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ON PARTIAL SUMS OF CERTAIN ANALYTIC FUNCTIONS

Abstract. In the present paper we give some results concerning partial sums of
certain analytic functions analogous to the results due to H. Silverman [J. Math. Anal.
Appl. 209 (1997), 221-227]. All the results are sharp.

1. Introduction
Let S denote the class of functions of the form:

(1.1) f(z)= z+Zakzk
k=2

that are analytic (hence the series in (1.1) is convergent), and f is univalent
in the open unit disc U = {z = |z| < 1}. Let K(a) and S*(a) denote the
subclasses of S that are, respectively, convex and starlike functions of order
a, 0 < a < 1. For conveniece, we write K(0) = K and S*(0) = S*(see,
e.g. Srivastava an Owa [12]). Goodman ([2] and [3]) defined the following
subclasses of K and S*.

DEFINITION 1. A function f is uniformly convex (starlike) in U if f is
in K (S*) and has the property that for every circular arc - contained in
U, with center { also in U, the arc f(v) is convex (starlike with respect

to f(C))-

Goodman ([2] and [3]) then gave the following two-variable analytic char-
acterizations of these classes, denoted, respectively, by UCV and UST.

THEOREM A. A function f of the form (1.1) is in UCV if and only if
f"(z)
f'(z)
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and is in UST if and only if
f(z) = (9 }
1.3 Re{ ———=—--520, (2,0)eU xU.
- \{Edor@) >0 =0
Ma and Minda [6] and Ronning [7] independently found a more applica-
ble one-variable characterization for UCV.

THEOREM B. A function f of the form (1.1) is in UCV if and only if
Zf”(z)} 2f"(2)

14 Re<dl+ >
- T
We note [3] that the classical Alexanders result, f € K < zf' € S*

does not hold between the classes UCV and UST. Later on, Ronning [8]
introduced a new class S, of starlike functions related to UCV defined as

2f'(2)
) —1‘, zeU

, z€U.

(1.5) f(z) € 8, Re { Z;;S)} >

Note that
(1.6) f(z) eUCV & 2f'(2) € Sp.
Also in [7], Ronning generalized the classes UCV and S, by introducing

a parameter « in the following way.

DEFINITION 2. A function f of the form (1.1) is in Sp(a), if it satisfies the
analytic characterization:

2f'(2) } z2f'(2)
1.7 Re —ap 2
0 §© 2
and f € UCV (a), the class of uniformly convex functions of order «, if and
only if zf’ € Sp.

-1

, « € Rze U,

By 8 —-UCV, 0 < 3 < 00, we denote the class of all S-uniformly convex
functions introduced by Kanas and Wisniowska [4] . Recall that a function
f € S is said to be 8 uniformly convex in U, if the image of every circular
arc contained in U with center at ¢, where || < S, is convex. Note that
the class 1 — UCV coincides with the class UCV. Moreover, for 8 = 0 we
get the class K. It is known that f € 8 — UCV if and only if it satisfies the
following condition:

(18)  Re {1 i ”(z)} > g|2@)

, 2€U, 0< 8 < .

f'(z) f'(z)
We consider the class 3 — Sp,0 < 3 < o0, of 3-starlike functions (see[5])
which are associated with S-uniformly convex functions by the relation:

(1.9) f(z)eB-UCV & zf(z) € - Sp.
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Thus, the class § — Sp,0 < 8 < o0, is the subclass of S, consisting of
functions that satisfy the analytic condition :

@) D |
(1.10) Re{ e }>ﬁ o) 1’, eU.
For a function f in S, we define
(1.11) D°f(z) = f(2),
(1.12) D'f(z) = Df(2) = 2f'(2),
and
(1.13) D™f(z) = D(D™1f(z)) (meN=1{1,2,...}).

The differential operator D™ was introduced by Salagean [10]. It is easy to
see that

o0
(1.14) D™f(z) =z+ ) k™axz*, me No=NU{0}.
k=2
For 3>0,-1<a<1andme€ Ny, welet S™(c,3) denote the subclass
of S consisting of functions f of the form (1.1) and satisfying
z(D™ f(2))’ 2(D™ f(2))
(1.15) Re{ D™ f(z) apr>p D™ f(2)
We note that S%(a,1) = S,(a) and S'(a,1) = UCV(a)(-1 < a < 1)
(Bharati et al. [1]).
Also we note that
(i) SY(a,B) = B—UCV(a), the class of B-uniformly convex functions of
order a,

(1.16) = {f(z) €s: Re{l + z;,/;i;;) - a} > B

U, zeU.

