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ON PARTIAL SUMS OF CERTAIN ANALYTIC FUNCTIONS 

Abstract . In the present paper we give some results concerning part ial sums of 
certain analytic functions analogous to the results due to H. Silverman [J. Math . Anal. 
Appl. 209 (1997), 221-227]. All the results are sharp. 

1. Introduction 
Let S denote the class of functions of the form: 

that are analytic (hence the series in (1.1) is convergent), and / is univalent 
in the open unit disc U = {z = \z\ < 1}. Let K(a) and S*(a) denote the 
subclasses of S that are, respectively, convex and starlike functions of order 
a, 0 < a < 1. For conveniece, we write K(0) = K and £*(0) = S*(see, 
e.g. Srivastava an Owa [12]). Goodman ([2] and [3]) defined the following 
subclasses of K and S*. 

DEFINITION 1. A function / is uniformly convex (starlike) in U if / is 
in K (S*) and has the property that for every circular arc 7 contained in 
U, with center £ also in U, the arc / (7) is convex (starlike with respect 

Goodman ([2] and [3]) then gave the following two-variable analytic char-
acterizations of these classes, denoted, respectively, by UCV and UST. 

THEOREM A. A function f of the form (1.1) is in UCV if and only if 

00 

(1.1) 
k=2 

to /(C)). 

( 1 . 2 ) 
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and is in UST if and only if 
( L 3 ) { z ' ° e U x U ' 

Ma and Minda [6] and Ronning [7] independently found a more applica-
ble one-variable characterization for UCV. 

THEOREM B . A function f of the form ( 1 . 1 ) is in UCV if and only if 

zf"{z)\ > zf'(z) 
(1.4) Re / i + f O f n 

l m j m 
zeU. 

We note [3] that the classical Alexander's result, / G K <i=> zf G S* 
does not hold between the classes UCV and UST. Later on, Ronning [8] 
introduced a new class Sp of starlike functions related to UCV defined as 

(1.5) 

Note that 

(1.6) 

zf'(z) 
m 

z€U. 

f{z) G UCV zf'(z) G Sp. 

Also in [7], Ronning generalized the classes UCV and Sp by introducing 
a parameter a in the following way. 

DEFINITION 2. A function / of the form (1.1) is in Sp(a), if it satisfies the 
analytic characterization: 

(1.7) Re zf'jz) 
Hz) - } zf'(z) 

f(z) 
- 1 a G R ; z e U, 

and / G UCV (a), the class of uniformly convex functions of order a, if and 
only if zf e Sp. 

By ¡3 — UCV, 0 < (3 < oo, we denote the class of all /3-uniformly convex 
functions introduced by Kanas and Wisniowska [4] . Recall that a function 
/ G S is said to be (3 uniformly convex in U, if the image of every circular 
arc contained in U with center at where < ¡3, is convex. Note that 
the class 1 — UCV coincides with the class UCV. Moreover, for ¡3 = 0 we 
get the class K. It is known that / G (3 — UCV if and only if it satisfies the 
following condition: 

zf"(z) \ . * zf"(z) (1.8) Re 
R f(z) j 

>ß 
f'(z) 

zeU, 0<ß<oo. 

We consider the class ¡3 — Sp,0 < (3 < oo, of /3-starlike functions (see[5]) 
which are associated with /3-uniformly convex functions by the relation: 

(1.9) f(z) €13- UCV ^ zf'(z) € (3 - Sp. 
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Thus, the class f3 — Sp, 0 < /? < oo, is the subclass of S, consisting of 
functions that satisfy the analytic condition : 

zf'(z) 
(1.10) Re f * / ' ( * ) ! 

I f(z) J m 
, zeu. 

For a function / in S, we define 

(1-11) D°f(z) = f(z), 

(1.12) D1f(z) = Df(z) = zf'(z), 

and 

(1.13) Dmf(z) = D(Dm~1f(z)) (mG AT = { 1 , 2 , . . . } ) . 
The differential operator Dm was introduced by Salagean [10]. It is easy to 
see that 

oo 
(1.14) Dmf(z) = z + kmakzk, m E No = N U { 0 } . 

k=2 
For /? ^ 0, — 1 < a < 1 and m E iVo, we let Sm(a, /?) denote the subclass 

of S consisting of functions / of the form (1.1) and satisfying 
z(Dmf(z))' 

Dmf{z) 
, zeU. 

Dmf{z) 

We note that S°(a, 1) = Sp{a) and S1(a, 1) = UCV(a) ( - 1 < a < 1) 
(Bharati et al. [1]). 

