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EQUATIONAL BASES FOR fc-NORMAL IDENTITIES 

A b s t r a c t . The depth of a term may be used as a measurement of complexity of 
identities. For any natural number fc, an identity u « v is called fc-normal if u = v or 
both u and v have depth at least k. For any variety V, the fc-normalization of V is the 
variety Nk(V) defined by all fc-normal identities of V. We describe a process to produce 
from a basis for V a basis for Nk(V), for any variety V which has an idempotent term; 
when the type of V is finite and V is finitely based, this results in a finite basis for Nk(V) 
as well. This process encompasses several known examples, for varieties of bands and 
lattices, and allows us to give a new basis for the normalization of the variety PL of 
pseudo-complemented lattices. 

1. Introduction 
In this paper we develop a technique for producing from a basis for a 

variety V a basis for the fc-normalization Nk(V) of V, when V is a variety 
with an idempotent term. When V is finitely based and of finite type, our 
basis for Nk(V) is also finite. In this section we introduce the definitions 
and background needed. Our basis construction is described and verified in 
Section 2, and in Section 3 we illustrate this process with some examples, 
including a previously unknown basis for the normalization of the variety of 
pseudo-complemented lattices. 

Throughout this paper we consider a type r = (nj)j6 / of algebras and 
identities, with fc an n,-ary operation symbol of type r for each i € I, and we 
make the assumption that our type contains no nullary operation symbols. 
A number of structural properties of identities, including regularity, nor-
mality, externality and P-compatibility of identities have been much studied 
(see for instance [2], [10], [11], [12], [7], [4], [15], [16]. We consider here a 
generalization of the property of normality, using the complexity of terms 
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and identities. This approach was used by Volkov in [17], using the length 
of a term (the total number of occurrences of variable symbols in the term) 
to measure complexity, and generalized to arbitrary complexity measures in 
[8]. Here we use the depth of terms as our complexity measurement. For 
any term t of type r , we denote by d(t) the depth of t, defined inductively 
by 

(i) d(t) = 0, if t is a variable; 
(ii) d{t) = 1 + max{d(tj) : 1 < j < rij}, if t is a composite term of the 

form t = fi(h,...,tni). 
When a term is portrayed by a tree diagram, with the nodes correspond-

ing to operation symbols in the term and the leaves to variable symbols, the 
depth of the term t corresponds to the length of the longest path from root 
to leaves in the tree diagram for t. 

Let k > 0 be any natural number. An identity s ~ i of type r is called 
k-normal (with respect to the depth measurement of complexity) if either s 
and t are equal, or d(t), d(s) > k. It was proved in [8] that the set of all 
Abnormal identities of type r forms an equational theory. For any variety 
V, the set of all fc-normal identities of V is also an equational theory, and 
the variety Nk(V) determined by this set is called the k-normalization ofV. 
In the special case that Nk(V) = V, we say that V is a k-normal variety, 
this occurs when every identity of V is a Abnormal identity. Otherwise, V 
is a proper subvariety of Nk(V), and Nk(V) is the least Abnormal variety to 
contain V. The variety N^ (TR), where TR is the trivial variety of type T, 
is the smallest Abnormal variety, and has been described in [9]. In the case 
that k = 1, all of these concepts coincide with the usual concepts of a normal 
identity and variety and the normalization N(V) of a variety V. 

We note here that the concept of Abnormal variety is related to Volkov's 
definition of a fc-nilpotent variety in [17]. However, /c-riorrriality and k-
nilpotence are different properties. First, Volkov used the length of a term 
as the complexity measurement, rather than the depth. More importantly, 
he defined a variety to be fc-nilpoterit if it satisfies all fc-normal identities of 
its type. In this case, the variety Nk(TR) is the largest fc-nilpotent variety, 
and all fc-nilpotcnt varieties are subvarieties of it. In our definition, a variety 
is ^-normal if all of its identities are A;-normal, making N^(TR) the small-
est Abnormal variety, and any variety which contains it a Abnormal variety. 
Thus the variety Nk(TR) is the only variety which is both /c-nilpotent and 
Abnormal. It is known that the A;-normalization N^{V) of a variety V is 
equal to Nk(TR) V V, and by Volkov's theorem this is finitely based iff V 
is finitely based. However this is for the A;-normalization based on length 
of words rather than depth, although our technique of inflating terms to 
produce a basis is similar to his proofs. 
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An algebraic characterization of the algebras in Nk(V) by means of the 
algebras in V was given by Denecke and Wismath in [9], using the concept 
of a A;-choice algebra. They showed that any algebra in N^(V) is a homo-
morphic image of a /c-choioc algebra constructed from an algebra in V. In 
this paper we return to the equational approach, by constructing a (finite) 
basis for Nk(V) from a (finite) basis for V. 

2. The basis construction 
Let k > 1 be a fixed natural number. We consider a variety V with an 

idempotent term t: that is, we assume that there exists some term t, of some 
arity n, such that t(x,... 7x) ~ x holds in V. By replacing occurrences of x 
in this identity by t(x,... ,x) if necessary, we may assume that t has depth 
at least k. We start with an equational basis Ey for V. 

