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TRANSFORMATIONS BETWEEN MENGER SYSTEMS

Abstract. To define transformations between based universal algebras we must in-
troduce representations that depend on the bases, contrary to what was possible for
general vector spaces and believed possible for universal algebras. In fact, a counterex-
ample shows that by representation-free transformations alone one cannot even ascertain
whether a universal algebra has any dimension or not.

A transformation notion, which can do, concerns basis dependent Menger systems.
It enjoys a basic geometric property of universal algebras, the preservation of reference
flocks, and generalizes the transformation groups of Linear Algebra into groupoids.

0. Preliminaries

0.0. Introduction. The necessity of a transformation notion, distinct from
isomorphisms, was acknowledged in vector spaces since 1889 [13]. In Uni-
versal Algebra, on the contrary, no notion of a transformation appeared,
just some isomorphism variants (equivalence between algebras [3] and Mar-
czewski’s weak or general [1] isomorphisms) did. Since till last year even
simple definitions of vector spaces as universal algebras [11, 12] lacked, this
made conceivable that their two fields are distinct.

After introducing some notions of “Universal Mathematics”, this paper
provides universal algebras with a candidate for a transformation notion
together with a counterexample to the belief that isomorphism ideas suffice.
Its continuation (to appear here under the title “Sameness between based
universal algebras”) will validate this candidate by proving its equivalence
to other new notions. Other motivations are in [10].

0.1. Notation. We conform to [4], but for the following few differences.
We denote the set-theoretical pair {{a}, {a,b}} by (a, b), yet we still simplify
f({a,b)) into f(a,b) and {(z,y),2) into (z,y,z) as in [4]. PX denotes the
set of subsets of set X and ix its identity function.
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We consider functional composition as the restriction of relational com-
position, here denoted by - , namely f-g is “the composition of g and f” and
(f-9)(@) = f(g(x)). Accordingly, we perform the restriction of a function
f to some set S merely by functional composition: f - ig.

As usual, we write f: A— B to say that f is a function with arguments
in the whole set A and values in B, f: A—B or f:A—-B to say that it
also is one to one or onto B and f: Av—B to say it is a bijection onto B.
We will forget that “function — domain” and “family — index” are pairwise
synonymic and we avoid the notation {a;};cr or (a; | ¢ € I). Within informal
comments we will replace “function” with “indexing”, to emphasize values.
Also, we denote the set-theoretical power B = {f | f:A — B} as the
arithmetic one B4. (The latter will not occur here.)

0.2. Endomorphism representations. Let E, C A4 be the set of all
endomorphisms of an algebra a on A. Given a set X, let b: X — A and
consider the function ry:E, — AX, defined by ry(h) = h- b, for h € E,,
namely r, “samples each h at” b by providing each x € X with the value
h(b(z)). When a function b: X — A serves to define such a sampling of
endomorphisms, we call it a frame of «. If this sampling represents every
endomorphism by any sample and conversely, namely if we get that

(0) Tp: Eau—»AX,
then every structure on E, defines another on AX and we will say that

e 7, is a (natural) analytic representation of Ey, while X is its dimension

set and the cardinality of X is its dimension,
e AX is the set of the (square universal) matrices of a with respect to b,

while every value M (z) of a matrix M : X — A is its column at z € X,
e bis a basisor (universal) reference frame of o, while its values b(x) are ref-

erence elements or selectors that form the basis set B C Afor b: X —>>B
e the r,—image o: AX x AX — AX of functional composition on E, C A4

its matriz product (that clearly has b as unit),

e b and the function x: A4 — AA” | defined by (0) from the functional ap-
plication of endomorphisms, as Xa(T'b(h)) = h(a) for h € E, C A4 and
a € A, form the Menger system derived from «, with respect to the frame

of selectors b, of dimension set X and that
e o and b form the monoid of the matrices of a under r, or with respect to

b, which is isomorphic onto the endomorphism one by definition.

Notice that A = @ by (0) implies X = @, whereas for a singleton A
every set X satisfies (0). In the former case we say that the carrier (of the
algebra) is trivial; in the latter that the algebra is trivial. When the algebra
is not trivial, X = @ iff E, = {i4}. It does when all algebra elements are
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constants. This also implies that
(1) X=0 iff o:1x 11 oriff xo(M)=aforal M:X— A, a€ A

See 0.2 of [11] or of [10] for the differences between our Menger systems
and the finitary ones of Universal Algebra as in [0]. See 0.5 of [11] for the
equivalence between our basis definition and the conventional ones. See 0.6
of [11] for an example concerning the usual vector space.

1. Analytic monoids and constant generators
1.0. Definitions. Let X and A be two sets. Possibly, X can be a natural

number n = {0,...,n — 1}. Among the functions in AX we consider the
constant ones. For a € A # () we denote the one with value a by k,:
(2) kao(z) = a,

for all z € X # 0. Also, this always defines a constant generating function
k:A— AX. In fact, for X = @ and A # () there only are the trivial cases
k, = 0 and for A = 0 the case k = 0.

On AX consider a binary operation o: AX x AX — AX (with infix no-
tation) and assume it has a “right K—preserved unit”, viz. a function U :
X — A with

(3) M o ky) = k)

for all M: X — A and x € X , that also is a “K-restricted left unit”, viz.
(4) Uok, =k,

for all @ € A, and satisfies a “K-restricted associativity”,

(5) (MoL)oky,=Mo(Lok,),

forall L, M : X — A and all a € A. Then, we will say that o and U define an
analytic monoid of dimension set X on A with the carrier AX and that U
is its unit. As shown in 2.1 of [8], (3), the dimensionality axiom, generalizes
the idea that a Kronecker delta is diagonal, namely that each reference
vector lies in its axis.

