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EQUATIONAL BASES FOR k-NORMAL IDENTITIES

Abstract. The depth of a term may be used as a measurement of complexity of
identities. For any natural number k, an identity u =~ v is called k-normal if v = v or
both u and v have depth at least k. For any variety V, the k-normalization of V is the
variety N (V) defined by all k-normal identities of V. We describe a process to produce
from a basis for V a basis for Ng(V), for any variety V which has an idempotent term;
when the type of V is finite and V is finitely based, this results in a finite basis for Ng(V)
as well. This process encompasses several known examples, for varieties of bands and
lattices, and allows us to give a new basis for the normalization of the variety PL of
pseudo-complemented lattices.

1. Introduction

In this paper we develop a technique for producing from a basis for a
variety V a basis for the k-normalization Ni(V) of V, when V is a variety
with an idempotent term. When V is finitely based and of finite type, our
basis for Ni(V') is also finite. In this section we introduce the definitions
and background needed. Our basis construction is described and verified in
Section 2, and in Section 3 we illustrate this process with some examples,
including a previously unknown basis for the normalization of the variety of
pseudo-complemented lattices.

Throughout this paper we consider a type 7 = (n;);es of algebras and
identities, with f; an n;-ary operation symbol of type 7 for each ¢ € I, and we
make the assumption that our type contains no nullary operation symbols.
A number of structural properties of identities, including regularity, nor-
mality, externality and P-compatibility of identities have been much studied
(see for instance [2], [10], [11], [12], [7], [4], [15], [16]. We consider here a
generalization of the property of normality, using the complexity of terms
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and identities. This approach was used by Volkov in [17], using the length
of a term (the total number of occurrences of variable symbols in the term)
to measure complexity, and generalized to arbitrary complexity measures in
[8]. Here we use the depth of terms as our complexity measurement. For
any term t of type 7, we denote by d(t) the depth of ¢, defined inductively
by

(i) d(t) = 0, if ¢ is a variable;

(ii) d(t) = 1 + maz{d(t;) : 1 < j < n;}, if ¢ is a composite term of the
form t = fi(tl, e ,tni)-

When a term is portrayed by a tree diagram, with the nodes correspond-
ing to operation symbols in the term and the leaves to variable symbols, the
depth of the term ¢ corresponds to the length of the longest path from root
to leaves in the tree diagram for ¢.

Let £ > 0 be any natural number. An identity s = t of type 7 is called
k-normal (with respect to the depth measurement of complexity) if either s
and t are equal, or d(t), d(s) > k. It was proved in [8] that the set of all
k-normal identities of type 7 forms an equational theory. For any variety
V, the set of all k-normal identities of V' is also an equational theory, and
the variety Ni(V') determined by this set is called the k-normalization of V.
In the special case that Nx(V) = V, we say that V is a k-normal variety;
this occurs when every identity of V is a k-normal identity. Otherwise, V'
is a proper subvariety of Ng(V), and Ng(V) is the least k-normal variety to
contain V. The variety Ni(T'R), where TR is the trivial variety of type T,
is the smallest k-normal variety, and has been described in [9]. In the case
that k = 1, all of these concepts coincide with the usual concepts of a normal
identity and variety and the normalization N (V') of a variety V.

We note here that the concept of k-normal variety is related to Volkov’s
definition of a k-nilpotent variety in [17]. However, k-normality and k-
nilpotence are different properties. First, Volkov used the length of a term
as the complexity measurement, rather than the depth. More importantly,
he defined a variety to be k-nilpotent if it satisfies all k-normal identities of
its type. In this case, the variety Np(TR) is the largest k-nilpotent variety,
and all k-nilpotent varieties are subvarieties of it. In our definition, a variety
is k-normal if all of its identities are k-normal, making Ni(TR) the small-
est k-normal variety, and any variety which contains it a k-normal variety.
Thus the variety Ni(TR) is the only variety which is both k-nilpotent and
k-normal. Tt is known that the k-normalization Ni(V') of a variety V is
equal to Ni(TR) vV V, and by Volkov’s theorem this is finitely based iff V
is finitely based. However this is for the k-normalization based on length
of words rather than depth, although our technique of inflating terms to
praeduce a basis is similar to his proofs.
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An algebraic characterization of the algebras in Ni(V') by means of the
algebras in V was given by Denecke and Wismath in [9], using the concept
of a k-choice algebra. They showed that any algebra in Ng(V) is a homo-
morphic image of a k-choice algebra constructed from an algebra in V. In
this paper we return to the equational approach, by constructing a (finite)
basis for Ni(V) from a (finite) basis for V.

