introduced by Salagean [21].
For 3 > 0,-1 <a<1l,n€ Np = NU{0} and m € N, we let
S(n,m,a, ) denote the subclass of S consisting of functions f(z) of the
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form (1.1) and satisfying the analytic criterion:

Dn+mf( ) } ’Dn+mf ) ‘
1.10 Re > 8l 1|, zeU.
(110 Soon D7
We denote by T the subclass of S consisting of functions of the form:
o0
(1.11) flz)=2z— Zakzk (ax > 0).
k=2
Further, we define the class T'S(n,m, a, 3) by
(1.12) TS(n,m,a,B) = S(n,m,a,f)NT.

We note that the operator D"*™ was studied by Sekine [22], Aouf et
al. ([4] and [5]), Hossen et al. [11] and Aouf [2]. Also we note that
TS(n,1,a,8) = T(n,a,B) (Rosy and Murugusundaramoorthy [20]) and
TS(n,1,0,8) = S(n,1,0,5) (Kanas and Yaguchi [12]).

2. The Class T'S(n,m,a, 3)
In this section we obtain necessary and sufficient conditions for functions
f(2) in the classes T'S(n, m, a, 3).

THEOREM 1. A function f(z) of the form (1.1) is in S(n,m,a, B) if

0
(2.1) > 8(k,n,m, 0, 8) lag| <1-a,

k=2
where 6(k,n,m,a, 3) = k"[k™(1+8)—(a+8)], -1<a<1,8>0,n€ Ny
and m € N.

Proof. It suffices to show that

D"+mf (2) D™ (2)
‘We have
m_ ’_ {w_ } ‘PM_ ‘
ot | e Pty 1} < 00 P 1

(1+8) 3 k(K™ = 1) |k
k=2

<
— o0
1- 3 k™ |ak
k=2
This last expression is bounded above by (1 — «) if
oo
Z 6(ka n,m,a, /8) |ak| <1- a,

k=2
and hence the proof is complete.
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THEOREM 2. A necessary and sufficient condition for f(z) of the form
(1.11) to be in the class TS(n,m,a, 3) is that

o0
(2.2) Zé(k,n,m,a,ﬁ)ak <l-a

k=2
Proof. In view of Theorem 1, we need only to prove the necessity. If
f(z) € TS(n,m,a, ) and z is real, then

00 00
1— Z kn+makzk—1 Z k"(km _ l)akzk—l
1- Y kragzk-! 1-— Z kragzk—1

k=2 k=2

Letting z — 1~ along the real axis, we obtain the desired inequality (2.2).

COROLLARY 1. Let the function f(z) defined by (1.11) be in the class
TS(n,m,a,3). Then

l-a
. - > 2).
&3 %S Sommap) 22
The result is sharp for the function
(2.4) fR) =z — 1%k (k>2).

6(k,n,m,a,ﬂ)z
Setting & = 2 in (2.3), we have

< 1-«
9= 8(2,n,m,a, B)

Let T'S.(n,m,a, 3) denote the class of functions f(z) in T'S(n,m, a, )
of the form

I O ' T3 —Zakz (o4 2 0),

(2.5)

where 0 < ¢ < 1.
We note that:
(i) TSc(n,1,0,0) = Te(n,a) (0 < a < 1,n € Ng,0 < ¢ < 1) (Aouf and
Darwish [3]);
(ii) For 0 < a < 1,n € Ng,m € N,0 < ¢ < 1, we have

n+m
(2.7) TS.(n,m,a,0) = {f(z) € TS(n,m,a) : Re{%—ﬁ(i()z—)} > a,

f(z)=2— 2n(21m__aa) Zakz (ag > 0)}
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3. Coeflicient estimates

THEOREM 3. Let the function f(z) be defined by (2.6). Then
f(z) € TS.(n,m,a, B) if and only if

oo

(31) Zé(k,n,m,a,ﬂ)ak < (1 _C)(l _a)'
k=3

The result is sharp for the function

(3.2) ﬂ”=z—a£$;ihnf—§&}3$;%%k (k= 3)

Proof. Putting

c(l—0a)
- 5(2,n,m,a, B)’
in (2.2) and simplifying we get the result.
COROLLARY 2. Let the function f(z) defined by (2.6) be in the class
TSq(n,m,a,3). Then

(3.3) as 0<e<1,

(1-9( - a)
(3.4) (277 S m (k Z 3)

The result is sharp for the function f(z) given by (3.2).