The requirement that U : X — A implies that for an empty A one cannot
have an analytic monoid, unless X too is empty. In the latter case, the
carrier is singleton, whatever A may be, and it also is iff A is, whatever X
may be. On the contrary, when the carrier has at least two elements, we —
as usual — will say that vhe analytic monoid is non trivial.

As far as such set—-theoretical cases are concerned, only the first, A =
X =0, is completely trivial and only it will allow us to skip definitions and
proofs concerning the corresponding analytic monoids: most trivial analytic
monoids are not trivial set—theoretically. In fact, even the null dimension
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case, X = (), determines a single analytic monoid, the trivial one with carrier
1 = {0}, that is on every set A, since A? = {§}} whatever A is.

Notice also that our three defining conditions are not the three equa-
tional conditions for monoids, and that (3) involves the dimension set.
The first and last of the following properties motivate the name “analytic
monoid”, which still denotes a mathematical structure different from ab-
stract monoids. (See [9] for details.)

1.1. Recalled properties. From 1.7 of [7] we recall that
(Monoid) o and U form a monoid on AX;
(x—definability) Mokq = k(prok,)y) s for all M: X —A,a € A andy € X;

(Analytic) o and U define an analytic monoid on A iff they form the
monoid of the matrices of some algebra on A under the
analytic representation ry as in 0.2.

1.2. Definitions. We called the second )Property x —definability, because it
allows us to define a function x: A— A4”" | by

a when X = (2);
(6) Xo(M) = { (M okg)(xz) for any z € X #0,

forall M : X — A and a € A. This determines an algebra, made of constant—
arity operations x,:AX — A indexed by the very carrier. We call such an
algebra, together with U or without it, the Menger system derived from our
analytic monoid on A. In fact, 1.5 (C) will show that, given any x, U is
unique. Given o, if X # (), then A and this Menger system are unique.
When necessary, we will identify x as the algebra of the Menger system.

We will also consider another analytic monoid of dimension set Y on
B, denoted by o: BY x BY — BY and V:Y — B, together with its derived
Menger system & : B— BP v Hereinafter, we will refer to them as the former
and latter monoid respectively. By the Analytic property in 1.1 we can refer
to their elements as the former and latter matrices respectively. The same for
the derived Menger systems, their elements or operations, their “matrices”
of arguments and so on.

Then, from (6) we respectively get

(7) Lok, =ky,y), foralla€ Aand L:X— A and
(8) M oKy = K¢y, forallbe Band M:Y —B,
where k: A— AX and k: B— BY respectively denote the former and latter

constant generators, both defined as in (2). Hence,
(9) ky(y) =b forallbec B,y cY #0,
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while (3) — (5) become

(10) M o ky(y) = Kpm(y)» forallyeY and M:Y — B,
(11) Vo Kkp = Ky, for all b € B, and
(12) (MoL)yoky=Mo(Loky), forall L,M:Y —>B and b € B.

Similarly, when we consider two of the Menger systems derived from
based algebras, defined in 0.2, we denote the former and latter analytic
representations by

(13) v E=A%  and 7} Fes-BY,

where £ C A4 and F C BP respectively denote the set of the endomor-
phisms of the former algebra and the one of the latter. Therefore, by (0)

(14) e € & iff there is L: X — A such that e(a) = xq(L), foralla € A

and
(15) f € F iff there is M:Y—B such that f(b) = & (M), for all b € B.

1.3. Definitions. Given any two functions U: X — 4 and V:Y — B,
we will also define two Menger systems, without deriving them from either
an algebra or an analytic monoid, by assigning two functions x: A4 — A"
and £: B— BBY respectively, which satisfy three conditions each. As this
disregards their representation use, often we will call any of them the algebra
of a Menger system. We will still call U and V the units or frames of
selectors.

The three defining conditions for the former Menger system are:
(16) Xv(z)(L) = L(z), foral L: X —>Aandz € X ;
(17) Xo(U) = a, foralla € A and
(18)  Xyo()(M) =xa(MoL), forallac A and L,M: X — A,
where o: AX x AX — AX here denotes the composition defined by x in (22).
The three for the latter are:
(19) Sy (M) = M(y), foral M:Y—>BandyeY;
(20) &(V) = b, for all b€ B and
(21) Ee,omy(L) = (Lo M), forallbe B and L,M:Y —B,

where o: BY x BY — BY here denotes the composition defined by ¢ in (23).

(22) (MoL)y=xp@)(M), foral L, M:X —»Aand z € X and
(23) (MoL)y=¢&py)(M), foral LLM:Y—BandyeY .
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The cases X, A = () are the same as the ones for analytic monoids in 1.0
and (1) continues to hold by (17): when X = 0, x: Av—A'! merely is the
generator of singleton constants, while (22) defines o:1 x 1v—-1 trivially.

