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O N (m.n)-JORDAN DERIVATIONS 
A N D COMMUTATIVITY OF P R I M E RINGS 

Abstract . The purpose of this paper is to prove the following result. Let m > 1, n > 1 
be some fixed integers with m n, and let R be a prime ring with char(R) 2mn(m + n) 
1 m — n 1 . Suppose there exists a nonzero additive mapping D : R R satisfying the 
relation (m + n)D(x2) = 2mD(x)x + 2 n x D ( x ) for all x G R ({m, n)-Jordan derivation). 
If either char(R) = 0 or char(R) > 3 then D is a derivation and R is commutative. 

This research is related to our earlier work [3] and [12], Throughout, R 
will represent an associative ring with center Z(R). Given an integer n > 2, 
a ring R is said to be n-torsion free, if for x £ R, nx = 0 implies x = 0. 
For x,y £ R we write [y,a;]1 = [y, x] = yx — xy, and for n > 1, [y, x]n = 
[[y, x]n_l, x\ . Recall that a ring R is prime if for a,b G R, aRb = (0) implies 
that either a — 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0. 
An additive mapping D : R —> R, where R is an arbitrary ring, is called a 
derivation if D(xy) = D(x)y+xD(y) holds for all pairs x, y € R, and is called 
a Jordan derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x 6 R. 
Obviously, any derivation is a Jordan derivation. The converse is in general 
not true. Herstein [9] has proved that any Jordan derivation on a prime 
ring with char(R) 2 is a derivation. A brief proof of Herstein's result 
can be found in [1]. Cusack [7] has proved Herstenin's theorem for 2-torsion 
free semiprime rings (see [2] for an alternative proof). An additive mapping 
D : R —> R is called a left derivation if D(xy) = yD(x) + xD(y) holds 
for all pairs x,y € R and is called a left Jordan derivation (or Jordan left 
derivation) in case D(x2) — 2 x D ( x ) is fulfilled for all x € R. The concepts 
of left derivation and left Jordan derivation were introduced by Bresar and 
Vukman in [3]. One can easily prove (see [3]) that the existence of a nonzero 
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left derivation on a prime ring forces the ring to be commutative. Moreover, 
we have the following result. 

THEOREM 1. Let R be a prime ring, and let D : R —> R be a nonzero 
left Jordan derivation. If char(R) ^ 2 then D is a derivation and R is 
commutative. 

The result above has been first proved by Bresar and Vukman [3] under 
the additional assumption that char(R) 3. Later on Deng [8] has proved 
that the assumption char(R) ^ 3 is superfluous. Theorem 1 is related to the 
theory of commuting and centralizing mappings. A mapping F, which maps 
a ring R into itself, is called centralizing on R in case x] € Z(R) holds 
for all x G R. In a special case when [F(x), x] — 0 is fulfilled for all x G R, 
F is called commuting on R. A classical result of Posner (Posner's second 
theorem) [10] states that the existence of a nonzero centralizing derivation 
D : R —> R, where R is a prime ring, forces the ring to be commutative. 

We proceed with the following definition. 

DEFINITION 1. Let m > 0, N > 0 with m + n ^ 0 be some fixed integers. 
An additive mapping D : R —» R, where R is an arbitrary ring, is called a 
(m, n)-Jordan derivation in case 

(1) (m + n)D(x2) = 2 mD(x)x + 2 nxD(x) 
holds for all x G R. 

Let us point out that the relation (1) appears naturally in the proof of 
Theorem 1 in [11]. Obviously, (1,1)-Jordan derivation on a 2-torsion free 
ring is a Jordan derivation and (1,0)-Jordan derivation is a left Jordan 
derivation. 

We proceed with the following proposition. 

PROPOSITION 1. Let m > 0, n > 0 with m + N / fl be some fixed integers, 
let R be a 2-torsion free ring, and let D : R —> R be an (m,n)-Jordan 
derivation. In this case the relation 
(2) (m + n)2D(xyx) = m{n — m)D{x)xy + m(m — n)D(y)x2 

+ n(n — m)x2D(y) + n(m — n)yxD{x) 
+ m(3m + n)D(x)yx + 4 mnxD(y)x 
+ n(3n + m)xyD(x), x,y G R 

holds for all pairs x,y G R. 

