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ON (m,n)-JORDAN DERIVATIONS
AND COMMUTATIVITY OF PRIME RINGS

Abstract. The purpose of this paper is to prove the following result. Let m > 1,n > 1
be some fixed integers with m # n, and let R be a prime ring with char(R) # 2mn(m+n)
I m —n | . Suppose there exists a nonzero additive mapping D : R — R satisfying the
relation (m + n)D(z?) = 2mD(z)z + 2nzD(z) for all z € R ((m,n)-Jordan derivation).
If either char(R) = 0 or char(R) > 3 then D is a derivation and R is commutative.

This research is related to our earlier work [3] and [12]. Throughout, R
will represent an associative ring with center Z(R). Given an integer n > 2,
a ring R is said to be n-torsion free, if for x € R, nx = 0 implies z = 0.
For z,y € R we write [y,z]; = [y,z] = yz — zy, and for n > 1, [y,z], =
[ly,],_, , ] - Recall that aring R is prime if for a,b € R, aRb = (0) implies
that either a = 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0.
An additive mapping D : R — R, where R is an arbitrary ring, is called a
derivation if D(zy) = D(z)y+zD(y) holds for all pairs z,y € R, and is called
a Jordan derivation in case D(z?) = D(z)z +zD(z) is fulfilled for all z € R.
Obviously, any derivation is a Jordan derivation. The converse is in general
not true. Herstein [9] has proved that any Jordan derivation on a prime
ring with char(R) # 2 is a derivation. A brief proof of Herstein’s result
can be found in [1]. Cusack [7] has proved Herstenin’s theorem for 2-torsion
free semiprime rings (see [2| for an alternative proof). An additive mapping
D : R — R is called a left derivation if D(zy) = yD(z) + zD(y) holds
for all pairs z,y € R and is called a left Jordan derivation (or Jordan left
derivation) in case D(z?) = 2zD(z) is fulfilled for all z € R. The concepts
of left derivation and left Jordan derivation were introduced by Bresar and
Vukman in [3]. One can easily prove (see [3]) that the existence of a nonzero
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left derivation on a prime ring forces the ring to be commutative. Moreover,
we have the following result.

THEOREM 1. Let R be a prime ring, and let D : R — R be a nonzero
left Jordan derivation. If char(R) # 2 then D is a derivation and R is
commutative.

The result above has been first proved by Bresar and Vukman (3] under
the additional assumption that char(R) # 3. Later on Deng [8] has proved
that the assumption char(R) # 3 is superfluous. Theorem 1 is related to the
theory of commuting and centralizing mappings. A mapping F, which maps
a ring R into itself, is called centralizing on R in case [F(z),z] € Z(R) holds
for all z € R. In a special case when [F(z),z] = 0 is fulfilled for all = € R,
F is called commuting on R. A classical result of Posner (Posner’s second
theorem) [10] states that the existence of a nonzero centralizing derivation
D : R — R, where R is a prime ring, forces the ring to be commutative.

We proceed with the following definition.

DEFINITION 1. Let m > 0, n > 0 with m 4+ n # 0 be some fixed integers.
An additive mapping D : R — R, where R is an arbitrary ring, is called a
(m,n)-Jordan derivation in case

(1) (m +n)D(z?) = 2mD(z)z + 2nzD(x)
holds for all x € R.

Let us point out that the relation (1) appears naturally in the proof of
Theorem 1 in [11]. Obviously, (1,1)-Jordan derivation on a 2-torsion free
ring is a Jordan derivation and (1,0)-Jordan derivation is a left Jordan
derivation.

We proceed with the following proposition.

PROPOSITION 1. Let m > 0, n > 0 with m + n # 0 be some fized integers,
let R be a 2-torsion free ring, and let D : R — R be an (m,n)-Jordan
derivation. In this case the relation

(2)  (m+n)’D(zyz) = m(n — m)D(z)zy + m(m — n)D(y)z*
+ n(n — m)z?D(y) + n(m — n)yzD(z)
+ m(3m + n)D(z)yz + 4mnzD(y)x
+n(3n+ m)zyD(z), =z,y€R

holds for all pairs z,y € R.

Proof. The linearization of the relation (1) gives

(3) (m+n)D(zy + yz)

=2mD(z)y + 2mD(y)z + 2nzD(y) + 2nyD(z), =z,y € R.
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Putting in the relation (2) (m + n)(zy + yz) for y, we obtain

(m +n)*D(z?y + yz?) + 2(m + n)*D(zyz)
= 2m(m + n)D(x)(zy + yz) + 2m(m + n) D(zy + yz)z
+ 2n(m + n)zD(zy + yz)2n(m + n)(zy + yz)D(z), =z,y € R.
Applying (2) and (1), we obtain
4m?D(x)zy + 4mnzD(z)y + 2m(m + n)D(y)x? + 2n(m + n)z>D(y)
+4mnyD(z)z + 4n’yzD(z) + 2(m + n)2D(zyz)
= 2m(m + n)D(z)(zy + yz) + 4m2D(z)yz + 4m2D(y)z® + 4mnzD(y)z
+ 4mnyD(z)zx + 4mnzD(x)y + 4mnzD(y)z + 4n’z2D(y)
+ 4n’zyD(z) + 2n(m + n)(zy + yx)D(z), =z,y € R.
After collecting terms we obtain
(m 4 n)2D(xyz) = m(n — m)D(x)zy + m(m — n)D(y)z?
+ n(n — m)z?D(y) + n(m — n)yzD(z)
+ m(3m + n)D(z)yz + 4mnzD(y)z
+n(3n+ m)zyD(z), z,y€R
which completes the proof.

It is our aim in this paper to prove the following result.

