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TRANSFORMATIONS BETWEEN MENGER SYSTEMS 

Abstract . To define transformations between based universal algebras we must in-
troduce representations that depend on the bases, contrary to what was possible for 
general vector spaces and believed possible for universal algebras. In fact, a counterex-
ample shows that by representation-free transformations alone one cannot even ascertain 
whether a universal algebra has any dimension or not. 

A transformation notion, which can do, concerns basis dependent Menger systems. 
It enjoys a basic geometric property of universal algebras, the preservation of reference 
flocks, and generalizes the transformation groups of Linear Algebra into groupoids. 

0. Preliminaries 
0.0. Introduction. The necessity of a transformation notion, distinct from 
isomorphisms, was acknowledged in vector spaces since 1889 [13]. In Uni-
versal Algebra, on the contrary, no notion of a transformation appeared, 
just some isomorphism variants (equivalence between algebras [3] and Mar-
czewski's weak or general [1] isomorphisms) did. Since till last year even 
simple definitions of vector spaces as universal algebras [11, 12] lacked, this 
made conceivable that their two fields are distinct. 

After introducing some notions of "Universal Mathematics", this paper 
provides universal algebras with a candidate for a transformation notion 
together with a counterexample to the belief that isomorphism ideas suffice. 
Its continuation (to appear here under the title "Sameness between based 
universal algebras") will validate this candidate by proving its equivalence 
to other new notions. Other motivations are in [10]. 

0.1. Notation. We conform to [4], but for the following few differences. 
We denote the set-theoretical pair {{a}, {a, 6}} by (a, b), yet we still simplify 
/((a, b)) into f{a,b) and ({x,y),z) into (x,y,x) as in [4]. PX denotes the 
set of subsets of set X and %x its identity function. 
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We consider functional composition as the restriction of relational com-
position, here denoted by • , namely f g is "the composition of g and /" and 
(/ " 9)(x) = f(9{x))- Accordingly, we perform the restriction of a function 
/ to some set S merely by functional composition: f • is-

As usual, we write f : A ^ B to say that / is a function with arguments 
in the whole set A and values in B, f: A^B or /: A—*~B to say that it 
also is one to one or onto B and /: An-^-B to say it is a bijection onto B. 

We will forget that "function - domain" and "family - index" are pairwise 
synonymic and we avoid the notation {a j } j e / or (<Zj | i G I). Within informal 
comments we will replace "function" with "indexing", to emphasize values. 
Also, we denote the set-theoretical power AB = {/ | f:A —> B} as the 
arithmetic one (The latter will not occur here.) 

0.2. Endomorphism representations. Let E a C AA be the set of all 
endomorphisms of an algebra a on A. Given a set X, let b :X —> A and 
consider the function rh: EQ —>• Ax, 

defined by Tf,(h) — h • b, for h € Ea , 
namely t\, "samples each h at" b by providing each x € X with the value 
h(b(x)). When a function b:X —> A serves to define such a sampling of 
endomorphisms, we call it a frame of a. If this sampling represents every 
endomorphism by any sample and conversely, namely if we get that 
(0) r b : E a ^ y A x , 

then every structure on E„ defines another on and we will say that 

• Vf) is a (natural) analytic representation o/Ea, while X is its dimension 

set and the cardinality of X is its dimension, 

is the set of the (square universal) matrices of a with respect to b, 

while every value M(x) of a matrix M: X—> A is its column at x G X, 

• b is a basis or (universal) reference frame of a, while its values b(x) are ref-

erence elements or selectors that form the basis set B C A for b: X—+yB, 
• the Tfr- image o : A x x A x —> A x of functional composition on Ea C Aa is 

its matrix product (that clearly has b as unit), 
• b and the function x : A —> AAX , defined by (0) from the functional ap-

plication of endomorphisms, as Xa(rb(h)) = h(a) for h 6 E a C AA and 
a € A, form the Menger system derived from a, with respect to the frame 

of selectors b, of dimension set X and that 
• o and b form the monoid of the matrices of a under rb or with respect to 

b, which is isomorphic onto the endomorphism one by definition. 

Notice that A = 0 by (0) implies X = 0, whereas for a singleton A 

every set X satisfies (0). In the former case we say that the carrier (of the 

algebra) is trivial; in the latter that the algebra is trivial. When the algebra 
is not trivial, X = 0 iff E a = {¿a}- It does when all algebra elements are 
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constants. This also implies that 

(1) X = 0 iff o: 1 x In—»-1 or iff Xa(M) = a for all M: X^ A, a G A. 

See 0.2 of [11] or of [10] for the differences between our Menger systems 
and the finitary ones of Universal Algebra as in [0]. See 0.5 of [11] for the 
equivalence between our basis definition and the conventional ones. See 0.6 
of [11] for an example concerning the usual vector space. 

1. Analytic monoids and constant generators 
1.0. Definitions. Let X and A be two sets. Possibly, X can be a natural 
number n = { 0 , . . . , n — 1}. Among the functions in we consider the 
constant ones. For a G A ^ 0 we denote the one with value a by ka: 

(2) ka(x) = a, 

for all x G X ^ 0. Also, this always defines a constant generating function 
k : A—> Ax. In fact, for X = 0 and A 0 there only are the trivial cases 
ka = 0 and for A = 0 the case k = 0. 

On Ax consider a binary operation o: Ax x Ax —> Ax (with infix no-
tation) and assume it has a "right K"-preserved unit", viz. a function U: 
X ^ A with 

(3) M o ku{x) = kM(x) 

for all M :X—> A and x G X , that also is a "/^-restricted left unit", viz. 
(4) Uo ka = ka 

for all a G A, and satisfies a "iC-restricted associativity", 
(5) (MoL)oka = Mo(Loka), 
for all L, M: X —• A and all a G A. Then, we will say that o and U define an 
analytic monoid of dimension set X on A with the carrier 

Ax and that U 
is its unit. As shown in 2.1 of [8], (3), the dimensionality axiom, generalizes 
the idea that a Kronecker delta is diagonal, namely that each reference 
vector lies in its axis. 