4. Extreme points

Employing the technique used earlier by Silverman and Silvia [23], Owa
([16] and [17]), Ganigi [7], Ahuja and Silverman [1], Aouf and Darwish [3],
Aouf, Hossen and Srivastava [6] and Hossen[10] with the aid of Theorem 3,
we can prove the following:

THEOREM 4. Let

o l-a

(#1) P& =2 s e )
and

L _dim0) , (-gO-a),
“n A= ma ) S ma,B)
fork=3,4,... . Then f(z) is in the class T'S.(n,m,a, B) if and only if it
can be expressed in the form
(4.3) F(2) =Y Mefil(2),

k=2

where A\, >0 and Y M =1.
k=2
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COROLLARY 3. The extreme points of the class T'S.(n,m,a,3) are the
functions fi(z) (k > 2) given by Theorem 4.

5. Growth and distortion theorems for the class T'S.(n,m, a, 3)

Lemmas 1, 2 and 3 below will be required in our investigation of the
growth and distortion properties of the general class T'S.(n, m, , 3).

LEMMA 1. Let the function f3(z) be defined by

c(l-a) 22 _ (1-o(1-qa) 23
6(2,71, m7a7:8) (5(3,71,771, a,ﬂ)

Then for0<r<land0<c<1,

i-0) , (1-9(-a),
3(2,n,m,a, ) 4(3,n,m, a, B)
with equality for 6 = 0. For either 0 <c<cg and 0 <r <rgorcyg <c<1,

cl-a) o, (Q-c(l-0) 4
Sr_i_(5(2,n,m,a,ﬂ)r _6(3,n,m,a,ﬁ)r

with equality for @ = w. Further, for 0 <c<cgandrg<r <1,

(5.1) fa(z) =z -

27—

(5.2) | fa(re®®)

(53)  |fa(re®)

(1 — a)é(3,n,m,a, B)
= T{(l + 4.27(1 - c)5(2,n,m,a,ﬂ))
A(1—a)? 20 -c)(1—-0a)
+ (2(6(2,n,m,a,ﬁ))2 T SGnm B )T2

(1—-1¢)2(1—a)? A(l-c)(1-a)? 4
* <(5(3,",m,a,ﬁ))2 - 4(5(2,7%m,a,ﬂ))25(3,n,m,a,ﬂ))r }

(5.4) | fa(re®®)

[T

with equality for

1—c)(1 - a)r? - c6(3,n,m,a, B)
4(1 - c)5(2,n,m,a,ﬂ)7‘ ),

(5.5) 0= cos_l(c(

where

[(1—-a)—46(2,n,m,0,B) —6(3,n,m,a, B)] + ¢}
2(1 — )

(5.6) cy =

and
. -2(1-¢)6(2,n,m,a, ) + 1%

(57) -0 —a)
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where
(5.8) ¢g= {{(1 —a) —46(2,n,m,a, B) — 6(3,n,m, a, B)}?
+16(1 — a)d(2,n,m, a,,@)}%
and
(5.9) 8 = /4(1 —c)2(6(2,n,m,a, B8))2 + c2(1 — ¢)(1 — a)d(3,n,m, a, B).

Proof. We employ the same technique as it was used by Silverman and
Silvia [23]. Since

8 |fa(re®®)|?

— 9(1 — V3 i ¢
(5.10) 50 =2(1-a)r Sln0{5(2,n,m,a,,8)
4(1-¢c)(1-a) 3 c(l-c)(1-a) 2
+ 6(3,n,m,oz,;6)rcos{9 §(2,n,m, a,ﬂ)d(S,n,m,a,ﬂ)r
we can see that
8| fs(re?)|* _
(5.11) =0

for 61 =0, 65 = 7, and

=)l —a)r? —c6(3,n,m,a, )
(512) s =cos ( 41— 082, n,m, @, B)r )
Since 63 is a valid root only when —1 < cosf3 < 1, hence we have a third
root if and only if rp < r < 1 and 0 < ¢ < ¢g. Thus the results of the
theorem follows from comparing the extremal values | f3(rei9’°)| (k=1,2,3)
on the appropriate intervals.