By the property (Menger to monoid) of 1.4 such compositions together
with U or V respectively will define two analytic monoids that we call the
analytic monoids derived from the corresponding Menger systems. The al-
gebras of such systems also define endomorphism monoids. By the property
(Endomorphism) of 1.4 we still denote their carriers by £ and F respectively,
eg. E={e:A— Ale(xa(L)) =xale-L) forallae Aand L: X — A}

1.4. Recalled properties. (See proofs either in 1.5 of [11] or in 1.4
of [10].) It does not matter how we define analytic monoids and Menger
systems nor how they rise, namely

(Algebra to Menger) the Menger system derived from a based algebra is a
Menger system; conversely,

(Menger to algebra) every Menger system is derived from an algebra that
can be the one of the Menger system, when derived
with respect to its unit;

(Menger to monoid) the analytic monoid derived from a Menger system is
an analytic monoid;

(Monoid to Menger) any Menger system derived from an analytic monoid
is a Menger system;

(Monoid loop)  every analytic monoid is derived from the Menger sys-
tem derived from it;

(Menger loop) every Menger system is derived from the analytic
monoid derived from it;

(Endomorphism)  the algebra of the Menger system derived from an al-
gebra keeps its set of endomorphisms.

1.5. Corollaries.

(A) o and U form an analytic monoid iff they define the monoid derived
from some Menger system and iff they form the monoid of the matrices of
its algebra with respect to its unit.

(B) The algebras x and & of two Menger systems derived from the same
algebra o, with respect to possibly different reference frames, have the same
endomorphisms: £ = F C A4,

(C) The algebra of a Menger system determines its frame of selectors.
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Proofs. (A) and (C) See either 1.6 of [11] or 1.5 of [10].
(B) By the property (Endomorphism) of 1.4 £ = E, = F. Q.E.D.

1.6. Definitions. Consider our constant generators k: A — AX and k:
B—BY. When C C AX and D C BY denote the two corresponding sets of
constant functions, unless A = X = (), we get two bijections,

(24) k:Ar—»C ,when X #0, and k:Bw~>D , when Y # 0,

or two constants: X,Y = @ respectively imply C,D =1 = {0}, k: A—~C
and k:B—-D. Also, C = AX iff A or X is at most singleton. Likewise for
D.

We say that a function ¢t: AX — BY retypes K, when for all f: X — A
t(f) is constant iff f is. This is the same as to require that ¢ - ¢¢ is onto D.
We also say that a bijection t: AXw—~BY for X, Y # 0 depicts elements as
constants, when there exists a bijection g: Av—»>B such that

(25) t-k=k-g.

(This cannot extend to the cases X,Y = @), where ¢ does not determines A
and/nor B, as it should become a property of A and/or B, not of ¢.)

1.7. Lemmata.
(A) When X,Y # 0, a bijection t: AXw—s-BY retypes K iff it depicts ele-
ments as constants.

(B) When a bijection t: AXw—s-BY retypes K and A has at least two ele-
ments, if X is singleton, then'Y is.

Proofs. (A) (Only if) As t-i¢:Cw+D, g = k™! -t - k provides us the
required bijection by (24). (If) Since by (25) t-ic =t-k-k 1 =k-g- k!,
the function ¢ - i¢ is onto D, as required.

(B) When X is singleton, C = AX and it has at least two elements.
Then, t - ic = t is onto both BY D D and D. This implies that D = BY
and that it has at least two elements. No B with less than two elements can
do it. Hence, Y too is singleton. Q.E.D.

1.8. Definition. When X,Y # @ and t: AXw—BY retypes K, we say that
t K—-induces the above g: Av—»B. Clearly, (25) defines at most one g. By (9)
and (25) the K-induced bijection is defined by g(a) = Ky (y) = t(ka)(¥) ,
foralla € Aand everyy € Y.

2. Flocks and dilatations

2.0. Definitions. Universal transformations will require to generalize
some simple notions that we know from vector spaces to any based uni-
versal algebra. We say that c € A is a flock combiner of x or of the Menger
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system of x, when
(26) Xc(ke) = a, for all a € A.

Then, the element of a singleton A is a flock combiner. Hence, for X = 0 by
(1) and (6) c € A is a flock combiner iff A is singleton. Yet, things are less
trivial for nontrivial dimensions as we know from vector spaces (see details
in 1.7 of [11]).

Flock combiners define a (universal) flock ®; C A with respect to x by
®7 = {xc(L) | cis a flock combiner} from any matrix L: X — A. By 1.4
(Menger to algebra), when we derive x from a given algebra, we say that
such a x.(L) is the L-combination of flock combiner ¢ with respect to U and
that @7 is the L-flock with respect to U. (A flock in a vector space can also
use flock combiners from vector spaces of a different dimension, e.g. in order
to state that all the space is a flock, and this occurs on other algebras as in
1.2 (B) of [12], yet here we will not use this generalization.)

When L is our reference frame U, we will also say that flock ®7; is the
reference flock of x or with respect to U; likewise we define the reference
flock &Y, of €. In 2.1 (C) this allows us to see combiners as combinations.

2.1. Recalled corollaries. (Proofs either in 1.8 of [11] or in 2.1 of [10].)
(A) Bases are made of flock combiners, U: X —-®; and V:Y —®7,.

(B) In general, each column of any matriz is a matriz combination, L:
X —®) forall L: X — A.

(C) The set of all flock combiners is the reference flock.

(D) The flocks of non trivial constants are the singletons of their values:
(I)Ik(a) = {a} for all a € A with X # 0.

2.2. Definitions. Flock combiners are a case of a dilatation indicator
defined in the former Menger system as an element ¢ € A such that x.- k:
A— A is any endomorphism e € £ of x. Then, e and its matrix S =e-U:
X — A are respectively called a dilatation and a (universal) scalar of x (see
3.2 of [8], [6] and 5.1 of [5]), while c is called an indicator of e or of S.

In fact, (26) states that e is the identity on A (which always is in &),
namely flock combiners merely are the indicators of the identity. They also
are general dilatation indicators up to the dilatations themselves, as 2.4 (A)
will show.