The requirement that U: X —> A implies that for an empty A one cannot 
have an analytic monoid, unless X too is empty. In the latter case, the 
carrier is singleton, whatever A may be, and it also is iff A is, whatever X 
may be. On the contrary, when the carrier has at least two elements, we -
as usual - will say that '¿he analytic monoid is non trivial. 

As far as such set-theoretical cases are concerned, only the first, A = 
X = 0, is completely trivial and only it will allow us to skip definitions and 
proofs concerning the corresponding analytic monoids: most trivial analytic 
monoids are not trivial set-theoretically. In fact, even the null dimension 
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case, X = 0, determines a single analytic monoid, the trivial one with carrier 
1 = {0 } , that is on every set A, since A® = { 0 } whatever A is. 

Notice also that our three defining conditions are not the three equa-

tional conditions for monoids, and that (3) involves the dimension set. 
The first and last of the following properties motivate the name "analytic 
monoid", which still denotes a mathematical structure different from ab-
stract monoids. (See [9] for details.) 

1.1. Recalled properties. From 1.7 of [7] we recall that 

(Monoid) o and U form a monoid on Ax; 

(x -definabil ity) Moka = k^M0ka)(y) , for all M: X A , a G A andy G X; 

(Analytic) o and U define an analytic monoid on A iff they form the 

monoid of the matrices of some algebra on A under the 

analytic representation r j j as in 0.2. 

1.2. Definitions. We called the secondjproperty x~definability, because it 
allows us to define a function X A —> AA , by 

for all M : X—* A and a £ A. This determines an algebra, made of constant-
arity operations Xa '• Ax —> A indexed by the very carrier. We call such an 
algebra, together with U or without it, the Menger system derived from our 
analytic monoid on A. In fact, 1.5 (C) will show that, given any x, U is 
unique. Given o, if X ^ 0, then A and this Menger system are unique. 
When necessary, we will identify x as the algebra of the Menger system. 

We will also consider another analytic monoid of dimension set Y on 
B, denoted by o: BY x BY —> BY and V :Y —> B, together with its derived 
Menger system £ : B —> BbY . Hereinafter, we will refer to them as the former 
and latter monoid respectively. By the Analytic property in 1.1 we can refer 
to their elements as the former and latter matrices respectively. The same for 
the derived Menger systems, their elements or operations, their "matrices" 
of arguments and so on. 

Then, from (6) we respectively get 

(7) L o ka = fcXa(L), for all a G A and L : X^A and 

(8) MoKb = K£b(M), for all b € B and M:Y->B, 

where k A x and k : B — > B y respectively denote the former and latter 
constant generators, both defined as in (2). Hence, 

(6) Xa(M) = { a{i 

a when X = 0; 
(M o ka)(x) for any x € X ± 0, 

(9) Kb(y) = b for all b e B, y G Y ± 0, 
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while (3) - (5) become 

(10) M o K>v{y) = KM{y)> f ° r all y G Y and M : Y->B, 

(11) V o Kb = Kb, for all b G B, and 

(12) {MoL)oKb = Mo(Lonb), for all L, M: Y ^B a n d b G B. 

Similarly, when we consider two of the Menger systems derived from 
based algebras, defined in 0 .2, we denote the former and latter analytic 
representations by 

(13) r ' u \ £ ^ > A x and r y \ T ^ > B Y , 

where £ C Aa and T C Bb respectively denote the set of the endomor-
phisms of the former algebra and the one of the latter. Therefore, by (0) 

(14) e € £ iff there is L:X^A such that e(a) = Xa(L), for all a G A 

and 
(15) f e F f f i there is M: Y^B such that f(b) = &(Af), for all b G B. 

1.3. Def in i t i ons . Given any two functions U:X —> A and V:Y —> B, 
we will also define two Menger systems, without deriving them from either 
an algebra or an analytic monoid, by assigning two functions x A —• A A * 
and £ : B —» BbY respectively, which satisfy three conditions each. As this 
disregards their representation use, often we will call any of them the algebra 
of a Menger system. We will still call U and V the units or frames of 
selectors. 

The three defining conditions for the former Menger system are: 

( 1 6 ) Xu(x)(L) = L(x), f o r a l l L . X ^ A a n d x G X ; 

(17) XA(U) = a, for all a G A and 

(18) x X o ( £ ) ( M ) = Xa{M o L ) , for all a G a n d L,M:X-+A, 

where o x Ax —> Ax here denotes the composition defined by x in (22). 
The three for the latter are: 

(19) Zv(y)(M) = M(y), for all M:Y->B a n d y G Y ; 

(20) £b(V) = b, for all beB and 
(21) £ & ( M ) (L ) = &(LoAT), f o r a l l b e B and L,M.Y-^B, 

where o : BY x BY By here denotes the composition defined by £ in (23). 

(22) {MoL)x = X L ( X ) ( M ) , for all L, M : X A and x £ X and 
(23) ( M o L)y = £L{y)(M), for all L,M:Y^B and y G Y . 
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The cases X, A = 0 are the same as the ones for analytic monoids in 1.0 
and (1) continues to hold by (17): when X = 0, A^-i-yA1 merely is the 
generator of singleton constants, while (22) defines o : 1 x In—trivially. 

By the property (Menger to monoid) of 1.4 such compositions together 
with U or V respectively will define two analytic monoids that we call the 
analytic monoids derived from the corresponding Menger systems. The al-
gebras of such systems also define endomorphism monoids. By the property 
(Endomorphism) of 1.4 we still denote their carriers by £ and T respectively, 
e.g. S = {e : A —• A | e(xa{L)) = Xa(e • L) for all a € A and L : X —> A}. 