2. The basis construction

Let k£ > 1 be a fixed natural number. We consider a variety V with an
idempotent term ¢: that is, we assume that there exists some term ¢, of some
arity m, such that t(z,...,z) =~ z holds in V. By replacing occurrences of z
in this identity by t(z,...,z) if necessary, we may assume that ¢ has depth
at least k. We start with an equational basis Xy for V.

Our basis construction, and the proof that it does give a basis, use the
idea of inflation of terms. There are two obvious methods one could use to
inflate terms using the special term ¢. The first method is to apply t to entire
terms: for any term u of type 7, we can form the term ¢(u), and we note that
t(u) has depth at least k and that u = ¢(u) is satisfied in V. Alternatively,
we could inflate any term u by inflating each variable individually. That is,
we define a map u — ¥ inductively on the set of all terms of type 7, by
u = t(u) if u is a variable, and T = f;(@7,...,Tn,) if v is a compound term
of the form f;(u1,...,un,).

In the remainder of this paper we shall assume that d(¢) > k, so that
both t(u) and U have depth > k for all terms u. We now define some sets of
identities to use for our new basis for N (V).

DEFINITION 1. i) Let ¥y be the set consisting of all identities @ ~ v where
u = v is any identity in the basis ¥y .

ii) Let 3,, be the set of weak idempotent identities of the form
s(z1,...,Tn) = 8(T1,...,Zp—1,t{Zp), Tp+1,- - -, Zn), for every n-ary term s
of depth k and every 1 <p < n.

ili) Let X,, be the set of weak idempotent identities of the form
s(z1,...,2n) = t(s(x1,...,2p)), for every n-ary term s of depth k.

iv) Let Ly, () be the set of identities By U 5y, U Dy,

THEOREM 1. Let V' be a variety of type T with an idempotent term t, and let
k>1. Then Xy, vy = Xy U By, U Dy, is a basis for the variety Np(V).

COROLLARY 1. Let k > 1. IfV is a finitely based variety of a finite type T,
and V' has an idempotent term, then Ni(V') is also finitely based.

We prove this theorem and its corollary by a series of lemmas.
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LEMMA 1. Let V be a variety with an idempotent term t, and let L, (v) =
Yy U Xy, Uy, be defined as above. Then for every n-ary term s with
d(s) > k and every 1 < p < n, the following identities are consequences of
XN (V)

(i) s(x1,...,2p-1,t(Zp), Tp+1,.-.,%Tn) = s(x1,T2,...,2Zn),
(i) t(s(z1,z2,...,2n)) = s(T1,Z2,-. -, Tn).

Proof. (i) We begin by assuming that the variables of s are distinct. If the
variable z, terminates a string in s of length [ < k, then there exists a term
v of depth k and some terms hj, ho, ..., he such that s = v(hy, he,..., he,
Z1,...,%,) and zp is not a variable of any of the terms h1, ho, ..., he. By Ey,
we have s~v(hy, ha, ..., he,z1,..., H(zp), ..., Zn) =5s(z1,.. ., t(xp),...,Zn).

Now assume that z, terminates a string of length { 2 k. There ex-
ists an m-ary term r and an n-ary term s, with d(sp) > k such that the
length of the string in s, terminating with the variable z;, has length ex-
actly k and s = r(sp,Z1,...,2n). Now there also exists a term u of depth
k and terms sp,, Spy, ..., Sp,, such that s, = u(sp,,Spy,- -y Spm>Z1,---,Tn)
and z, is not a variable of any of the terms sy,s2,...,58,. By 3, we
have s, =~ u(s1,82,...,5m,Z1,...,t{Zp),...,Tn), which again gives us s =
s(z1,..-,t(zp), ..., Tn) as a consequence of Xy, (v).