THEOREM 2. Let m > 1,n > 1 be some fized integers with m # n and let R
be a prime ring with char(R) # 2mn(m+n) im —n . Suppose D: R — R
is a nonzero (m,n)-Jordan derivation. If char(R) = 0 or char(R) > 3, then
D s a derivation and R is commutative.

The proof of the above theorem depends heavily on the following result
proved by Bresar [5] (see also [6]).

THEOREM 3. Let R be a prime ring and F : R — R an additive mapping.
Suppose that [f(z),z], = 0, for all z € R and some fized integer n > 1. If
either char(R) = 0 or char(R) > n, then [F(z),z] =0, for all = € R.

Proof of Theorem 2. Putting in the relation (2) y = x we obtain
(4)  (m+n)?D(z®) = m(3m + n)D(z)z?
+ 4mnzD(z)z + n(3n + m)z*D(z), =< R.
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Now, putting (m+mn)2z3 for y in the relation (3) and applying (4) we obtain
(m+n)3D(z*) = m(m+n)?D(z)z® + m(m +n)2D(z%)z
+n(m+n)2xD(x®) + n(m +n)%z3D(z)
= m(m+n)2D(z)z® + m((3m? + mn)D(z)z?
+4mnzD(z)x
+ (3n% + mn)z2D(z))znz((3m?2 + mn) D(x)z?
+ 4mnzD(z)x + (3n% + mn)z2D(z)) + n(m +n)2z3D(x)
= (m(m+n)% + m(3m? + mn))D(z)z® + (n(3m? + mn)
+4m?n)zD(z)z? + (m(3n% +mn) + 4mn?)2?D(z)z
+ (n(m+n)? +n(3n* + mn))2z3D(z), =z €R.
We have therefore
(5) (m +n)3D(z*) = (4m® + 3m?*n + mn?)D(x)23
+ (Tm®n 4+ mn?)zD(z)2? + (Tmn? + m?n)2?D(z)x
+ (4n® + 3mn? + m*n)23D(z), =z € R.
Putting (m + n)z? for z in (1) we obtain
(m +n)3D(z*) = 2m(m + n)?D(2?)z? + 2n(m + n)%22D(2?)
= 2m(m + n)(2mD(z)z + 2nzD(z))z?
+ 2n(m + n)z?(2mD(z)x + 2nzD(z))
= 4m?*(m + n)D(z)z® + 4mn(m + n)zD(z)x?
+ 4mn(m + n)z?D(z)x + 4n*(m + n)z®D(z), =€ R.
We have therefore
(6)  (m+n)3D(z?) = 4m?*(m + n)D(z)2® + 4mn(m + n)zD(x)z>
+ d4mn(m + n)z°D(z)z
+4n?(m +n)z®D(z), =z €R.
By comparing (5) and (6) we obtain
mn(n —m)D(z)z3 + 3mn(m — n)zD(x)z?
+ 3mn(n — m)z®D(z)z + mn(m — n)z*D(z) =0, =z € R,

whence it follows D(z)z3 — 3zD(x)z? + 322D(z)z — 2*D(z) = 0, x € R,
which can be written in the form [D(z),z]; = 0, £ € R. According to The-
orem 3 it follows that [D(z),z] = 0, for all z € R, which makes it possible
to replace in (1) D(z)z with xD(z). We have therefore (m + n)D(z?) =
2(m + n)zD(z), = € R, which reduces to D(z?) = 2zD(z), = € R. Ap-
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plying again the fact that D is commuting on R, we arrive at D(z?) =
D(z)xz + xD(z), ¢ € R. In other words, D is a Jordan derivation, whence
it follows that D is a derivation by Herstein’s result. Since by Posner’s sec-
ond theorem the existence of commuting nonzero derivation on a prime ring
forces the ring to be commutative, one can conclude that the proof of the
theorem is complete.

In our forthcoming paper [12] we prove the following result. Let R be a
2-torsion free semiprime ring and let D : R — R be a left Jordan derivation.
In this case D is a derivation which maps R into Z(R).

The result we have just mentioned above and Theorem 2 lead to the
following conjecture.

CONJECTURE 1. Let m > 0, n > 0 be fized integers withm+n#0, m#n
and let D : R — R be a (m,n)-Jordan derivation, where R is a semiprime
ring with suitable torsion restrictions. In this case D is a derivation which
maps R into Z(R).

An additive mapping D : R — R, where R is an arbitrary ring, is called
a Jordan triple derivation in case

(7) D(zyz) = D(z)yz + «D(y)z + zyD(z)

is fulfilled for all pairs z,y € R. One can easily prove that any Jordan
derivation which maps a 2-torsion free ring into itself, is a Jordan triple
derivation. Bresar [4] has proved that any Jordan triple derivation on a
2-torsion free semiprime ring is a derivation. According to all these observa-
tions and Proposition 1 we continue with the definition and the conjecture
below.

DEFINITION 2. Let m > 0, n > 0 with m + n # 0 be some fixed integers.
An additive mapping D : R — R, where R is an arbitrary ring, is called an
(m,n)-Jordan triple derivation in case
(8) (m 4 n)?D(zyz) = m(n — m)D(x)zy + m(m — n)D(y)z?

+ n(n —m)z?D(y) + n(m — n)yzD(z)

+ m(3m + n)D(z)yx + 4mnzD(y)z

+n(3n + m)zyD(z)
holds for all pairs z,y € R.

According to Proposition 1 any (m,n)-Jordan derivation on arbitrary
2-torsion free ring is an (m,n)-Jordan triple derivation. We conclude with
the following conjecture.
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CONJECTURE 2. Let m > 0, n > 0 be some fized integers with m + n # 0,
m #n, and let D : R — R be an (m,n)-Jordan triple derivation, where R
is a semiprime ring with suitable torsion restrictions. In this case D is a
derivation which maps R into Z(R).
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