1.4. Recalled properties. (See proofs either in 1.5 of [11] or in 1.4 
of [10].) It does not matter how we define analytic monoids and Menger 
systems nor how they rise, namely 

(Algebra to Menger 

(Menger to algebra 

(Menger to monoid 

(Mono id to Menger 

(Mono id loop 

(Menger loop 

(Endomorphism 

the Menger system derived from a based algebra is a 
Menger system; conversely, 

every Menger system is derived from an algebra that 
can be the one of the Menger system, when derived 
with respect to its unit; 

the analytic monoid derived from a Menger system is 
an analytic monoid; 

any Menger system derived from an analytic monoid 
is a Menger system; 

every analytic monoid is derived from the Menger sys-
tem derived from it; 

every Menger system is derived from the analytic 
monoid derived from it; 

the algebra of the Menger system derived from an al-
gebra keeps its set of endomorphisms. 

1.5. Corollaries. 
(A) o and U form an analytic monoid iff they define the monoid derived 
from some Menger system and iff they form the monoid of the matrices of 
its algebra with respect to its unit. 

(B) The algebras x and £ °f two Menger systems derived from the same 
algebra a, with respect to possibly different reference frames, have the same 
endomorphisms: £ = JrCAA. 

(C) The algebra of a Menger system determines its frame of selectors. 
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P r o o f s . (A) and (C) See either 1.6 of [11] or 1.5 of [10]. 
(B) By the property (Endomorphism) of 1.4 £ = EQ = T. Q.E.D. 

1.6. Definitions. Consider our constant generators k\A—> Ax and K : 
When C C Ax and D C BY denote the two corresponding sets of 

constant functions, unless A = X = 0, we get two bijections, 

(24) k : An-^C , when X ± 0, and K : B^D , when 

or two constants: X,Y — 0 respectively imply C, D = 1 = {0}, k: A—>yC 
and K : B—>yD. Also, C = Ax iff A or X is at most singleton. Likewise for 
D. 

We say that a function t: Ax —> BY retypes K , when for all f : X —> A 
t ( f ) is constant iff / is. This is the same as to require that t • %Q is onto D. 
We also say that a bijection t: AX^>BY for X, Y ^ 0 depicts elements as 
constants, when there exists a bijection g: A^yB such that 

(25) t • k — K • g . 

(This cannot extend to the cases X, Y = 0, where t does not determines A 
and/nor B, as it should become a property of A and/or B, not of t.) 

1.7. Lemmata. 
(A) When 1 , 7 ^ 0 , a bijection t: Ax\\-+yBY retypes K i f f it depicts ele-
ments as constants. 

( B ) When a bijection t: AX\\-^>BY retypes K and A has at least two ele-
ments, if X is singleton, then Y is. 

P r o o f s . (A) (Only if) As t • %c :C»-$~D, g = k - 1 • t • k provides us the 
required bijection by (24). (If) Since by (25) t • ic = t • k • fc_1 = k - g • k~x, 
the function t • ic is onto D, as required. 

(B) When X is singleton, C = Ax and it has at least two elements. 
Then, t • ic = t is onto both BY D D and D. This implies that D = BY 

and that it has at least two elements. No B with less than two elements can 
do it. Hence, Y too is singleton. Q.E.D. 

1.8. Definition. When 1 , 7 ^ 0 and t: Axu-^-BY retypes K , we say that 
t K-induces the above g : A<\—>yB. Clearly, (25) defines at most one g. By (9) 
and (25) the K induced bijection is defined by g(a) = ng^(y) = t(ka)(y) , 
for all a € A and every y EY. 

2. Flocks and dilatations 
2.0. Definitions. Universal transformations will require to generalize 
some simple notions that we know from vector spaces to any based uni-
versal algebra. We say that c E A is a flock combiner of x or °f the Menger 



750 G. Ricci 

system of x, when 
(26) Xc(K) = a, for all a € A. 

Then, the element of a singleton A is a flock combiner. Hence, for X = 0 by 
(1) and (6) c € A is a flock combiner iff A is singleton. Yet, things are less 
trivial for nontrivial dimensions as we know from vector spaces (see details 
in 1.7 of [11]). 

Flock combiners define a (universal) flock C A with respect to x by 
= (xc(L) | c is a flock combiner} from any matrix L :X —» A. By 1.4 

(Menger to algebra), when we derive x from a given algebra, we say that 
such a Xc(L) is the L-combination of flock combiner c with respect to U and 
that is the L-flock with respect to U. (A flock in a vector space can also 
use flock combiners from vector spaces of a different dimension, e.g. in order 
to state that all the space is a flock, and this occurs on other algebras as in 
1.2 (B) of [12], yet here we will not use this generalization.) 

When L is our reference frame U, we will also say that flock is the 
reference flock of x or with respect to U] likewise we define the reference 
flock <&y of In 2.1 (C) this allows us to see combiners as combinations. 

2.1. Recalled corollaries. (Proofs either in 1.8 of [11] or in 2.1 of [10].) 
(A) Bases are made of flock combiners, U: X —> and V : Y —> . 

(B) In general, each column of any matrix is a matrix combination, L : 
X —>for allL-.X^A. 

(C) The set of all flock combiners is the reference flock. 

(D) The flocks of non trivial constants are the singletons of their values: 

^fe(a) = ^ for a l l a e A with x 

2.2. Definitions. Flock combiners are a case of a dilatation indicator 
defined in the former Menger system as an element c e A such that X c k: 
A —> A is any endomorphism e 6 £ of X- Then, e and its matrix S = e • U: 
X —>A are respectively called a dilatation and a (universal) scalar of x (see 
3.2 of [8], [6] and 5.1 of [5]), while c is called an indicator of e or of S. 