If the variable z, occurs w times in s, then the w occurrences of z, can
be replaced by the distinct variables xp,, zp,,. .., Zp, to obtain the term

/ /
s = s(x1,...,Tp—1,Tp1y Tpgs -+ »Tpys Tptls-- -1 Ln)-

Repeating the above procedure for each x,, we obtain

§'(z1,22, .., Tn) R S (21, , Tp—1,(Zp; ), Tpay - - - » Tpoyy Tpt1s- - - » Tn)

~ S (21, Tp—1, H(@py )y E(Tpg)s - - - s Tpus Tpt1s - - - » Tn)

s (21, Tp—1, U@y ), EH(Tpa)s - - - E(Tpy ), Tptds - - -, Zn),
and replacing each of z,,,p,,...,Zp, With x, gives us
s(z1,.. ., Tp—1,t(Tp), Tpt1,. .., Zn) = s(x1,T2,...,%,) as a consequence of
ZNe(v):

(ii) Since s has depth > k, there exists some m-ary term r of depth k

and n-ary terms s1, 8o, ..., Sy, such that s = 7(s1,82,...,8nm). By L,,, we
have s = r(s1, 8g,...,8m) = t(r(s1,82,...,8m)) = t(s). O

LEMMA 2. For every n-ary term s, the basis X, (v) = Ly ULy, ULy, yields
the identity

t(s(xy, 2o, .. ., Tn)) = s(t(x1),...,t(zn)).
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Proof.
t(s(z1,z2,...,25)) = t(s(t(z1),...,t(zn))) by Lemma 1(i)
=~ s(t(z1),...,t(zn)) by Lemma 1(ii). a
LEMMA 3. For every term u of type 7, the identity T =~ t(u) follows from
LN(v)-
Proof. We proceed by induction on the complexity of the term u. In the
base case, when u is a variable, the claim follows from the definition of the
mapping v — . Inductively, when u = f;(u1,...,u,,) for some i € I, we
have
u= fi(u1,...,Un;) by the definition of @

~ fi(t(u1),...,t(un;)) by the induction hypothesis

~ t(fi(u1,...,un;)) by Lemma 2

~ t(u). |
LEMMA 4. For any term u of depth > k, the identity u =~ u can be deduced
from ENk(V)'
Proof. This claim follows immediately from Lemma 3 and Lemma 1(ii). O

For the next lemma we need some additional notation regarding substi-
tution of a term for a variable. We will denote by u(z/p) the term obtained
by substitution of the term p for every occurrence of the variable z in the
term u.

LEMMA 5. Let u and p be any terms, and let x be any variable. Then the
identities u(x/p) = u(x/p) ~ U(zx/p) =~ u(z/p) are consequences of L, (v).-

Proof. Assuming that z = x; for notational convenience, we have
u(z/p) ~ u(p, T2, . ..,Zn) by the definition of @
~ u(p,z2,...,Tn) by Lemma 1(i).
This shows that u(z/p) ~ u(z/p) is a consequence of Ty, (vy. Also,

u(z/p) = u(Z,23,...,%n)(z/p)

= u(t(x),Zz,...,Zn)(z/p) since x is a variable
= u(t(p), 73, - -, Tn)
~ u(p, T2, ...,ZT,) by Lemma 3,

so that u(z/p) ~ u(z/p) ~ u(xz/p) is a consequence of Xy, (vy. This also
implies that %(z/p) ~ u(z/p) and u(z/p) =~ u(z/p)) since u ~ ¥ by Lemma

1(i), so we have u(z/p) =~ u(z/p) =~ u(z/p) =~ u(xz/p) as a consequence of
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LEMMA 6. For any k-normal identity p = q of V, we can inflate any deduc-
tion of p = q from the basis Ly into a deduction of D~ q from T, vy

Proof. Since p = ¢ is an identity of V, there exists a deduction of p = ¢
from the basis Xy using Birkhoff’s five rules of deduction. We will call this
deduction the given deduction. We take the given deduction and replace
each step u; = w; by u; ~ wj, to produce a sequence of identities called the
derived list. We shall show that the derived list is a deduction of p ~ § from
YN, (v), by verifying that the justification for each step j in the derived list
is the same as the justification for step j in the given deduction. Consider
the identity u; ~ w; at any step j in the given deduction. If step j was an
instance of an identity from Xy, then step j in the derived list is an instance
of the corresponding identity from Xy C & Ny (v)- 1f step j was an instance
of the reflexive, symmetric, or transitive rules of deduction, then clearly step
j in the derived list is an instance of the same rule.

Now suppose that step j in the given deduction was an instance of Rule
4, the compatibility rule, on some previous steps of the deduction. Then step
J has the form fi(u1,...,un,) = fi(wi,...,wy,), deduced from some earlier
steps u; =~ w; for 1 < j < n;. According to our construction of the derived
list, step j in the derived list is fi(u1,...,un;) & fi(wi,...,wy,). By defini-
tion of the u — @ operator, this is equal to f;(u1,...,un,;) = fi(w1,...,Wy,),
which can be deduced from the corresponding earlier steps @; ~ wj in the
derived list, again by Rule 4.