LEMMA 2. Let the functions fi(z)(k > 4) be defined by (4.2). Then
(5.13) [ fere®)| < 1fa(-m (k2 9).

c(l—a) (1-c)(1—-a) ,
B 6(2’n,m; aaﬂ)zz - 6(kanam’a’ﬁ)z and

Proof. Since fr(z) = 2
(1-c)(1—a)rk
6(k7 n’ m’ a, ﬂ)

‘fk(reib‘)
which proves (5.13).

THEOREM 5. Let the function f(z) defined by (2.6) be in the class
TS.(n,m,a,B). Then, for 0 <r <1,

(5.14) ‘f(reio) c(l—a) 2 (1 — c)(l — a) .3

is a decreasing function of k, we have

clze) o (-c(l-a)

4 _ —
32 nmaf) | dnmaf) fa(=r),

<r+4

> — _
=T 5(2,n,m,a,,8)r 6(3,n,m,a, )
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with equality for f3(z) at z =r, and
(5.15) | £(re®)

where max | f3 (rei0)| is given by Lemma 1.

) _f4(_7.)}a

< ma,x{méix ‘ fa(re')

The proof of Theorem 5 is obtained by comparing the bounds given by
Lemma 1 and Lemma 2.

REMARK 1. Putting (i) ¢ = 1 and (ii) ¢ = 1 and 8 = 0 in Theorem 5, we
obtain the following results.

COROLLARY 4. Let the function f(z) defined by (1.11) be in the class
TS(n,m,a,B). Then for |z| =r < 1, we have

1- 1-
(5.16) - 5(2 (n ma(i ﬂ)r2 <@l <r+ 6(2 (n mai ﬁ)r2 '
The result is sharp for the function
. (1-9 2
(5.17) f(z) == ——6(2,n,m,a,ﬂ)z .

COROLLARY 5. Let the function f(z) defined by (1.11) be in the class
TS(n,m,a,0) =TS(n,m,a). Then for |z| =r < 1, we have

11—«
5.1 R — A <
618) T g <M<
The result is sharp.

LEMMA 3. Let the function f3(z) be defined by (5.1). Then, for 0 <r <1
and 0 <c <1,

l—« 2
e ?,
4(2,n,m,,0)

c(l—a) . 1-¢)(1-a) 2
0(2,n—1,m,a,f) 6(3,n—1,m,a,p)
with equality for 8 = 0. For either 0 < c<cy andr <r <1,

v c(l—a) l-c(l—a) ,
2 l i ’ <1 _
(5.20) f3(re®)] < +5(2,n—1,m,a,ﬂ)r 03,n—1,m,a,p)
with equality for @ = w. Furthermore, for0<c<cy andri <r <1,

v A1 -a)s3,n—1,m,a,p)
(5-21) ‘f3(re 9)‘ = {(1 + (1 —¢c)(6(2,n,m,a,B3))? )
2¢%(1 — a)? 6(1 —c)(1-a)
+ ((6(2,n,m,a,ﬂ))2 + 4(3,n,m,a, ) )T2

(1-0?(1-a) 3c%(1 —c)(1 — a)? 2
+((6(3,n —1,m,a, 3))? + 26(2,n,m, a, 3)6(3,n, m, a,ﬁ))’A}

(5.19)  |falre®)| 21~
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with equality for

(5.22) 0 = cos~! (30(1 —o)(1—a)r? —c5(3,n,m, a, ﬂ))

6(1 —c)é(2,n,m,a, B)r

where
_ {3(1 — a) — 6(5(2, n,m,o, IB) - 5(3,77‘) m,o, /8)} + C,{
(5.23) 1= 6(1 — a)
and
. —6(1 - 0)6(2a n,m, a, ﬁ) + TI
(5.24) "= 6c(1 —c)(1 — )
where
(5.25) cf = {{3(1 - a)—6(3,n,m,a, B) — 65(2,n, m;q, B)}?
+72(1 — @)d(2,n, m, a»ﬂ)}%
and
(5.26)

= 1/36(1 — ¢)2(6(2,n, m, o, §))2 + 12¢2(1 — ¢)(1 — @)6(3,n, m, @, B).
The proof of Lemma 3 is given in much the same way as Lemma 1.