The above dilatations are not all the ones of a Menger x. When X = (),
we say that i4 and its matrix S = @) are the dilatation and the scalar of x:
A — A! respectively, even for a non singleton A, namely even when there
are not dilatation indicators. This is a split definition, yet it comes from the
unsplit one in 2.5 of [6] for general universal algebras.
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The latter uses unary elementary functions (“term operations”), not
indicators, in order to define a dilatation as an isotropic endomorphism,
without any splitting. (Such a unarity formalizes the isotropy condition for
endomorphisms that concerns their “geometric” dimensions as in 5.1 of [5].)
This does not matter till X has at least one element: any X—ary elementary
functions is a x., as shown in 6.3 and 6.7 of [5], and we get any dilatation
as x. - k, for some indicator c.

On the contrary, when X = (), every elementary function x, is a nullary
constant. Unless A is singleton, no nullary function can replace the iden-
tity. Yet, the identity, the only endomorphism, always satisfies the recalled
isotropy. Then, when the general definition applies to the algebra of a
Menger system, both indicator defined dilatations and (in the last case) an
identity without indicators can rise.

Anyway, the characterization in 2.4 (C) of scalars will avoid any split-
ting, as the recalled definition of general dilatation did. This characteriza-
tion formally disregards any indicator and any dilatation. It also is fully
analytic in the sense that it uses the multiplication of an analytic monoid
to state a “K-restricted” commutativity.

Indicators are not formally necessary to define scalars. They serve to
determine the “amount” of a dilatation by an element, instead of by a
matrix, as a scalar does. This will allow dilatations to relate with carrier
bijections. Yet, while a dilatation has a single matrix, in general it has a set
of indicators, possibly an empty one. I. will denote the set of indicators of
dilatation e.

Our split definition introduces scalars by dilatations also in order to
show easily that universal scalars do correspond to the scalars we know
from vector spaces as in 1.7 of [11]. As shown in the following, even the
properties of indicators are extensions of the ones of flock combiners.

F C AX and G C BY will respectively denote the sets of scalars of
x and &. A C £ and T' € F will respectively denote the correspond-
ing sets of dilatations. By 2.4 (F) and (G) in both cases such sets carry
monoids that we respectively call the scalar monoid and the dilatation
monoid of the corresponding reference frames, Menger systems or analytic
monoids. Clearly, for X = @ they are fairly trivial, since F = {@} and

A = {i).

2.3. Lemma. c is a dilatation indicator in the former Menger system iff
there exists L: X — A such that x.(ka) = xa(L) for all a € A. Likewise in
the latter Menger system: d is iff there exists M : Y — B such that £4(kp) =
& (M) for allb € B. Such an L and M are the scalars of the corresponding
dilatations.
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Proof. The (iff) parts come from (14) and (15), while the scalar obser-
vations from (13) by (16) and (19), e.g. (e-U)(z) = ((xc - k) - U)(z) =
Xe(ky(e)) = Xu()(L) = L(z) for all z € X # 0, while for X = @ it is trivial,
L=0. Q.E.D.

2.4. Recalled properties.

(A) For every scalar S: X — A of x, the value ¢ = x4(S) of its dilatation at
any flock combiner u € ®; is an indicator of S. (Proved in 2.3 of [11].)

(B) For every scalar S: X — A of x, each column Sy forx € X # 0 is a
dilatation indicator of S: for alle € A, e-U: X —I,. (Proved in 2.4 ibid.)

(C) A matriz S: X — A is a scalar of x iff Sokea =kgso0S for all a € A.
(Proof in 2.5 ibid..)

(D) The product of a matriz L: X — I, of indicators of a dilatation e € A
times one M : X — Iy for an f € A is a matriz MoL: X —I,.¢ of indicators
of the commuted corresponding composition. (Proof in 2.5 ibid..)

(E) For every scalar S: X — A of x, let ¢ = xu(S) be the value of its
dilatation at any u € A, then, if ¢ is an indicator of S and the dilatation is
one to one, u is a flock combiner, u € ®y;. (Proof in 2.6 ibid..)

(F) Scalars form a submonoid of the analytic monoid. (Proof in 2.6 ibid..)

(G) Dilatations form a submonoid of the endomorphism monoid and the
scalar monoid is the isomorphic image of the dilatation monoid under the
analytic representation. (Proof in 2.6 ibid..)

(H) The product of matrices of flock combiners is a matriz of flock combiners:
o' : ®F x ®F — B, where o/ = o - i<1>5><<1>5 denotes this restriction of the
product. (Proof in 2.6 ibid..)

2.5. Example. Given a non trivial vector space with two reference frames
UV:X — A let F denote the carrier of its field, namely the set of its
“vector-space scalars”. In the former analytic monoid, consider the function
D:F — AX that provides each number s € F with its diagonal matrix
Ds; =3-U, where 5: A— A is the multiplication by s, namely Ds(x) = sU;,
for each z € X. Likewise, in the latter consider D' : F — AX with D, =3.V.

We claim that D : Fw—-F is an isomorphism from the monoid of the field
product onto the scalar monoid of U, which determines dilatations that do
not depend on the choice of the analytic representations in 2.4 (G):

(27) Xa(Ds) = sa = &,(D%), foralla€ A and s € F.
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Proof. Since 5 € &, (27) follows from (Endomorphism) in 1.4, (17) and
(20): e.g. xa(Ds) = xa(3-U) =3(xa(U)) =3(a) = sa. See the proof in 2.7
(A) of [11] for the required isomorphism. Q.E.D.