Finally, suppose that step j in the given deduction was an instance of
deduction Rule 5, the substitution rule, on some previous line u = w. Then
step j in the given deduction has the form u(z/z) ~ w(z/z) for some term
z, and step j in the derived list is u(z/z) =~ w(z/z). When we apply the
substitution rule to the earlier step @ =~ w in the derived list, we obtain
U(z/z)) =~ w(x/z). That these two identities are equivalent under Xy, (v,
then follows from Lemma 5. Thus, the derived list is a deduction of p = g
from ZNk(V) O

Using these lemmas we can now prove Theorem 1. We need to show that
any identity p =~ ¢ which holds in V' and is k-normal can be deduced from the
purported basis set Xy, (y). From Lemma 4, it follows that we can deduce
each of p ~ P and q = g from Xy, (). From Lemma 6, we can also deduce
P ~ ¢, and hence we can indeed deduce p ~ ¢ from X, (v as required.

The process used for Theorem 1 is a bit redundant, since it inflates all the
identities from the original basis ¥y, even those identities which are already
k-normal. The basis construction could clearly be stream-lined by inflating
only those identities from ¥y which are not k-normal, and keeping those
which are k-normal in their original form.
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We illustrate this streamlining in more detail in the special case that
k = 1, where the k-normalization of V coincides with the usual normaliza-
tion of V, denoted by N(V). In this case the weak idempotent identities
in ¥,,, and ¥,,, involve only fundamental terms of the form f;(z1,...,zx,).
This means that the sets ¥,, and ¥, can be replaced by the set of identi-
ties fi(z1,...,2n;) = fi(z1,. .., 2p—1,t(2p), ..., Tn;) = t(fi(z1,...,Zn,), for
every index ¢ € I and every 1 < p < n;.

A further simplification to our basis construction can be made in the case
that k£ = 1 when the special term ¢ used to inflate identities also has depth
1. In this case, t has the form f;,(z,..., ) for some fixed index g € I. Thus
to construct the basis X (1), we can use the following four-step process on
the identities u ~ v in a given basis Xy for V, as described in [12]:

1) If u = v is a normal identity, then we put u =~ v in Xy (y).

2) If u = v is a non-normal identity but not an idempotent identity
fi(z,...,z) = x for any operation symbol f;, then one of u and v, say v, is
a variable, and we put the identity u ~ t(v) in Xy (y).

3) If an operation symbol f; # f;, is idempotent in V', then we add
fiolzy .. y2) = fi(z,...,z) to Ly

4) For every j € I and every 1 < p < nj, we add to Xy the following
weak idempotent identities:

(@1, zn,) @ (fi(z1, .., 20))) = fi(21, 0 Tpo1, 8(Tp), Tpr1, - -, Ty )

This results in a simplified version of Theorem 1, for the case k = 1, as
described in [12]:

THEOREM 2. ([12]) Let V be a variety with an idempotent term. Given a
basis Sy for V, the set Tn(y) constructed as above is a basis for N(V').

3. Examples

In this section we illustrate Theorems 1 and 2 with a number of examples,
reviewing some known basis results and providing a new basis in the case of
the variety of pseudo-complemented lattices.

EXAMPLE 1. We illustrate Theorem 2 for the type (2, 2) variety L of lattices.
This variety has a well-known basis >.;, consisting of the associative, commu-
tative, absorption and idempotent laws for meet and join. Bases have been
constructed for the varieties obtained from L using a number of different
equational properties. Well-known bases for N(L) and the externalization
of L are described in [2], [12] and [5]. A basis for the 2-normalization Na(L)
was given in [3]. The regularization Reg(L) of L was shown to be the variety
QL of quasilattices by Padmanabhan in [13].
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Following the process used for Theorem 2, with the idempotent term
t(z) = z V z of depth 1, yields the following well-known basis for N (L) (see

[12], [2]):

commutativity 1V =22V I, TINTo R To NI
associativity 1V (z2 V) = (x1 Vo) Vs
1 A (z2 Ax3) = (1 AT2) A x3
weak absorption z1V (21 Az2) = z1V 21, TIN(z1VI) =11 AT
weak idempotence z1 V (23 V z2) = 1 V 3, 1A (T2 Az2) =z A2