2f"(2)
f'(z)

—ISa<1,ﬁ>0};

, z €U,

(ii) S%a, B) = B — Sp(a), the class of (3-starlike functions of order «,

(1.17) = {f(Z) €5: Re{zﬁg) - O‘} >P Zﬂg)

—1‘,z€U;

—1§a<1,ﬁ20}.

We denote by T the subclass of S consisting of functions of the form:

(1.18) f(z)=z—Zakzk (ar = 0).
k=2
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Further, we define the class T'S(m, «, 3) by
(1.19) TS(m,o,B) =S™(a, B)NT.

The class T'S(m, o, ) was introduced and studied by Rosy and Murugusu-
daramoorthy [9]. The classes T'(0,, 1) = SpT () and T'(1,,1) = UCV (a)
were studied by Bharati et al.[1] .

A sufficient condition for the function f of the form (1.1) to be in the
class S™(a, 3) (m € Ny,—1 < a < 1land 8 > 0) is that

[ o]
(1.20) > KM k(1+B) = (a+ )] lak] < 1—a.
k=2
For functions of the form (1.18), the sufficient condition (1.20) is also nec-
essary (see [9]).
In this paper, applying the technique used by Silverman [11], we will
investigate the ratio of a function of the form (1.1) to its sequence of partial

n
sums f,(z) = z+ 3 axz* when the coefficients of f are sufficiently small
k=2
to satisfy condition (1.20). More precisely, we will determine sharp lower
bounds for

e o R lme) = e |

In the sequel, we will make use of the well-known result that
1 + ’u)(Z) . . e k . .
Re T—wi) >0 (zeU)ifandonlyif w(z) = ) cp2" satisfies the in-
k=1
(2

equahty |w(z)| < |z|. Unless otherwise stated, we will assume that f is of the

n
form (1.1) and its sequence of partial sums is denoted by f,,(2) = 2+ 3 ax2*.
k=2
2. Main results

Unless otherwise mentioned, we shall assume in the reminder of this
paper that, 32 0,0 < a <1, and m € Ny,

THEOREM 1. If f of the form (1.1) satisfies the condition (1.20) and @ #0
(0 < |z| < 1), then

f(z)} n+D)™mnA+6)+1-o-(1-a)
21) R >
@y re{ {5 W+ D"+ B+ 1-a
The result is sharp for every n, with the extremal function

(z €U).

_, l—«o o+l
(2.2) f(z)=z+ (n+1)m[n(1+6)+1—q] )
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Proof. We may write

(n+1)™[n(1+8)+1—-q] { f(z) (n+1)7 [n(1+ﬂ)+1—a]—(1—a)}
l-a fn(2) (n+1)™[n(1+6)+1-q]

n m oo
1+ 3 apzF1 + (n+1) [nl(l+ﬁ)+1 o] S apzF1

-

_ k=2 k=n+1
- n
1+ 3 agzk1
k=2
_ 1+ A(2)
" 1+ B(2)
1+ A(z) 1+w(z) A(z) — B(2)
h . Th
Set1+B() =)’ , so that w(z) = 2t A+ B@) en
m _ 00
(n+1) [ﬁ(iz:ﬂ)ﬂ o] > apekl
w(z) — — k=n+1 —
2423 apzh-1+4 (n+1)™[n(1+6)+1—0] 3 apzkl
k=2 1-e k=n+1
and o
(n+1) [’ni(ijx-ﬂ)-f-l—a] ) Z+1 |ak|
w(z)| < = .
[w(2)] 9.9 i lak| — (n+1)™[n(14+8)+1-q] § |ak|
k=2 - k—nd1