Also we note that 
(i) S1(a, /?) = /? — UCV(a), the class of /3-uniformly convex functions of 

order a, 

(1.16) = | / ( 2 ) G 5 : R e | l + 
zf'(z) 

m -} > p 
zf'(z) 

, zEU] 
m 

- 1 < a < 1,/? ^ o j ; 

(ii) S°(a, ft) = (3 — Sp(a), the class of /3-starlike functions of order a, 

zf'(z) 
(1.17) = { f(z) E S : Re 

\ J W - a ì > i 3 f(z) 
- 1 , ZEU; 

We denote by T the subclass of S consisting of functions of the form: 
oo 

(1.18) / ( * ) = * - $ > * * * K ^ O ) . 
k=2 
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Further, we define the class TS(m, a, 0) by 

(1.19) TS(m,a,f3) = Sm(a,(3)nT. 

The class TS(m, a, (3) was introduced and studied by Rosy and Murugusu-
daramoorthy [9]. The classes T(0, a, 1) = SpT(a) and T( 1, a , 1) = UCV(a) 
were studied by Bharati et al.[l] . 

A sufficient condition for the function / of the form (1.1) to be in the 
class Sm{a,/3) (meN0,-l<a<l and (3 ̂  0) is that 

oo 
(1.20) £ km [fc(l + 0)-(a + (3)} |afc| < 1 - a . 

k=2 
For functions of the form (1.18), the sufficient condition (1.20) is also nec-
essary (see [9]). 

In this paper, applying the technique used by Silverman [11], we will 
investigate the ratio of a function of the form (1.1) to its sequence of partial 

n 
sums fn{z) = z+ akZk when the coefficients of / are sufficiently small 

k=2 
to satisfy condition (1.20). More precisely, we will determine sharp lower 
bounds for 

In the sequel, we will make use of the well-known result that 
f 1 + w(z) 1 00 

Re ^ H- } > 0 (z E U) if and only if 
w(z) = y. cuz satisfies the in-

1 1 - w(z) / v 7 w t l equality |w(2)| < \z\. Unless otherwise stated, we will assume that / is of the 
n 

form (1.1) and its sequence of partial sums is denoted by fn{z) = z+ ^ a^zk. 
k=2 

2. Main results 
Unless otherwise mentioned, we shall assume in the reminder of this 

paper that, (3 ^ 0,0 < a < 1, and m 6 iVo. 

THEOREM 1. I f f of the form (1.1) satisfies the condition (1.20) and ^ ^ 0 
(0 < \z\ < 1), then 

(o -[) n r i / ( * n (n + l ) m [n(l + /?) + 1 — a] — (1 — a) 
( 2 ' 1 } R e l m r (n + l ) m [n(l + /3) + 1 — q] 
The result is sharp for every n, with the extremal function 

( 2 - 2 ) ' M - ' + f r + i m i V f l + i - « ] » " ' -
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P r o o f . We may write 

(n + l ) m [ n ( l + /?) + l - a ] f f(z) (n + l ) m [n(l + /?) + 1 - a] - (1 - a) | 
1 - a I fn(z) (n + l ) m [n(l + /3) + 1 — a] J 

k=2 fe=n+l 

1 + £ a * * * - 1 

fe=2 
1 + .A(z) 

0 1 + A(z) 1 + w(z) , . . - _ 
Set = - H , so that w(z) = - — — T h e n 

1 + B(z) 1 - w{z) w 2 + A(z) + B(z) 

(n+l)m[n(l+/3)+l—a] g ^ k - 1 
/ x k=n+1 

fc=2 fc=n+l 
and 

I t \\ ^ k=n+1 

2 - 2 E k i - ( n + i ) ^ r - a i E w 
fc=2 ifc=n+l 

Now |u;(z)| < 1 if 

2 ( » + i r N l _ + f l + l - « l g ; M < 2 - 2 ± M . 

k-n+l k=2 

which is equivalent to 

(2.3) t k | + ( n + 1 ) - W l + g ) + l - . ] £ 
*—' 1 — a z—' fc=2 fc=n+l 

It is suffices to show that the left hand side of (2.3) is bounded above by 

5"2 — — ^ —i-^H |afe|5 which is equivalent to 
fc=2 1 - a 

^k™ [fc(l + /?) — (a + (3)] — (1 — a) 
r ^ |afcl 

k=2 

^ km [fc(l + 0) - (a + /?)] - (n + l)7" [n(l + /3) + 1 - a] , 

k=n+1 
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To see that the function / given by (2.2) gives the sharp result, we observe 
for z = rei7Tln that 

/ ( * ) = 1 + I " « 
fn(z) (n + l ) m [n( l + /3) + l - o ] 

1 - c * 
^ (n + l ) m [n( 1 + 0) + l - a ] 
_ (n + l ) m [n(l + (3) + 1 - a] - (1 - a) 

(n + l)m [n(l + P) + l - a ] 

when r—> Therefore we complete the proof of Theorem 1. 