P r o o f . The linearization of the relation (1) gives 

(3) (m + n)D(xy + yx) 
= 2 m D ( x ) y + 2 m D ( y ) x + 2 n x D ( y ) + 2 n y D ( x ) , x,y G R. 
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Putting in the relation (2) (m + n)(xy + yx) for y, we obtain 

(m + n)2D(x2y + yx2) + 2 (m + n)2D(xyx) 

= 2 m(m + n)D(x)(xy + yx) + 2m(m + n)D(xy + 
+ 2n(m + n)xD(xy + yx)2n(m + n)(xy + yx)D(x), x,y € R. 

Applying (2) and (1), we obtain 

4 m2D(x)xy + 4mnxD(x)y + 2m(m + n)D(y)x2 + 2 n(m + n)x2D{y) 
+4mnyD{x)x + 4 n2yxD(x) + 2 (m + n)2D(xyx) 

= 2m(m + n)D(x)(xy + yx) + 4 m2D(x)yx + 4 m2D(y)x2 + 4 mnxD(y)x 

+ 4 mnyD(x)x + 4 mnxD(x)y + 4 mnxD(y)x + 4 n2x2D(y) 

+ 4n 2 xyD(x ) + 2n(m + n)(xy + yx)D(x), x,y E R. 

After collecting terms we obtain 

(m + n)2D(xyx) = m(n — m)D(x)xy + m(m — n)D(y)x2 

+ n(n — m)x2D(y) + n(m — n)yxD(x) 

+ m(3m + n)D(x)yx + 4 mnxD(y)x 

+ n(3n + m)xyD(x), x,y £ R 

which completes the proof. 
It is our aim in this paper to prove the following result. 

THEOREM 2. Let m > 1, n > 1 be some fixed integers with m ^ n and let R 
be a prime ring with char(R) ^ 2mn(m + n) \ m — n \ . Suppose D : R —> R 
is a nonzero (m,n)-Jordan derivation. If char(R) = 0 or char(R) > 3, then 
D is a derivation and R is commutative. 

The proof of the above theorem depends heavily on the following result 
proved by Bresar [5] (see also [6]). 

T h e o r e m 3 . Let R be a prime ring and F : R —> R an additive mapping. 
Suppose that [f(x),x]n = 0, for all x G R and some fixed integer n > 1. If 
either char(R) = 0 or char(R) > n, then [F(x),x] = 0, for all x € R. 

P r o o f of T h e o r e m 2. Putting in the relation (2) y = x we obtain 

(4) (m + n)2D(x3) = m(3m + n)D(x)x2 

+ AmnxD(x)x + n(3n + m)x2D(x), x G R. 
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Now, putting (m + n)2x3 for y in the relation (3) and applying (4) we obtain 
(m + n)3D(x4) = m(m + n)2D(x)x3 + m(m + n)2D(x3)x 

+ n(m + nfxD{x3) + n(m + n)2x3D(x) 
= m(m + n)2D{x)x3 + m((3m2 + mn)D(x)x2 

+ 4 mnxD{x)x 
+ (3n2 + mn)x2 D(x))xnx((3m2 + mn)D{x)x2 

+ 4 mnxD(x)x + (3 n2 + mn)x2D(x)) + n(m + n)2xzD(x) 
= (m(m + n)2 + m(3m2 + mn))D{x)x3 + (n(3m2 + mn) 

+ 4m2n)xD(x)x2 + (m(3n2 + mn) + 4 mn2)x2D(x)x 
+ (n(m + n)2+ n(3n2+ mn))x3D(x), x e R. 

We have therefore 
(5) (m + n)3D(x4) = (4m3 + 3m2n + ran2)D(i)i3 

+ (7 m2n + mn2)xD(x)x2 + (7 mn2 + m2n)x2D{x)x 
+ (4n3 + 3mn2 + m2n)x3D(x), x <E R. 