The recalled proof uses the commutativity of the field product, which is
not the minor property one could painlessly get rid of, as 2.6 (B) will show.
“Scalars” in a skew field may not be universal scalars for its moduli.

2.6. Recalled theorems. (Proofs in 2.8 of [11].)
(A) The set of indicators c of a bijective dilatation e = x. - k: Av—-A with
scalar S = e - U is the flock of the S—combinations: I, = ®%.

(B) The scalar monoid is commutative.

3. Descriptions

3.0. Definitions. The notion of a transformation in 3.3 will use some set-
theoretical properties of preliminary notions, which also concern the crucial
counterexample 3.6. Given the two Menger systems of 1.3 and a bijection

(28) g: Ar—B |

consider the relation t C AX x BY defined for all L: X - A and M:Y —»B
by (L,M) etiff forallaec A

(29) g(Xa(L)) = gg(a)(M) .

An example of such a relation ¢ is the one of a transformation of the matrices,
for a linear or semi-linear transformation g: Aw—»B, of two based vector
spaces, where Y = X and (L, M) € t iff

(30) M:g.L’

which implies ¢ : AXw—~BY .

Notice that in general, whenever we consider two based algebras deriving
our two Menger systems as in 1.4, the choice of the bases, not an a priori
assumption like (30), determines ¢ from g. The counterexample in 3.6 (A)
will show that (29) does not imply (30) nor its generalization M = g-L-1~!
for any [: Xv—Y. Besides, in the proof of 3.1 (B) we will see that the
mere requirement that (29) holds for certain a’s ensures that for each L in
the domain of ¢ there only is one way to get M. The general formula that
expresses such one way and replaces (30) is (32).

If ¢ relates every former matrix L with some latter matrix M and t~1,
conversely, every M with some L, then we will say that g totally inducest and
we denote the function relating the g’s to the t’s by T C B4 x P(AX x BY).
We will also call the function V' = g71-V : Y — A the (algebraically) converse
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basis (with respect to g). Here, V' need not to be a converse of V in the
sense that (V/, V) € t. We are merely recalling the restricted notion of ¢ in
(30) or (33) that comes from Algebra.

3.1. Lemmata. If g: A—>B totally induces t as above, then

(A) (for when one of the sets of matrices is singleton) trivial dimensions must
coezist, X = 0 iff Y = 0, or both Menger systems have trivial algebras, hence
in both cases

(31) A¥ ={U} f BY ={V},

(B) the induced relation is a bijection, t = T,: AXw—sBY and,

(C) given x, T, depends only on V, through the converse basis V':Y — A:
(32) (Ty(L))y = 9(xvr(y)(L)) forallL: X —A and y€Y.

Proofs. (A) The coexistence of algebra triviality comes from (28). Then,
consider dimension triviality with non trivial algebras. As observed in 1.3,
when X = ), x is the generator of singleton constants k: Av—-Al. Then,
g(a) = &ga)(M) in (29). Since g is onto B, any M behaves as V in (20). By
(23), 1.1 (Monoid) and 1.4 M = V, because a left unit of a monoid is its
only unit. Hence, the total induction assumption implies BY = {V}. As B
is not singleton, this implies Y = §. Conversely, for Y = () we consider g—1.

((B) and (C)) When A and B are singleton, both AX and BY are. Hence
both statements easily follow from (29) and (31). When X = @, by (A) the
induced relation is the singleton function ¢:1+>1 and (32) holds trivially.
Otherwise, we can assume that both X,Y # 0 and, hence, A # 0.

Let us show that ¢: AX — BY. From 3.0, for all (L, M) € t, (29) holds
in particular for each a = V'(y) = ¢~ 1(V(y)) with y € Y. Hence, for all
y €Y by (19) and (28), M(y) = &v(y)(M) = §yg-1(v(y)))(M) = &g(a) (M) =
9(xa(L)) = g(xv'()(L)) - Then, M = Ty(L) as in (32) and t = Ty,

Since t: AX—~BY comes from the total induction assumption, now we
only have to show t: AXw—BY . This, easily follows after building the con-
verse of (32). In fact, (29) by (28) becomes its converse: g~!(&(M)) =
97 Hg(xg-1(5)(L))) = Xg-1(5)(L) for all b = g(a) € B. This defines ¢,
which is totally induced by g™}, since ¢t was by g. From this converse of (29)
we get the converse of (32), by using the converse basis U': X — B with
respect to g7 for all M:Y »B and z € X, (t7(M))z = g7 (€yr(z) (M)).
This redefines t~! as a function. Hence, ¢ is one to one. Q.E.D.

3.2. Corollaries. When g: Av—B totally induces t as above:

(A) t preserves the frames of selectors, t(U) =V and,
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(B) ift = T,: AXw—BY K-induces g as in 1.8 or if the two dimensions are
trivial (namely, if ¢ retypes K as in 1.6), then g preserves reference flocks
in both ways: c € ®y; iff g(c) € ®Y,.

Proofs. (A) This follows from 3.1 (B) and (31), when either of reference
frames is empty or either algebra is trivial. Otherwise, from (32) by (17),
3.0 and (28) (t(U))y = 9(xv()(U)) = 9(V'(y)) = 9(97'(V(v))) = V (y) for
ally €Y # 0. Hence, t(U)=V.

(B) In the trivial case by 3.1 (A) both reference flocks are either empty
or the singleton carriers, as observed in 2.0. Hence, the conclusion follows
from (28).