In fact, (26) states that e is the identity on A (which always is in £), 
namely flock combiners merely are the indicators of the identity. They also 
are general dilatation indicators up to the dilatations themselves, as 2.4 (A) 
will show. 

The above dilatations are not all the ones of a Menger x• When X = 0, 
we say that Ia and its matrix 5 = 0 are the dilatation and the scalar of x '• 
A —> A1 respectively, even for a non singleton A, namely even when there 
are not dilatation indicators. This is a split definition, yet it comes from the 
unsplit one in 2.5 of [6] for general universal algebras. 
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The latter uses unary elementary functions ("term operations"), not 
indicators, in order to define a dilatation as an isotropic endomorphism, 
without any splitting. (Such a unarity formalizes the isotropy condition for 
endomorphisms that concerns their "geometric" dimensions as in 5.1 of [5].) 
This does not matter till X has at least one element: any X-ary elementary 
functions is a Xc, as shown in 6.3 and 6.7 of [5], and we get any dilatation 
as Xc • k, for some indicator c. 

On the contrary, when X = 0, every elementary function Xa is a miliary 
constant. Unless A is singleton, no miliary function can replace the iden-
tity. Yet, the identity, the only endomorphism, always satisfies the recalled 
isotropy. Then, when the general definition applies to the algebra of a 
Menger system, both indicator defined dilatations and (in the last case) an 
identity without indicators can rise. 

Anyway, the characterization in 2.4 (C) of scalars will avoid any split-
ting, as the recalled definition of general dilatation did. This characteriza-
tion formally disregards any indicator and any dilatation. It also is fully 
analytic in the sense that it uses the multiplication of an analytic monoid 
to state a "If-restricted" commutativity. 

Indicators are not formally necessary to define scalars. They serve to 
determine the "amount" of a dilatation by an element, instead of by a 
matrix, as a scalar does. This will allow dilatations to relate with carrier 
bijections. Yet, while a dilatation has a single matrix, in general it has a set 
of indicators, possibly an empty one. I e will denote the set of indicators of 
dilatation e. 

Our split definition introduces scalars by dilatations also in order to 
show easily that universal scalars do correspond to the scalars we know 
from vector spaces as in 1.7 of [11]. As shown in the following, even the 
properties of indicators are extensions of the ones of flock combiners. 

F C Ax and G C BY will respectively denote the sets of scalars of 
X and ACS and T C T will respectively denote the correspond-
ing sets of dilatations. By 2.4 (F) and (G) in both cases such sets carry 
monoids that we respectively call the scalar monoid and the dilatation 
monoid of the corresponding reference frames, Menger systems or analytic 
monoids. Clearly, for X = 0 they are fairly trivial, since F = {0} and 
A = {m}-

2.3. Lemma, c is a dilatation indicator in the former Menger system iff 
there exists L:X^A such that Xc(ka) = Xa(L) for all a € A. Likewise in 
the latter Menger system: d is iff there exists M :Y^>B such that £d(/e&) = 
£;,(M) for all b £ B. Such an L and M are the scalars of the corresponding 
dilatations. 



752 G. Ricci 

P r o o f . The (iff) parts come from (14) and (15), while the scalar obser-
vations from (13) by (16) and (19), e.g. (e • U)(x) = ((xc • k) • U)(x) = 
Xc(ku(x)) = Xu(x)(L) = L(x) for all x G X ^ 0, while for X = 0 it is trivial, 
L = 0. Q.E.D. 

2.4. Recalled properties. 
(A) For every scalar S :X—>A of x, the value c = Xu(S) of its dilatation at 
any flock combiner u G is an indicator of S. (Proved in 2.3 of [11].) 

(B) For every scalar S :X —> A of x, each column Sx for x G X ^ 0 is a 
dilatation indicator of S: for all e G A, e • U: X^>Ie. (Proved in 2.4 ibid.) 

(C) A matrix S: X —> A is a scalar of x iff S o ka = ka o S for all a G A. 
(Proof in 2.5 ibid..) 

(D) The product of a matrix L: X —> Ie of indicators of a dilatation e G A 
times one M : X—*If for an f G A is a matrix MoL: X —»Ie.f of indicators 
of the commuted corresponding composition. (Proof in 2.5 ibid..) 

(E) For every scalar S:X —> A of x> let c = Xu(S) be the value of its 
dilatation at any u G A, then, if c is an indicator of S and the dilatation is 
one to one, u is a flock combiner, u G (Proof in 2.6 ibid..) 

(F) Scalars form a submonoid of the analytic monoid. (Proof in 2.6 ibid..) 

(G) Dilatations form a submonoid of the endomorphism monoid and the 
scalar monoid is the isomorphic image of the dilatation monoid under the 
analytic representation. (Proof in 2.6 ibid..) 

(H) The product of matrices of flock combiners is a matrix of flock combiners: 
o': x — w h e r e o' = o • ¿$xx<i>x denotes this restriction of the 
product. (Proof in 2.6 ibid..) 

2.5. Example. Given a non trivial vector space with two reference frames 
U, V: X —> A, let F denote the carrier of its field, namely the set of its 
"vector-space scalars". In the former analytic monoid, consider the function 
D:F Ax that provides each number s G F with its diagonal matrix 
Ds — s • U, where s: A—^A is the multiplication by s, namely Ds(x) = sUx 
for each x G X. Likewise, in the latter consider D': F ^ Ax with D's = s • V. 

We claim that D : F n — i s an isomorphism from the monoid of the field 
product onto the scalar monoid of U, which determines dilatations that do 
not depend on the choice of the analytic representations in 2.4 (G): 

(27) Xa(Ds) = sa = €a(D's), for all a G A and s G F. 
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P r o o f . Since s E £, (27) follows from (Endomorphism) in 1.4, (17) and 
(20): e.g. Xa(Ds) = Xa(s • U) = s(xa{U)) = s{a) = sa. See the proof in 2.7 
(A) of [11] for the required isomorphism. Q.E.D. 