REMARK 1. Putting (i) m = 0, ( i i ) m = 0 and ¡3 = 1, (Hi) m = 1 and 
(if) m = (3 = 1 in Theorem 1, we have 

COROLLARY 1. If f of the form, ( 1 .1 ) satisfies the condition ( 1 . 2 0 ) and 
ttf- ± 0 (0 < \z\ < 1) (with m = 0), then 

(2 .4 ) J M U " ( 1 + /? { X E V ) . 

The result is sharp for every n, with the extremal function 

COROLLARY 2. / / / o/ i/ie /orm (1.1) satisfies the condition (1.20) and 
ttf - ± 0 (0 < \z\ < 1) (with m — 0 and ¡3 = 1), then 

(2.6) r J - M U (*<=£,). 

The result is sharp for every n, with the extremal function 

(2.7) f (z) = z + l l ~ a ) z ^ \ 
¿n + 1 — a 

COROLLARY 3. If f of the form, ( 1 .1 ) satisfies the condition ( 1 . 2 0 ) (with 
m — 1), then 

(2 8) R E | ^ l > n [ ( r a + 1 ) ( 1 + / 3 ) + 1 - Q ] (z G U) 
( } I f M J ( " + 1) [n(l + /?) + 1 - a] ^ 

TTie result is sharp for every n, with the extremal function 

(2 .9 ) f(z) = z + 
1 - a 

(n + 1) [n(l + (3) + 1 - a 
•z 71+1 
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COROLLARY 4 . If f of the form ( 1 . 1 ) satisfies the condition ( 1 . 2 0 ) and 

ttf ^ 0 (0 < \z\ < 1) (with m = (3 = 1), then 

( 2 . 1 0 ) ^ ( M U J ^ L ( , e l 7 ) . 

\fn(z)j (n + l ) ( 2 n + l - a ) V J 

The result is sharp for every n, with the extremal function 

< 2 ' U > t - ( » + l ) £ + l - a ) ' " " ( Z € U ) -

W e n e x t determine bounds for R e 
ifn(z)} 

I / ( * ) J ' 

THEOREM 2. I f f ( z ) of the form ( 1 . 1 ) satisfies condition ( 1 . 2 0 ) and ^ ± 0 
(0 < < 1), then 

(2 12) R e | ^ U > (n + i r H l + l3) + l - a ] 

The result is sharp for every n, with the extremal function f(z) given by 
(2 .2 ) . 

P r o o f . W e wri te 

( n + l ) m [ n ( l + / ? ) + l - a ] + l - a f fn(z) ( n + l ) m [ n ( l + / 3 ) + l -

-a] + l - a j 1-a { f(z) (n+l)m[n(l+/3) + l-

1 + I a k Z ^ - ( n + D - f n ^ l - a 1 g 
k=2 k=n+1 _ 1 +W(Z) 

k=2 
where 

oo 
P J + 1 - " ! 

1 - a 

! , ^ fc-1 1 ~W(ZY 
1 + Z , a k Z k 1 V 7 

(ra+l)Tn[w(l+/3)+l—a] ^ a f c z fc_i 

, \ fc=n+l 
w ( z ) = 

fc=2 k=n+l 

Now 

( " + l ) m ! 
1 - a 

(n+l)m[ra(l+/3)+l—a] g ^ 

M * ) l < n ^ ^ 55 < 1-
2 - 2 E |a f c| 

k=2 fc=n+l 
T h e last inequality is equivalent t o 

( 2 , 3 ) £ M + ( n + l ) - | n ( . + f l + ( l - a ) ] £ L 

' 1 — a z—' 
fc=2 fc=n+l 
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The left hand side of (2.13) is bounded above by £ k™\k(i+p)-(p+a)} ̂  if 
k=2 

^ j" km [fc(l + /?) — (Q + /?)] — (1 — a) | |flfc| 

k=2 ^ U _ a ) J 

+ f k m [ f c ( 1 + ~ ( Q + ^ ~ ( n + 1 ) m [ n ( 1 + ft) + 1 - a n ^ 0> 

fc=n+1 ^ 1 ~ 0 J 

and the proof is completed. 