Assume X,Y # 0. Let ¢ € ®};, namely by 2.1 (C) x. -k = ¢4. Then,
for all a € 4, g(xe(ka)) = g(a) and by (29) and (25) g(a) = £gte(t(ka)) =
€g(c)(Kg(a))- Since g: A—~B, we take b = g(a) and get {y(c)(xp) = b for all
b € B, namely g(c) € ®{,. Clearly, we can reverse all these implications.

Q.E.D.

3.3. Definitions. Assume that g totally induces ¢ and preserves both
reference flocks, a € ®y; iff g(a) € ®Y,. Then, given x and &, g and ¢ induce
each other as in the next characterization 3.4 (B) and we will say that our
g: A—>B is a description of x by £ (see (35)) or from U to V or also a
description from the former monoid onto the latter.

Lastly, as 3.1 (B) has shown that the induced relation ¢ is a function,
we will say that ¢ is @ matriz transformation induced by g or the matrix
transformation induced by it from x to £ or also, in case a single algebra
derives both x and £, the matriz transformation induced by g from U to V.

Notice that, if X =Y = 0 or both algebras are trivial as in 3.1 (A), then
every bijection g: Aw-B is a description by (1) and 2.0. In such a case,
t: {U}w—{V} is the only matrix transformation.

Consider our two general Menger systems, but with the same dimen-
sion set: x with basis U: X — A and £ with basis V:X — B. We say
that n: Av»>B is an (element) renaming of x by £ or that it renames x
by € elementwise, when it is a description of x by £ performing its matrix
transformation ¢ = T, columnwise, namely

(33) t(M)=n-M and
(34) n(xa(M)) = &pa)(n- M), forallac Aand M: X —A .

Clearly, we could easily extend such renaming descriptions from case
Y = X to the case of a bijection {: Xw—»Y, yet hereinafter we will omit

such seeming extensions. (Our choice in 0.2 of the bases as functions allows
us to permute the selectors.) Notice also that, in case of an automorphism
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n: Ar»A of an algebra deriving our Menger systems, (34) rewrites as x =
€ - n because of the property (Endomorphism) in 1.4.

Since in (34) x, and &n(a) are isomorphic, an element renaming is a (sim-
ple) case of general isomorphism [1]. Contrary to the case of vector spaces,
3.6 (A) will show a description that is not a renaming. A characterization
of renamings will appear in 3.1 (A) of the continuation of this work.

3.4. Corollaries. Let g: Av—»>B be a description of x by £ as above, then
(A) the converse basis set is made of flock combiners V! = g=1.V:Y —®},;

(B) when X,Y # 0, t = T,: AXws-BY K-induces g as in 1.8 (then, T,
K-induces g iff g preserves both reference flocks, because of 3.2 (B));

(C) we can compute the operations of the (algebra of the) latter Menger
system by the former,

(35) &(M) = g(xg—1(b)(t_1(M))) ,forallbe B and M:Y — B,
while we preserve the former operations as
(36) 9(xa(L)) = €g(a)(t(L)) , for alla € Aand L: X — A ;

(D) descriptions define an equivalence relation among Menger systems,
namely

(Symmetry) g7': Bvo-A is a description of £ by x, while t™1 is its matriz
transformation,

(Transitivity)  if h:Bw—>C is a description of £ by another Menger system
v on C, then h - g: Avr-C is of x by v with the composition
of their matriz transformations;

(E) the set of descriptions between Menger systems derived from the same
algebra o on A forms a (sub)group under the functional composition on A4,

Proofs. (A) It is trivial for X, Y = ), otherwise the preservation of the
reference flocks in 3.3 implies it. In fact, g(V'(y)) = V(y) € ®{, for each
y €Y by 2.1 (A). Then, V'(y) € &}, for all y € Y, as ¢ € O, iff g(c) € 9.

(B) By 1.7 (A) we can show (25). By (A) we can take any ¢ = V'(y) € @y,
for y € Y # 0 in (26) and by (32) and (9) get ((t - k)(a)), = (t(ka))y =
9(xvr(y)(ka)) = g(a) = Kgq)(y) foralla € Aand y € Y, namely t-k =k -g.

(C) Take any a € A such that g(a) = b and get (35) from (29) by 3.1
(B) and (28). To get (36), merely use 3.1 (B) on (29).

(D) (Symmetry) Total induction is symmetric as already observed in the
proof of 3.1 (B) and the same holds for the preservation of the reference
flocks by definition 3.3.
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(Transitivity) By 3.1 (B) both g and h induce bijections, t =T, : AX —BY
and say t' = T} : BYwCZ. This implies ¢’ - t: AXw—»CZ%. Hence, to get
the transitivity of total induction, we only have to prove that h(g(xq(L))) =
Yr(g(a)) (t'(t(L))) , for all a€ A and L: X — A . This easily follows from (36),
used twice: h(g(xa(L))) = h(€ga)(t(L))) = Yn(g(a))(t'(¢(L))). Lastly, the
transitivity of the preservation of reference flocks is trivial.

(E) The closure under composition was just proved in (D) (Transitivity),
the composition inverse in (D) (Symmetry). As the composition was the
functional one, we get the required group with unit 24. This unit is the
renaming description that corresponds to £ = x or to V = U with t = i4x,
yet 3.6 will show that, given g = 74, sometimes also other £’s, V' and t’s
can do. Q.E.D.

3.5. Example. (A) Given two Menger systems, by 1.4 (Menger to algebra)
one might consider the isomorphisms between the algebras deriving them.
In 3.3 we did not require that g: Aw—B be such an isomorphism nor later
we proved it was. To check that this requirement is not granted consider
the classical example for semi-linear transformations [13].