The recalled proof uses the commutativity of the field product, which is 
not the minor property one could painlessly get rid of, as 2.6 (B) will show. 
"Scalars" in a skew field may not be universal scalars for its moduli. 

2.6. Recalled theorems. (Proofs in 2.8 of [11].) 
(A) The set of indicators c of a bijective dilatation e = Xc • k: A^yA with 
scalar S = e • U is the flock of the S-combinations: Ie = 

(B) The scalar monoid is commutative. 

3. Descriptions 
3.0. Definitions. The notion of a transformation in 3.3 will use some set-
theoretical properties of preliminary notions, which also concern the crucial 
counterexample 3.6. Given the two Menger systems of 1.3 and a bijection 
(28) g: An-^B , 

consider the relation t C Ax x BY defined for all L: X —> A and M:Y^B 
by (L, M) 6 i iff for all a £ A 

(29) g(Xa(L)) = ig(a)(M). 
An example of such a relation t is the one of a transformation of the matrices, 
for a linear or semi-linear transformation g: Ati-^B, of two based vector 
spaces, where Y = X and (L, M) € t iff 

(30) M = g • L , 

which implies t: Ax . 
Notice that in general, whenever we consider two based algebras deriving 

our two Menger systems as in 1.4, the choice of the bases, not an a priori 
assumption like (30), determines t from g. The counterexample in 3.6 (A) 
will show that (29) does not imply (30) nor its generalization M = g • L • Z_1 

for any 1:XH-*-Y. Besides, in the proof of 3.1 (B) we will see that the 
mere requirement that (29) holds for certain a's ensures that for each L in 
the domain of t there only is one way to get M. The general formula that 
expresses such one way and replaces (30) is (32). 

If t relates every former matrix L with some latter matrix M and t~l, 
conversely, every M with some L, then we will say that g totally induces t and 
we denote the function relating the s to the Vs by T C BA x P(AX x BY). 
We will also call the function V' = g~l V: Y —> A the (algebraically) converse 
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basis (with respect to g). Here, V' need not to be a converse of V in the 
sense that ( V , V) € t. We are merely recalling the restricted notion of t in 
(30) or (33) that comes from Algebra. 

3.1. Lemmata. If g \ Aw-^-B totally induces t as above, then 

(A) (for when one of the sets of matrices is singleton) trivial dimensions must 
coexist, X = 0 iff Y = 0, or both Menger systems have trivial algebras, hence 
in both cases 

(31) AX = { U } i f f BY = {V}, 

(B) the induced relation is a bisection, t = Tg: Ax«—yyBY and, 

(C) given x, Tg depends only on V, through the converse basis V': Y —>A: 
( 3 2 ) ( T g ( L ) ) y = g { x v ' ( y ) { L ) ) f o r all A and y e Y . 

P r o o f s . (A) The coexistence of algebra triviality comes from (28). Then, 
consider dimension triviality with non trivial algebras. As observed in 1.3, 
when X = 0, % is the generator of singleton constants Then, 
g(a) = £9(Q)(M) in (29). Since g is onto B, any M behaves as V in (20). By 
(23), 1.1 (Monoid) and 1.4 M = V, because a left unit of a monoid is its 
only unit. Hence, the total induction assumption implies BY = {V} . As B 
is not singleton, this implies Y = 0. Conversely, for Y = % we consider g-1. 

((B) and (C)) When A and B are singleton, both Ax and BY are. Hence 
both statements easily follow from (29) and (31). When X = 0, by (A) the 
induced relation is the singleton function t : 1»—»-1 and (32) holds trivially. 
Otherwise, we can assume that both X,Y 0 and, hence, A 

Let us show that t:Ax BY. From 3.0, for all ( L , M ) <E t, (29) holds 
in particular for each a = V'{y) = g~1(V(y)) with y € Y. Hence, for all 
y€Y by (19) and (28), M(y) = £v(y){M) = Zg(9-i(v(y)))(M) = £,(o )(M) = 

g(Xa(L)) = g(xV'(y)(L)) • Then, M = Tg(L) as in (32) and t = Tg. 
Since t:Ax comes from the total induction assumption, now we 

only have to show This, easily follows after building the con-
verse of (32). In fact, (29) by (28) becomes its converse: g_1(£(,(M)) = 

i(i>)(L))) = Xg~Hb)(L) for a11 b = 9(a) G B. This defines i " 1 , 
which is totally induced by g~l, since t was by g. From this converse of (29) 
we get the converse of (32), by using the converse basis U': X —> B with 
respect to g'1: for all M:Y^B and x G X, (t~l{M))x = 5_1(£t/'(x)(M)). 
This redefines t~l as a function. Hence, t is one to one. Q.E.D. 

3.2. Corollaries. When g: Aw—>kB totally induces t as above: 

(A) t preserves the frames of selectors, t(U) = V and, 
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(B) ift = Tg : Ax^By K-induces g as in 1.8 or if the two dimensions are 
trivial (namely, if t retypes AT as in 1.6), then g preserves reference flocks 
in both ways: c G iff g(c) G 

P r o o f s . (A) This follows from 3.1 (B) and (31), when either of reference 
frames is empty or either algebra is trivial. Otherwise, from (32) by (17), 
3.0 and (28) (t(U))y = g(xv(y)(U)) = g(V'(y)) = sOr1^))) = V(y) for 
all y G Y ± 0. Hence, t(U) = V. 

(B) In the trivial case by 3.1 (A) both reference flocks are either empty 
or the singleton carriers, as observed in 2.0. Hence, the conclusion follows 
from (28). 