1V =TI AT

EXAMPLE 2. In [6] bases were constructed for Ni(V') for any subvariety V
of the type (2) variety B of bands, or idempotent semigroups. To illustrate
Theorem 1 we construct here a basis for the variety Na(B). Following the
convention of denoting the binary operation of type (2) by juxtaposition, we
start with the standard basis for B,

EB = {:171.’1:1 =T, 1171(11:2.'173) = (:El.rg).’lig}.
Then letting t(z) = (zz)z, we get identities
((z1z1)21)((T121)21) =~ (T171)721,
((z121)21) (((z272)22) ((T3%3)T3)) = ((T171)21) ((T272)T2)) ((T3%3)23),
(z1z1)z1 ){(2223) =~ 21 (2273),
z1(((z232)72)73) ~ 71(2223),
.’L‘1(.’E2((:E3£C3)IE3) ~ .’1:1(6621,'3), ey
(z122)23 = (((#122)73) ((T172)73)) (T172)T3),5 - - -,
where the first two identities are from Y g, the identities on the next three
lines are from ¥, , and thiast line gives identities from %, .

The basis X NaB) = LB U Xy, UXy, can now be refined to the basis
exhibited in [6], consisting of associativity and the two identities zyz =
r2yz ~ xyz?. It is clear that associativity is a consequence of our basis
YNy (B), and hence we may follow the custom of omitting brackets in our

identities. We can deduce from our basis both 23 ~ 2% and 2% ~ 2°, and
hence z3 ~ z° for all a > 4. Then we get z%yz ~ z(zyz) ~ z(z3y2) =~
z*yz ~ 23yz ~ zyz, and similarly for zy22 ~ zyz. Conversely, the identities

Yz ~ r2yz ~ ryz? plus associativity yield our basis ¥ No(B) s well.

EXAMPLE 3. As another example we construct a basis for the variety N(G)
where G is the variety of all groups, considered as algebras of type (2,1).
We start with the basis

Yo = {z1(zaz3) = (xlxg)mg,xl_l(mlwz) ~ (a:zasl)xl_l,ml_l(:lez) ~ To}
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for G. As our idempotent term we use t(x) = x~!(zz), which satisfies
t(z) = z. Following the construction for Theorem 1, we keep the first two
identities of the basis ¢, and change the third one to 27 !(z122) ~ t(x2).
Then we add the weak idempotent identities zt(y) ~ zy =~ t(z)y and
t(z)~! ~ 27! ~ t(z7!), for the two operation symbols of our type.

ExXAMPLE 4. In our final example we produce a new basis for the normal-
ization of the type (2,2,1) variety PL of pseudo-complemented lattices or
p-algebras. This variety has been studied in [1], and a basis for the regu-
larization of PL has been given by Penner in [14]. Penner showed that just
as the regularization of the variety L of lattices is the variety QL of quasi-
lattices, so the regularization of the variety PL of pseudo-complemented
lattices consists of all pg-algebras.

The variety PL of all pseudo-complemented lattices has a basis ¥pr,
consisting of the eight lattice axioms from Yy, plus the following four axioms:

S1. 1 A(z2 Axy) = 22 ATy
S2. xzyA(zyAz2)" =21 AT
S3. A (z2Azd) =~ xy

S4. (z1 Az])™ =z A2}

In order to exhibit an equational basis for N(PL), we carry out the four-
step construction from Theorem 2, using t(z) = zVz. On the identities from
the basis for L, this results in the set Xz already described in Example
1. In addition, we keep the normal identities S1, S2 and S4, and replace S3
with its normalized version. Then we add the additional weak idempotent
identities needed for the additional unary operation *: z* = (zVz)* =
z* V xz*. Thus we need the following five identities:

NL. (z2Az3) Azy = x2 A 25
N2. 71 A (171 N :L‘2)* S AN I;
N3. 1A (1:2 AN :L';)* ~r1VI
N4. (zo Az3)*™ = x9 A 25

N5. (z1Vx)* =~z] ~z]Val.

Note that by N1 we have both (z2 A z3) A (z1 A z]) = z2 A 25 and
(z1 Az}) A (z2 Ax3) = z1 A 2} so by commutativity it follows that zo A 25
~ x1 A z]. This leads to the following new result:

THEOREM 3. Yn(pry = Xn(r) U {N1,N2,N3,N4,N5} is an equational
basis for N(PL).

Bases for Ni(PL) for k > 1 may also be produced, using the method of
Theorem 1.
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