Let x = &, with A = F3, be the Menger system for the complex vector
space on the complex field F with the Kronecker frame of selectors (versors)
U =V:3— A, namely x,(L) is the usual product of vector a times matrix
L:3— A. When we define g: A—>A as the componentwise complex conju-
gation, we have a bijection that is not an automorphism of the space (nor
of x), such that

(37) g-U=U.

Then, (32) by (19) defines ¢: 43— 4% ss (L)), = 9(xu(y (L)) = 9(L(y)
for y =0,1,2, namely t(L) = g- L for all matrices L:3— A. Because of our
usual x and ¢ and of this t: A3—~A3, any L and M = t(L) easily satisfy
(29) for all vectors a:3—F.

This implies that the relation induced by g in (29) contains our ¢, that
it is totally induced and, by 3.1 (B), that it is {. Also, g preserves the
reference flock, since Y, ¢; = 1 iff >,[g(c)]: = 1 for all ¢:3— F. Therefore,
g is a description, nay a renaming as in (34), but not an isomorphism.

(B) Notice that, while the choice of the reference frames determines a single
automorphism g: A=A, it does not for “self-descriptions” g: Ar—-A, in
spite of the dependence found in 3.1 (C). In fact, the self-description g of
(A) extends the identity on the reference vectors as in (37), yet by 3.4 (E)
also ¢ = 14 does and clearly its matrix transformation is t = 243. In each
case both the description and its matrix transformation differ with respect
to the other case.



758 G. Ricci

Here, both descriptions are renamings that still determine the latter ref-
erence frame by (33) and its matrix transformation by 3.1 (C). To identify a
“¢transformation”, we do not need neither matrix transformations nor refer-
ence frames and, since the latter only determines isomorphisms, descriptions
alone can replace them. Yet, to define such a description we still need some
condition not involving matrix transformations.

In the continuation of this work 3.5 (B) will show that in vector spaces
our renamings are the semi-linear transformations. Then, such a condition
there is an equation that involves vector-space scalars. Their dilatations
do not depend on any its reference frame, as formalized in 2.5. This will
explain why in such spaces abstract representation-free theories work.

In that continuation 3.4 will show that we can define our universal de-
scriptions too by scalars through a condition formally identical to the one
of semi-linear transformations. Yet, the next example will also show that
universal scalars are representation dependent. Then, the very condition,
used to get rid of reference frames in vector spaces, will prove that they
become mandatory in general.

3.6. Example. (A) We show that outside vector spaces there are descrip-
tions that are not renamings. We exhibit a description between two Menger
systems of a different dimension that are derived from the same algebra. We
first show the existence of such an algebra and we introduce it through some
algebraic conventions that later we will replace by set-theoretical ones.

Let us consider a possible algebra on a carrier A with five operations,
Ffoof1:(AxA)yxA— A and gg,91,92:A x A — A, that satisfy nine
equations: for allz:2— A, y:3—Aand z € A

(38) {-fO(gO('rOaxl)’gl(m(]axl)?g?(x(]vxl)) = X9,
fl(QO('T;O)ml)agl(‘ro’xl)ng(xO,xl)) = I,
9o(Fo(yo,y1,¥2), F1(¥0,91,%2)) = wo ,

(39) gl(fO(yO’y17y2)7 fl(yﬂaylvyZ)) = U,
ga(Foyo,v1,92), F1(yo, 41, 32)) = w2,

(

(40) {fo z,2,2) = fi1(z,2,2) and
go(Z,Z) = gl(za Z) = g2(z’z) =z
The natural correspondences (A x A) x A ~ A3 and A x A ~ A? allow
us to replace our f:2— AAXA)xA4 gnd g:3— A4%4 by the functions
(41) f:2— A% and ¢:3 > A%,

such that fi(y) = f;(y0,¥1,¥2) and g;j(z) = g;(zo, 1) for all j € 2, i € 3,
z:2— A and y:3— A. If Cy and Cy denote the functions Cy : A3 A?
and Cy : A>— A3 such that (Cy(y)); = f;(y) and (Cy(x)); = gj(z) for all
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such 7, i, z and y, then we can rewrite (38) and (39) respectively as
(42) Cp-Cy=1iy2 and Cy-Cpr=1ys .

Therefore, we got two functions f” = Cy and g” = Cy that are the one
the inverse of the other. Conversely, any f”: A3w—~A2 and ¢”: A%—~A3,
with f” = ¢”~1, define an f’ and a ¢’ as in (41), such that (42) holds.
Hence, they also define an f and a g that satisfy the first five equations (38)
and (39).

To check that all nine equations, (38), (39) and (40), are consistent, let
us define a non trivial algebra without an empty carrier, satisfying them, by
defining such f” and ¢” in a way compatible with (40). To do it, we take A
to be the set of natural numbers, as usual.

Let C and D denote the subsets of constants in A% and A3, C = {z:2 —
Alzo=z1}and D = {y:3 > A | yo = y1 = y2}. Namely, when we set
X=2andY =3in (2)and (9),C ={k,|2€ A} and D = {k, | z € A}
Then, we set C = A2~ C and D = A3\ D to get two bi-partitions {C,C}
and {D, D} such that A2=CUC and A3=DUD.

Clearly, we got two pairs of denumerable sets that allow us to take the
bijection d: Cw—-D, such that d(k,) = k. for all z € A, and to choose some
bijection e:CwD. Then, if we set f” =d tUe ! and ¢" = dUe, we get
the required bijections, f”: A3+—-A? and ¢": A%—-A3.