Assume X, Y ^ 0. Let c G namely by 2.1 (C) Xc • k = 14. Then, 
for all a G A, g(xc(ka)) = g(a) and by (29) and (25) g{a) = ffl(c)(t(fca)) = 
£g(c)(Kg(a))- Since g: A—>yB, we take b = g(a) and get Cg(c)(Kb) = b for all 
b G B, namely g(c) G Clearly, we can reverse all these implications. 
Q.E.D. 

3.3. Definitions. Assume that g totally induces t and preserves both 
reference flocks, a G iff g(a) G Then, given x and g and t induce 
each other as in the next characterization 3.4 (B) and we will say that our 
giAtt-^B is a description of x by £ (see (35)) or from U to V or also a 
description from the former monoid onto the latter. 

Lastly, as 3.1 (B) has shown that the induced relation t is a function, 
we will say that t is a matrix transformation induced by g or the matrix 
transformation induced by it from x to £ or also, in case a single algebra 
derives both x and the matrix transformation induced by g from U to V. 

Notice that, if X = Y = 0 or both algebras are trivial as in 3.1 (A), then 
every bijection g\A^>B is a description by (1) and 2.0. In such a case, 
t : {U}>^y{V} is the only matrix transformation. 

Consider our two general Menger systems, but with the same dimen-
sion set: x with basis U :X A and £ with basis V: X —> B. We say 
that n:A^yB is an (element) renaming of x by £ or that it renames x 
by £ elementwise, when it is a description of x by £ performing its matrix 
transformation t = Tn columnwise, namely 

(33) t(M) = n • M and 
(34) n{Xa{M)) = £n(a)(n • M), for all a G A and M :X^> A . 

Clearly, we could easily extend such renaming descriptions from case 
Y = X to the case of a bijection I: X»-*-Y, yet hereinafter we will omit 
such seeming extensions. (Our choice in 0.2 of the bases as functions allows 
us to permute the selectors.) Notice also that, in case of an automorphism 
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n: Aii-̂ yA of an algebra deriving our Menger systems, (34) rewrites as x = 

£ • n because of the property (Endomorphism) in 1.4. 
Since in (34) Xa and £n(a) are isomorphic, an element renaming is a (sim-

ple) case of general isomorphism [1], Contrary to the case of vector spaces, 
3.6 (A) will show a description that is not a renaming. A characterization 
of renamings will appear in 3.1 (A) of the continuation of this work. 

3.4. Corollaries. Let g: be a description of x by £ as above, then 

(A) the converse basis set is made of flock combiners V' = g~l • V: F—»«fry; 

(B) when X,Y ± 0, t = Tg\Ax^>BY K-induces g as in 1.8 (then, Tg 

/^-induces g iff g preserves both reference flocks, because of 3.2 (B)); 

(C) we can compute the operations of the (algebra of the) latter Menger 
system by the former, 

(35) £b(M) = g(Xg-^b){t-\M))) , for all b G B andM:Y^B, 

while we preserve the former operations as 

(36) g(Xa(L)) = Zg{a)(t(L)) , for all a E A and L:X^A ; 

(D) descriptions define an equivalence relation among Menger systems, 
namely 

(Symmetry) g~l: Bn-^-A is a description of £ by x> while t~l is its matrix 
transformation, 

(Transitivity) if h:B»-^>C is a description of £ by another Menger system 
7 on C, then h- g: is of x by 7 with the composition 
of their matrix transformations; 

(E) the set of descriptions between Menger systems derived from the same 
algebra a on A forms a (sub)group under the functional composition on 

Proofs . (A) It is trivial for X, Y = 0, otherwise the preservation of the 
reference flocks in 3.3 implies it. In fact, g{V'{y)) = V(y) €E for each 
y G Y by 2.1 (A). Then, V'{y) G ^ for all y G Y, as c g ^ iff g(c) G 

(B) By 1.7 (A) we can show (25). By (A) we can take any c = V'(y) G 
for y G Y ^ 0 in (26) and by (32) and (9) get ((t • k){a))y = (t(ka))y = 
g(xv>(y)(ka)) = g(a) = Kg(a)(y) for all a G A and y G Y, namely t-k = K-g. 

(C) Take any a € A such that g(a) = b and get (35) from (29) by 3.1 
(B) and (28). To get (36), merely use 3.1 (B) on (29). 

(D) (Symmetry) Total induction is symmetric as already observed in the 
proof of 3.1 (B) and the same holds for the preservation of the reference 
flocks by definition 3.3. 
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(Transitivity) By 3 .1 (B) both g and h induce bijections, t = Tg : Ax—>yBY 

and say t' = T'h: BY\^->yCz. This implies t' • t: A X \ ^ C Z . Hence, to get 
the transitivity of total induction, we only have to prove that h(g(xa(L))) = 

7 h ( g ( a ) ) ( t ' ( t ( L ) ) ) , for all a&A and L:X^>A . This easily follows from (36), 
used twice: h(g(xa(L))) = h(£g{a)(t{L))) = 7 / l ( s ( a ) )(i ' ( i(L))). Lastly, the 
transitivity of the preservation of reference flocks is trivial. 

(E) The closure under composition was just proved in (D) (Transitivity), 

the composition inverse in (D) (Symmetry). As the composition was the 
functional one, we get the required group with unit %A- This unit is the 
renaming description that corresponds to £ = \ o r to V = U with t = iAx, 
yet 3.6 will show that, given g = sometimes also other £'s, V and t's 
c a n d o . Q.E.D. 

3.5 . E x a m p l e . (A) Given two Menger systems, by 1 .4 (Menger to algebra) 

one might consider the isomorphisms between the algebras deriving them. 
In 3.3 we did not require that g : A ^ y B be such an isomorphism nor later 
we proved it was. To check that this requirement is not granted consider 
the classical example for semi-linear transformations [13]. 