REMARK 2. Putting (i) m = 0, (ii) m = 0 and (3 = 1, (m) m 
1 and (iv) m = /? = 1 in Theorem 2, we obtain the following sharp re-
sults. 

COROLLARY 5. If f(z) of the form ( 1 .1 ) satisfies ( 1 . 2 0 ) and ^ 0 
(0 < \z\ < 1) (with m = 0), then 

(2 14) R e J M f ) \ > n(l + P) + l - a 
(2.14) \ f(z) J n(l + (3) + 2 — 2a, G ^ 

COROLLARY 6. If f(z) of the form ( 1 .1 ) satisfies ( 1 . 20 ) and ^ ^ 0 
(0 < \z\ < 1) (with m = 0 and (3 = 1), then 

COROLLARY 7. If f{z) of the form ( 1 .1 ) satisfies ( 1 . 20 ) and ± 0 
(0 < \z\ < 1) (with m = l), then 

a m nr f / w ( z ) l > (w + i ) [n( i + fl + i - q ] . m 

COROLLARY 8. // f(z) of the form ( 1 .1 ) satisfies ( 1 . 20 ) and ^ ± 0 
(0 < \z\ < 1) (with m = (3 = I), then 

(217) R e i ^ U (n + l ) ( 2 n + l - a ) 
( j 1 f(z) J (n + l)(2n + 1 — a) + (1 — a) € ^ 

We next turn to ratios involving derivatives. 

THEOREM 3. If f(z) of the form (1 .1 ) satisfies ( 1 . 2 0 ) , then for z €U, 

(2 18) (a) Re ! f ' ( z ) I > »V + & + V ~ [l ~ + l) ( 1~m )] (2.18) ( a ) R ^ — J > " (1 + ¡3) + (1 — a) ' 

and 
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(2.19) 
n ( l + /?) + ( ! - a ) 

n( 1 + (3) + (1 - a ) [1 + (n + l)*1"™)] ' 

In both cases, the extremal function is given by (2.2). 

Proof . We prove only (a), which is similar in spirit of the proof of Theorem 
1. The proof of (b) follows the pattern of that in Theorem 2 . We write 

{n + l)m-1[n(l + p) + l-a\ f f'(z) n(l + /3) + ( l - a ) ^ - ( n + l)^-"1)] 1 
1-a \&(z) n( l + /3) + ( l - a ) J 

_ 1 + 10(2:) 
1 — w(z)' 

where 

w(z) = 

(n+l)m~1[n(l+/3)+l—a] g fcafcZ*-l 
k=n+1 

2 + 2 £ kakZ*-l + (n+D-Mn(l+/3)+l-a] g ^ ^ 
fc=2 /fc=n+l 

Now Iti;(2)| < 1 if 

F , , , (n + M - M n i l + ^ + l - a l ^ (2.20) / J k |afc| + L-i ^ i V k ak < 1. 
r—' 1 — a *—' fc=2 fc=n+l 

_ , ^ ' fcm[fc(l+/3) —(a+/?)l | 
fc= 

the proof is completed . 

00 

Since the left hand side of (2.20) is bounded above by £ |Qfc|; 
fc=2 

REMARK 3. Putting (i) M = 0, (ii) m = 0 and (3 = 1, (iii) m = 1 and (iv) 
m = (3 = 1 in Theorem 3, we obtain the following sharp results. 

COROLLARY 9. If f(z) of the form (1.1) satisfies (1.20) (with m = 0), then 

n(a + (3) 
n(l + (3) + \ — a 

and 

( ??? ) (h\ ttr f ^ H > n(l + (3) + l - a (2.22) (6) X * { m l > n ( 1 + /3) + ( n + 2 ) ( 1 _ a ) (* ^ CO-

COROLLARY 10. If f(z) of the form (1.1) satisfies (1.20) (with m = 0 and 
(3 = 1), then 
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and 

COROLLARY 11. If f{z) of the form, (1 .1) satisfies (1 .20) (withm= I), then 

and 

(2 .26) (6) ^ { j ^ j > n { 1 + l 3 ) + 2 i l _ a ) i ^ U ) . 

COROLLARY 12. If f(z) of the form (1 .1) satisfies (1 .20) (with m = f3 = I), 
then 

( 2 . 2 7 ) W R e j { z e u } , 
and 

REMARK 4. Putting m = ¡3 = 0 in the above results we get the results 
obtained by Silverman [11]. 
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