Now |w(z)| < 1if

ﬂn+1wwm1+ﬁy+1 a] §:|%|<2 2§:MH

s
k=n+1

which is equivalent to

Lt )" [RA+B)+1-af
(2.3) §:| T §:|%|<1
k=n+1
It is suﬂices to show that the left hand side of (2.3) is bounded above by
% K™ K1+ ) ~ (@ + )

k§2 - | |ax|, which is equivalent to
SR KIA) - @)= 0ma)
k=2
+ 3 k™ [k(1+ B) — (e + B)] Ifna%- D" (+B)+1-o] o

k=n+1
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To see that the function f given by (2.2) gives the sharp result, we observe
for z = re™/™ that

f(z) =14 l-a prs
fa(2) (n+1)"[n(1+8)+1-a
l1-a
—1 -

(n+1D)™n(1+8)+1-q]
_ (n+1)"n(1+8)+1—-0ao]—(1—a)
m+1)"n(1+8)+1—q]

when r— 17. Therefore we complete the proof of Theorem 1.

REMARK 1. Putting (i) m =0, (i) m = 0and § =1, (4i) m = 1 and
(iv) m = 8 =1 in Theorem 1, we have

COROLLARY 1. If f of the form (1.1) satisfies the condition (1.20) and
£@) 20 (0 < |2| < 1) (withm =0), then

f(2) n(1+p)
(2.4) Re{fn(z)}zn(l+ﬁ)+1_a (z € U).

The result is sharp for every n, with the extremal function

_ (1 _a) n
(2:5) f(z)—z+n(1+,3)+1—az .

COROLLARY 2. If f of the form (1.1) satisfies the condition (1.20) and
He) 200 < |2] <1) (withm =0 and B =1), then

f(z) 2n
2. > .
(2.6) Re{fn(z) mTl_a (z€U)
The result is sharp for every n, with the extremal function
_ (1-a) .4
(2.7) f(z)—z+2n+1_az .

COROLLARY 3. If f of the form (1.1) satisfies the condition (1.20) (with
m=1), then

f(z) n{n+1)(1+8)+1—q]
Y e i e ey raer M)

The result is sharp for every n, with the extremal function

_ l1—-a ntl
f(z) = RN T Y Gy g —

(2.9)
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COROLLARY 4. If f of the form (1.1) satisfies the condition (1.20) and
@#0(0< |z| < 1) (withm =3 =1), then

f(z) n(2n+3 — a)
0 Re{ IS i GO

The result is sharp for every n, with the extremal function

(2.11) fz)=2+ 2t (zeU).

l1-a
n+1)2n+1-0q)

We next determine bounds for Re {];"(—(ZZ))} .

THEOREM 2. If f(z) of the form (1.1) satisfies condition (1.20) and ﬂ;z # 0
(0 < |2| < 1), then
fn(2) m+1)"n(1+8)+1-q]

(2.12) Re{ f(z) } > n+1)"nA+8)+1-a]+1—-a
The result is sharp for every n, with the extremal function f(z) given by
(2.2).
Proof. We write
(n+1)™ [n(1+p)+1-al+1-a {fn(z) _ (nt)™[n(1+8)+1-0] }

| f(z) (n+1)"[n(1+p)+1-a]+l-a

(z€U).

14+ 3 apzb-l = ()TA+)T1=] 3 o k1

_ k=2 e k=n+1 1+ w(2)
— ~ == ,
1+ E akzk‘l 1 w(z)
k=2
where
m oo
(n+1) [nl(_ll-ﬁ)ﬂ—a] S a2kl
w(z) = n hent] o0 ‘
242 apzF-1+ (n+1)'"[nl(1+ﬂ)+1—a1 S apzhl
k=2 e k=nt1
Now
m _ 0
('n+1) [ni(_ll-ﬁ)-l-l Ot] ) Z 1 Iak|
jw(z)| < T <1
(n+1)"[n(1+8)+1—0]
—2z:|a R D

k=n-+1
The last inequahty is equlvalent to

(2.13) Z' (n+1)™n(1+8)+ (1 - a)] Z lag| < 1.

1—«a
k=n+1
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o0 m
The left hand side of (2.13) is bounded above by ) k [k(ltﬂ_ )a_ (B+a)] lax| if
k=2

Z{km[k(l-l_ﬂ)_(a+ﬂ)]_(1_a)}|ak|

(1-a)
k=2
S {km[k(uﬁ)—(a+ﬁ>1;£na+1)'"[n<1+ﬁ>+1“"]}|ak|>o,
k=n+1

and the proof is completed.