Let x = with A = F3 , be the Menger system for the complex vector 
space on the complex field F with the Kronecker frame of selectors (versors) 
U — V : 3—> A, namely Xa(L) is the usual product of vector a times matrix 
L : 3—>A. When we define g : as the componentwise complex conju-
gation, we have a bijection that is not an automorphism of the space (nor 
of x), such that 

(37) g-U = U. 

Then, (32) by (19) defines t : A 3 ^ A 3 as (t(L))y = g(XU(y)(L)) = g(L(y)) 

for y = 0,1,2, namely t(L) = g • L for all matrices L : 3—• A. Because of our 
usual x a n d £ and of this >wl3, any L and M — t(L) easily satisfy 
(29) for all vectors a: 3 ->F. 

This implies that the relation induced by g in (29) contains our t, that 
it is totally induced and, by 3.1 (B), that it is t. Also, g preserves the 
reference flock, since Yh ci = 1 iff = 1 f° r all c:3—>F. Therefore, 
g is a description, nay a renaming as in (34), but not an isomorphism. 

(B) Notice that, while the choice of the reference frames determines a single 
automorphism g: Aii-»~A, it does not for "self-descriptions" g: in 
spite of the dependence found in 3.1 (C). In fact, the self-description g of 
(A) extends the identity on the reference vectors as in (37), yet by 3.4 (E) 
also g — iA does and clearly its matrix transformation is t = ij43. In each 
case both the description and its matrix transformation differ with respect 
to the other case. 
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Here, both descriptions are renamings that still determine the latter ref-
erence frame by (33) and its matrix transformation by 3 .1 (C). To identify a 
"transformation", we do not need neither matrix transformations nor refer-
ence frames and, since the latter only determines isomorphisms, descriptions 
alone can replace them. Yet, to define such a description we still need some 
condition not involving matrix transformations. 

In the continuation of this work 3.5 (B) will show that in vector spaces 
our renamings are the semi-linear transformations. Then, such a condition 
there is an equation that involves vector-space scalars. Their dilatations 
do not depend on any its reference frame, as formalized in 2.5. This will 
explain why in such spaces abstract representation-free theories work. 

In that continuation 3 .4 will show that we can define our universal de-
scriptions too by scalars through a condition formally identical to the one 
of semi-linear transformations. Yet, the next example will also show that 
universal scalars are representation dependent. Then, the very condition, 
used to get rid of reference frames in vector spaces, will prove tha t they 
become mandatory in general. 

3.6. Example . (A) We show that outside vector spaces there are descrip-
tions that are not renamings. We exhibit a description between two Menger 
systems of a different dimension that are derived from the same algebra. We 
first show the existence of such an algebra and we introduce it through some 
algebraic conventions that later we will replace by set-theoretical ones. 

Let us consider a possible algebra on a carrier A with five operations, 
f0, f1:(AxA)xA-+A and g0, glf g2 : A x A ^ A , that satisfy nine 
equations: for all x : 2 —» A, y : 3 —» A and z E A 

/38n f fo(ffo(xo,xi),g1(xo,x1),g2(xo,xi)) = x0 , 
\fi(go(xo,x1),g1(xo,x1),g2(xo,xi))= xi , 
'9o(fo(yo,yi,y2),fi(yo,yi,y2))= yo, 

* 9i(fo(yo,yi,y2),fi(yo,yi,y2))= yi , 
>92(fo(vo ,y i ,w) , f i (yo ,v i ,y2) ) = 2/2, 

( f 0 ( z , z , z ) =f1(z,z,z) and 
{9o(z,z) = 9i(z,z) = g2(z,z) = z . 

The natural correspondences (A x A) x A ~ A3 and A x A ~ A2 allow 
us to replace our / : A(AXA)XA and g : 3—> AAXA by the functions 

(41) f':2->AA3 a n d g ' ^ AA\ 

such that / j ( y ) = /¿(yo,2/1,2/2) and g'^x) = g^x0,£i) for all j G 2, i G 3, 
x : 2 —> A and y : 3 —> A. If C Y and CG> denote the functions CF : A3 —• A2 

and Cgt :A2^>A3 such that ( C y ( y ) ) j = f j ( y ) and (Cg /(x))j = g'^x) for all 

(39) 

(40) 



Universal transformations 1 759 

such j, i, x and y, then we can rewrite (38) and (39) respectively as 

(42) C f i • C g i = ¿̂ 42 and Cg> • Cf> = . 

Therefore, we got two functions f" = C f and g" = Cg> that are the one 
the inverse of the other. Conversely, any f":A3^yA2 and g" : A2ii—>yA3, 
with f" = g"~l, define an /' and a g' as in (41), such that (42) holds. 
Hence, they also define an / and a g that satisfy the first five equations (38) 
and (39). 

To check that all nine equations, (38), (39) and (40), are consistent, let 
us define a non trivial algebra without an empty carrier, satisfying them, by 
defining such f" and g" in a way compatible with (40). To do it, we take A 
to be the set of natural numbers, as usual. 

Let C and D denote the subsets of constants in A? and A3, C = {x: 2 —> 
A | xq = x\} and D = { y : 3 —> A \ yo = y\ = yci}- Namely, when we set 
X = 2 and Y = 3 in (2) and (9), C = {kz \ z G A} and D = {kz \ z € A). 
Then, we set C = A2 \ C and D = A3 ^ D to get two bi-partitions {C, C } 
and {D, D} such that A2 = C U C and A3 = D U D. 

Clearly, we got two pairs of denumerable sets that allow us to take the 
bijection d:C»—>yD, such that d(kz) = KZ for all z £ A, and to choose some 
bijection e : Cii—>yD. Then, if we set f" = drl U e - 1 and g" = d U e, we get 
the required bijections, /" : A3ih^yA2 and g" : A2ih^yA3. 