THEOREM 6. Let the function f(z) defined by (2.6) be in the class
TS.(n,m,a,B). Then for 0 <r <1,

c(l—a) (-9 =-a) ,
8(2,n — l,m,a,ﬂ)r 4(3,n — l,m,a,ﬂ)r

(5.27) } fé(rew)‘ >1-
with equality for fé(z) at z =1, and
(5.28) | 2(re)| < max{max |f3(re)|, fs(~1)}

where max l fé (re)| is given by Lemma 3.

6. Radii of starlikeness and convexity

THEOREM 7. Let the function f(z) defined by (2.6) be in the class
TSc(n,m,a,3). Then f(z) is starlike of order p(0 < p < 1) in the disc
|z| < ri(n,m,a,pB,c,p), where ri(n,m,a,B,c,p) is the largest value for
which
c1-a)2-p)  A-c)d-a)k—p)
1 <1-
OV e mas) T ok mmaB)

p(k=3).
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The result is sharp with the extremal function

B c(l—a) 1-ol-a)
(6.2) h@)—z—&anngﬁz_&hnmumﬂ)

Proof. It is sufficient to show that

2%, for some k.

ZJ{(S) -1|<1-p (0<p<]) for |2]| < ri(n,m,a,B,c,p).
Note that
c1-a) = k-1
, SN S —1
6y L0 | mmed THEIW
| f@ T ol—a) > P
1— —————r— 3 aprk-1
0(2,n,m,a,B) i
for |z| < r if and only if
(6.4) 35((12—nar)rf2a_ﬂp))r + Z(k —plaxrFl<1—p.
b ? b ? k=

Since f(z) is in the class T'S¢.(n, m, o, 3), from (2.1) we may take
1-¢0)(1-a)
(6.5) %= e (k> 3),

where A > 0(k > 3) and

oo
k=3
each fixed r, we choose the positive integer kg = ko(r) for which

(ko — p) rko—1

is maximal. Then it follows that
d(ko,n, m, x, )

> Pkt (1-c)(1 = a)(ko — p) pho=1
(6.7) Z (k= p)a < d(ko,m, m, ax, B)

Hence f(z) is starlike of order p in |z| < r1(n,m,a, B, ¢, p) provided that
c=a)2=p) (=00 =a)bo=p) b1, _,
3(2,n,m,a, B) d(ko,n,m,a, B)

We find the value r1 = ri(n,m,q,3,c,p) and the corresponding integer
ko(ro) so that

1-a)2-p) . (1=1-a)ko—p) ot _ .
samap) T Skemmap) 0 1P

(6.8)

(6.9)
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Then this value rqg is the radius of starlikeness of order p for functions f(z)
belonging to the class T'S¢(n, m, a, §).

In a similar manner, we can prove the following theorem concerning the
radius of convexity of order p for functions in the class T'S.(n,m, a, §).

THEOREM 8. Let the function f(z) defined by (2.6) be in the class
TSc(n,m,a,B). Then f(z) is conver of order p(0 < p < 1) in the disc
|2] < ra(n,m,a,B,c,p), where ro(n,m,a, B,c,p) is the largest value for
which

c(1-a)(2-p) A-0d=-a)(k=p) k-
(6.10) (5(2,71—1,m,oz,ﬂ)r+ 5(k,n—1,m,a, ) r<l-p (k23).

The result is sharp for the function f(z) given by (6.2).

7. The Class TS,, , (n,m,a,B)

Instead of fixing just the second coefficient, we can fix finitely many
coefficients. Let TS, y(n,m,a, ) denote the class of functions f(z) in
TS.(n,m,a, ) of the form:

(1) =7 Z Tom B Z,ﬂ >

k=N+1

where 0 < z cx = ¢ < 1. Note that T'S,, ,(n,m,a, 8) = T'Sc(n,m,a, B).
k=2

THEOREM 9. The extreme points of TS, \(n,m,a,3) are

ck(l—a)

‘- 5knma,ﬁ)z
and
z— Z (1~ ) i (1 - e)( a)zk for k= N+1, N+2
(5knmaﬁ kNHJknma,B) - ’ T

The details of the proof of Theorem 9 are omitted.

REMARK 2. The characterization of the extreme points for the general class
TS, v(n,m,a, B) enables us to solve the standard extremal problems in the
same manner as was done for the special case T'S;(n,m, a, 3). The details

involved may be left as an exercise for the interested reader.
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