REMARK 2. Putting (1) m = 0, (i4) m = 0 and § = 1, (iti) m =
1 and (sv) m = B = 1 in Theorem 2, we obtain the following sharp re-
sults.

COROLLARY 5. If f(z) of the form (1.1) satisfies (1.20) and @ #0
(0 < |2| < 1) (with m =0), then

fn(2) nl+pf)+1-—a
(2.14) Re{f(z)}>n(1+m+2_2a (z € V).

COROLLARY 6. If f(z) of the form (1.1) satisfies (1.20) and @ # 0
(0< |2| <1) (withm =0 and B =1), then

fn(2) 2n+l1-a
(2.15) Re{f(z)}>2(n+1—a) (z e U).
COROLLARY 7. If f(z) of the form (1.1) satisfies (1.20) and ﬂzﬁ #0
(0 < |2| < 1) (withm = 1), then

fn(2) (n+1)[n(1+p8)+1-0]
@i re{ 3> e i
COROLLARY 8. If f(z) of the form (1.1) satisfies (1.20) and f—(zz—) # 0
(0< |2| <1) (withm = =1), then
In(2) n+1)(2n+1-a)
(217) Re{ 1) } i DEnti-ari-a “Y)
We next turn to ratios involving derivatives.

THEOREM 3. If f(z) of the form (1.1) satisfies (1.20), then for z € U,

f'(2) } S n(l1+8)+(1-a) [l - (n+1)2-m]
)= n(l+p)+(1-a) ’

(z e U).

(2.18) (a) Re {

and
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(%) n(l+8)+(1-a)
219 ©) Re{ }>n(1+ﬂ)+(1—a) [ETCER =

f'(2)
In both cases, the extremal function is given by (2.2).

Proof. We prove only (a), which is similar in spirit of the proof of Theorem
1. The proof of (b) follows the pattern of that in Theorem 2 . We write

(n+1)™ [n(1+) +1 -] {f'(z) _n(1+8)+(1-0) [1- (n+1)0-™)] }

1—a fi(z) n(l+8)+(1—a)
14+ w(z2)
1 —w(2)’
where
m— ()
(n+1) 1[;1_(;+ﬂ)+l—a] S kagzkl
w(z) = - k=ntl = .
242 Z kakzk_l + (n+1)™~1n(1+p)+1—q] Z kakzk—l
k=2 1-a k=n+1

Now |w(2)| < 1if

- (n+1)™tn(1+p6)+1-ad]
2.2 E E < 1.
(220 k=2 Flowd + 1-a k=n+1 Flod <

Since the left hand side of (2.20) is bounded above by km[k(l’ﬁ )a_ (atf)] lak|,
k=2
the proof is completed .

REMARK 3. Putting (i) m =0, (ii) m = 0 and 8 = 1, (iii) m = 1 and (iv)
m = 3 =1 in Theorem 3, we obtain the following sharp results.

COROLLARY 9. If f(2) of the form (1.1) satisfies (1.20) (with m = 0), then

(2.21) (a) Re\{ J{,’((i))} > i Z(g)trﬂl)_ —~ (z€D),
and
fl(2) n(l+8)+1—-a
(222) O ®e{33}> i m s g <Y

COROLLARY 10. If f(z) of the form (1.1) satisfies (1.20) (with m = 0 and
B=1), then

(2.23) (a) Re { JJ:’I((Z;))} > 22(_}_-:?)6! (z€U),
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and

fl(2) 2n+1-q
(2.24) (b) Re {f’(z)}>2n+(n+2)(1—a) (zeU).
COROLLARY 11. If f(2) of the form (1.1) satisfies (1.20) (withm = 1), then

f'z) n(1 + f)
} nitp+1-a Z€U)

(2.25) (a) Re

and

filz n(l+08)+1-
(2.26) () R { ,(z)} 1+ﬂ)+2(1_ ) (z € U).

COROLLARY 12. If f(z) of the form (1.1) satisfies (1.20) (withm =3 =1),
then

(2.27) (a) Re{;:((z))} > 5 +2?11—a (z € U),
and
(2.28) (5) Re { ’}';((z))} 2%2: i % e

REMARK 4. Putting m = 8 = 0 in the above results we get the results
obtained by Silverman [11].
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