In fact, since f" = g"~l, we get the first five equations. Moreover, by 
(2) f0(z,z,z) = Ukz) = U"{kz))o = {d~\Kz))o = MO) = ^ = Ml) = 
( d - 1 ( * z ) ) i = U"(kz)) 1 = f[{Kz) = f!{z,z,z) for all z £ A, while the re-
maining equations follows from (9) in the same way: e.g. go(z, z) — gb(kz) = 
(g"(kz)) o = (d(kz)) o = M O ) = * = M l ) = (d(kz)) i = (g"(kz))! = 
g[(kz) = g1(z,z) for all z 6 A. 

Since there is such an algebra satisfying all nine equations, there also 
is a free one, satisfying them with a doubleton basis set. Since any such a 
free algebra satisfies the first five equations (38) and (39), by the theorem 
of A. Goetz and C. Ryll-Nardzewski [2] as in 5 §31 of [3] it has bases with 
two and more reference elements. 

Now, let A and U: 2 —> A respectively denote the carrier of such an 
algebra and one of these doubleton bases. Then, the former of (13) with 
X = 2 represents the set of endomorphisms £ of this based algebra, as well 
as of the algebra of the Menger system with respect to any basis as in 1.5 
(B). This will serve to prove that the identity is a description between the 
Menger systems derived with respect to U and to another basis with three 
reference elements. 

P r o o f . Notice that the natural correspondence A x A ~ A2 rewrites the 
endomorphic condition h(gi(xo,£i)) = g^^xo), h(x\)) for h G £ and x: 
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2 A as hfoXx)) = g'i(h • x). Set V = g"(U). Then V: 3 -> A gets : 
5 — w h e r e we claim that r'y is a bijection as in the latter of (13) with 
B = A, T = S and Y = 3. In fact, since ( r£(h) ) i = (h • g"{U))i = 
h((g"(U))i) = hWU)) = g[(h • U) = g'iir'vih)) = (g"(r'u(h)))i for all h G S 
and i G 3, it is the composition of two bijections: 

(43) r'y = g" • r'y. 

This composition also allows the Menger system \ '• A->- with respect 
to U to redefine the one £: A —» Aa* with respect to V as 

(44) Ca = Xa • / " , for all a G A. 

In fact, from (43) by (42) we get r'y = g"'1 • r'^ = f" • Then, by (15), 
1.5 (B) and 0.2, for all M = r'^(e) :3 - f A and a € A, £a(M) = e(a) = 
Xa(r'y(e)) = Xa(f"K(e))) = Xa(f"(M)). 

By (42) we can also rewrite (44) as Xa = • g" • Therefore, g = 
iA'- totally induces a relation containing g". Since g" : A2»-^-yA3, 
by 3 .1 (B) this relation is g" itself, Tg — g". Moreover, g" X-induces g as 
in (25), because our free algebra satisfies (40): ((g" • k)(z))i = (g"(k z ) ) i = 
g'i(kz) = 9i(z, z) = z = Kz(i) = ((k • g)(z))i for all z G A a n d i G 3. Hence, 
by 3.2 (B) the identity g = iA is a description of x by £ and g" is its matrix 
transformation. Q.E.D. 

(B) Such a g also is an automorphism as well as a general one as in 2 of 
[1]. Yet, in both cases the renaming condition (33) fails to provide U with 
the new basis V — g"(U) we found. It gets U again, by the matrix transfor-
mation ¿̂ 42 : A2it-^yA2. Descriptions alone can miss some "transformation". 
This also shows that the dependence in 3 .1 (C) of T on V is effective. 

In 3.5 (B) were the bases to miss some "transformation". To get all of 
them in general vector spaces, linear transformations had to generalize into 
semi-linear ones. Therefore, also now we need a further generalization: our 
descriptions with their matrix transformations might be one. 

Both semi-linear transformations and general isomorphisms are repres-
entation-free notions. If one could disregard the reference systems even in 
the universal case, then one would say that the present algebra, not just its 
former representation, has 2 as a dimension, whereas it does not. In fact, 
the description we found changes 2 into 3, in spite of the preservations in 
3.4 (C). It does, because it is from U to V. 

The coordinate-free (or in general representation-free) approach worked 
in vector spaces, also because of a yet unproved (see 3.5 (A) of the continua-
tion of this work) property: all transformations can change reference frames 
only by the renaming condition. Anyway, we found that in the universal 
case this fails. Universal generality conflicts against this approach. 
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3.7. Transformation groupoids. Given a free algebra, 3.4 (E) provides 
its "self-descriptions" with a group, alike to the one of linear or semi-linear 
transformations for a vector space. Yet, contrary to the vector space case, 
its elements can miss some essential "transformation", as remarked in 3.6 
(B) for the identity description and a dimension invariance. Therefore, a 
possible future theory of the universal transformations, introduced by this 
work, should use a structure different from this group. 

If one wants to keep our notion of description, that corresponds to the 
vector space transformation, one of the possible structures might be a cate-
gory: the one with bases as objects and with the triples (U, g, V), where g is 
a description from U to V, as morphisms. Since in 0.2 a basis identifies its 
Menger system, this structure can avoid the missing transformation problem 
because of 3 .1 (C). Moreover, the proof of 3 .4 (D) (Transitivity) still proves 
associativity, while the units are trivial. By 3 .4 (D) (Symmetry) we get a 
groupoid. 

Still, another category might deserve the name of transformation group-
oid: the one where the matrix transformations replace the descriptions in the 
former category. By 3.4 (B) matrix transformations identify descriptions. 
They form a groupoid under functional composition (with the restriction 
of the source and target objects) for the same reasons as before. Yet, now 
we can see the objects as the units of the monoids of the matrices by 1.1 
(Analytic). This better agrees with the finding in 0 .4 of [8] that the objects 
naturally rising from the applications are (universal) matrices rather than 
their algebras. 
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