In fact, since f” = g’~1, we get the first five equations. Moreover, by
(2) folz,2,2) = fo(kz) = (f"(K2))o = (7 (k2))o = k2(0) = z = k(1) =
(d7Y (k)1 = (f"(k2))1 = fl(K2) = f1(2,2,2) for all z € A, while the re-
maining equations follows from (9) in the same way: e.g. go(z,2) = gy(k;) =
(g"(kz))o = (d(k2))o = kz(0) = z = K2(1) = (d(k))r = (¢"(k))1 =
91(k;) = g:1(z,2) for all z € A.

Since there is such an algebra satisfying all nine equations, there also
is a free one, satisfying them with a doubleton basis set. Since any such a
free algebra satisfies the first five equations (38) and (39), by the theorem
of A. Goetz and C. Ryll-Nardzewski [2] as in 5 §31 of [3] it has bases with
two and more reference elements.

Now, let A and U:2 — A respectively denote the carrier of such an
algebra and one of these doubleton bases. Then, the former of (13) with
X = 2 represents the set of endomorphisms £ of this based algebra, as well
as of the algebra of the Menger system with respect to any basis as in 1.5
(B). This will serve to prove that the identity is a description between the
Menger systems derived with respect to U and to another basis with three
reference elements.

Proof. Notice that the natural correspondence A x A ~ A? rewrites the
endomorphic condition h(g;(zo,z1)) = g;(h(xo), h(x1)) for h € &£ and z:
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2— A as h(gj(x)) = gi(h-xz). Set V = ¢g"(U). Then V:3 — A gets r{,:
£ — A3, where we claim that {, is a bijection as in the latter of (13) with
B=A F=¢€and Y = 3. In fact, since (r{,(h)); = (h-¢"({U)); =
h((g"(V))i) = M(gi(U)) = gi(h - U) = gi(ri;(h)) = (¢"(ry(h))): for all h € £
and 7 € 3, it is the composition of two bijections:

(43) ry=4" - ry.

This composition also allows thesMenger system y: A— A4" with respect
to U to redefine the one &: A— A4” with respect to V as

(44) £a=Xof", forallac A

In fact, from (43) by (42) we get v}, = g"~1 -7}, = f” - r},. Then, by (1
1.5 (B) and 0.2, for all M = r{,(e):3 — A and a € A, & (M) = e(a)
Xa(ry(€)) = xa(f"(r7(€))) = xa(f"(M)).

By (42) we can also rewrite (44) as xqo = & - g”. Therefore, g =
ia: AvsA totally induces a relation containing g”. Since g”: AZw—»A3
by 3.1 (B) this relation is g” itself, T, = ¢”. Moreover, ¢” K-induces g as
in (25), because our free algebra satisfies (40): ((¢” - k)(2)); = (¢"(k.))i =
gi(kz) = g;(2,2) = 2 =K,(i) = (k- g)(2)); for all z€ A and ¢ € 3. Hence,
by 3.2 (B) the identity g = 24 is a description of x by £ and ¢” is its matrix
transformation. Q.E.D.

5)’

(B) Such a g also is an automorphism as well as a general one as in 2 of
[1]. Yet, in both cases the renaming condition (33) fails to provide U with
the new basis V = ¢”(U) we found. It gets U again, by the matrix transfor-
mation 4 42 : A%r~A2. Descriptions alone can miss some “transformation”.
This also shows that the dependence in 3.1 (C) of T' on V is effective.

In 3.5 (B) were the bases to miss some “transformation”. To get all of
them in general vector spaces, linear transformations had to generalize into
semi-linear ones. Therefore, also now we need a further generalization: our
descriptions with their matriz transformations might be one.

Both semi-linear transformations and general isomorphisms are repres-
entation-free notions. If one could disregard the reference systems even in
the universal case, then one would say that the present algebra, not just its
former representation, has 2 as a dimension, whereas it does not. In fact,
the description we found changes 2 into 3, in spite of the preservations in
3.4 (C). It does, because it is from U to V.

The coordinate-free (or in general representation-free) approach worked
in vector spaces, also because of a yet unproved (see 3.5 (A) of the continua-
tion of this work) property: all transformations can change reference frames
only by the renaming condition. Anyway, we found that in the universal
case this fails. Universal generality conflicts against this approach.
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3.7. Transformation groupoids. Given a free algebra, 3.4 (E) provides
its “self-descriptions” with a group, alike to the one of linear or semi-linear
transformations for a vector space. Yet, contrary to the vector space case,
its elements can miss some essential “transformation”, as remarked in 3.6
(B) for the identity description and a dimension invariance. Therefore, a
possible future theory of the universal transformations, introduced by this
work, should use a structure different from this group.

If one wants to keep our notion of description, that corresponds to the
vector space transformation, one of the possible structures might be a cate-
gory: the one with bases as objects and with the triples (U, g, V'), where g is
a description from U to V, as morphisms. Since in 0.2 a basis identifies its
Menger system, this structure can avoid the missing transformation problem
because of 3.1 (C). Moreover, the proof of 3.4 (D) (Transitivity) still proves
associativity, while the units are trivial. By 3.4 (D) (Symmetry) we get a
groupoid.

Still, another category might deserve the name of transformation group-
01d: the one where the matrix transformations replace the descriptions in the
former category. By 3.4 (B) matrix transformations identify descriptions.
They form a groupoid under functional composition (with the restriction
of the source and target objects) for the same reasons as before. Yet, now
we can see the objects as the units of the monoids of the matrices by 1.1
(Analytic). This better agrees with the finding in 0.4 of [8] that the objects
naturally rising from the applications are (universal) matrices rather than
their algebras.
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