Putting (m + n)x2 for x in (1) we obtain 
(m + n)3D(x4) = 2m(m + n)2D(x2)x2 + 2 n(m + n)2x2L>(x2) 

= 2m(m + n)(2mD(x)x + 2 nxD(x))x2 

+ 2n(m + n)x2(2mD(i)x + 2 nxD(x)) 
= 4m2(m + n)D{x)x3 + 4 mn(m + n)xD{x)x2 

+ Amn{m + n)x2D{x)x + 4n2(m + n)x3D(x), x £ R. 

We have therefore 
(6) (m + n)3D(x4) = 4 m2(m + n)D(a;)a;3 + 4mn(m + n)iD(2;)a;2 

+ 4 mn(m + n)x2D(x)x 

+ 4n2(m + n)x3D(x), x £ R. 

By comparing (5) and (6) we obtain 

mn(n — m)D{x)x3 + 3 mn(m — n)xD(x)x2 

+ 3mn(n — m)x2D(x)x + mn(m — n)x3D(x) = 0, x € R, 
whence it follows D(x)x3 - 3xD(x)x2 + 3X2D(X)X - x3D(x) = 0, x G R, 
which can be written in the form [D(x),x]3 = 0, x € R. According to The-
orem 3 it follows that [D(x),x] = 0, for all x G R, which makes it possible 
to replace in (1) D(x)x with xD(x). We have therefore (m + n)D(x2) = 
2(m + n)xD(x), x £ R, which reduces to D(x2) = 2xD(x), x G R. Ap-
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plying again the fact that D is commuting on R, we arrive at D(x2) = 
D{x)x + xD(x), x £ R. In other words, D is a Jordan derivation, whence 
it follows that D is a derivation by Herstein's result. Since by Posner's sec-
ond theorem the existence of commuting nonzero derivation on a prime ring 
forces the ring to be commutative, one can conclude that the proof of the 
theorem is complete. 

In our forthcoming paper [12] we prove the following result. Let R be a 
2-torsion free semiprime ring and let D : R —> R be a left Jordan derivation. 
In this case D is a derivation which maps R into Z(R). 

The result we have just mentioned above and Theorem 2 lead to the 
following conjecture. 

C O N J E C T U R E 1. Let m > 0 , n > 0 be fixed integers with m + n^0, m ^ n 
and let D : R —> R be a (m,n)-Jordan derivation, where R is a semiprime 
ring with suitable torsion restrictions. In this case D is a derivation which 
maps R into Z(R). 

An additive mapping D : R —> R, where R is an arbitrary ring, is called 
a Jordan triple derivation in case 

(7) D(xyx) = D(x)yx + xD(y)x + xyD(x) 

is fulfilled for all pairs x,y e R. One can easily prove that any Jordan 
derivation which maps a 2-torsion free ring into itself, is a Jordan triple 
derivation. Bresar [4] has proved that any Jordan triple derivation on a 
2-torsion free semiprime ring is a derivation. According to all these observa-
tions and Proposition 1 we continue with the definition and the conjecture 
below. 

DEFINITION 2. Let m > 0, n > 0 with m + n ^ 0 be some fixed integers. 
An additive mapping D : R —> R, where R is an arbitrary ring, is called an 
(m, n)-Jordan triple derivation in case 

(8) (m + n)2D(xyx) = m(n — m)D(x)xy + m(m — n)D(y)x2 

+ n(n — m)x2D(y) + n(m — n)yxD(x) 
+ m(3m + n)D(x)yx + 4 mnxD(y)x 
+ N(3N + m)xyD{x) 

holds for all pairs x,y € R. 

According to Proposition 1 any (m, n)-Jordan derivation on arbitrary 
2-torsion free ring is an (m, n)-Jordan triple derivation. We conclude with 
the following conjecture. 
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CONJECTURE 2. Let m > 0, N > 0 be some fixed integers with m + n ^ 0 , 
m n, and let D : R —> R be an (m,n)- Jordan triple derivation, where R 
is a semiprime ring with suitable torsion restrictions. In this case D is a 
derivation which maps R into Z{R). 
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