Our basis construction, and the proof that it does give a basis, use the 
idea of inflation of terms. There are two obvious methods one could use to 
inflate terms using the special term t. The first method is to apply t to entire 
terms: for any term u of type r, we can form the term t(u), and we note that 
t(u) has depth at least k and that u ~ t(u) is satisfied in V. Alternatively, 
we could inflate any term u by inflating each variable individually. That is, 
we define a map u —• u inductively on the set of all terms of type r, by 
u = t(u) if u is a variable, and u = fi(uT,..., uni) if u is a compound term 
of the form fi(u\,..., uUi). 

In the remainder of this paper we shall assume that d{t) > k, so that 
both t(u) and u have depth > k for all terms u. We now define some sets of 
identities to use for our new basis for Nk(V). 

DEFINITION 1. i) Let £ Y be the set consisting of all identities u ^ v where 
u « v is any identity in the basis 

ii) Let S m i be the set of weak idempotent identities of the form 
s ( x i , . . . , xn) « s ( x i , . . . , xp-i,t(xp),xp+i,..., xn), for every n-ary term s 
of depth k and every 1 < p < n. 

iii) Let YIW2 be the set of weak idempotent identities of the form 
s ( x i , . . . ,xn) « t(s(xi,... ,xn)), for every n-ary term s of depth k. 

iv) Let be the set of identities T,y U U 

THEOREM 1. Let V be a variety of type r with an idempotent term t, and let 
k> 1. Then ^Nk(V) •= U Stoj U is a basis for the variety Nj-iV)-

COROLLARY 1. Let k > 1. If V is a finitely based variety of a finite type r , 
and V has an idempotent term, then Nk(V) is also finitely based. 

We prove this theorem and its corollary by a series of lemmas. 
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LEMMA 1. Let V be a variety with an idempotent term t, and let £JVFC(Y) = 
I V u U Su>2 defined as above. Then for every n-ary term s with 
d(s) > k and every 1 < p < n, the following identities are consequences of 
E N k ( V ) • 

(i) s(x 1, ... ,xv-i,t(xp),xp+i,... ,xn) « s(x 1,X2, • • • ,xn), 

(U) t(s{x 1,£2,...,£„)) ~ s(xi,x2,...,xn). 

P r o o f , (i) We begin by assuming that the variables of s are distinct. If the 
variable xp terminates a string in s of length I < k, then there exists a term 
v of depth k and some terms hi,h,2, • • • ,he such that s = v(h\,h2,... ,he, 
xi,..., xn) and xp is not a variable of any of the terms h\,h2, • • • ,he. By X ^ 
we have s^v(h\,h2, ...,he,x i,.. .,t(xp),.. .,xn) = s(x i,... ,t(xp),.. .,xn). 

Now assume that xp terminates a string of length I ^ k. There ex-
ists an m-ary term r and an n-ary term sp with d(sp) > k such that the 
length of the string in sp terminating with the variable xp has length ex-
actly k and s = r(sp, xi,..., xn). Now there also exists a term u of depth 
k and terms sPl. Sp2 • • • • • Spm such that sp ~ a (sp^. Sp2,..., sPin. J' \..... xrt) 
and xp is not a variable of any of the terms s i , S2, • • •, sm. By S ^ j we 
have sp « u(s\ , S2, . . . , Sm, S i , . . . , t(xp), ...,xn), which again gives u s s a 
s ( x i , . . . , t(xp),..., xn) as a consequence of T,Nk(Vy 

If the variable xp occurs w times in s, then the w occurrences of xp can 
be replaced by the distinct variables xpi, xP2,..., xPw to obtain the term 

S = S {x\, . . . , Xp— i , Xp1, Xp2, . . . , Xpw , Xp.)-1, . . . , Xn). 

Repeating the above procedure for each xPi we obtain 

S O i , X2j • • • , Xfi) ~ S ( x i , . . . , Xp— l , t(Xp^ ), Xp^, • • • , Xpw , Xp-|-l,..., xn) 

~ s ( 2 : 1 , . . . , Xp—i, t(xpx), i(xp2),..., Xpw, Xp+i,..., xn) 

~ S ( x i , . . . , Xp— l , ¿(Xpj), t{xp2), . . . , t{xPw), Xp-|-l, ..., xn), 

and replacing each of xPl, xP2,..., xPw with xp gives us 
s ( x i , . . . , Xp_i, t(xp), Xp+i , . . . , xn) « s(x i,X2,...,xn) as a consequence of 

(ii) Since s has depth > k, there exists some m-ary term r of depth k 
and n-ary terms s i , s2, •.., sm such that s = r(s\, S2, • • •, sm). By ^ W 2 , we 
have 5 = r(s i , s2,..., s m ) ~ t(r(sh s2, • • •, s m ) ) = t(s). • 

LEMMA 2. For every n-ary term s, the basis ^Nk(V) = ^vU Iwi U yields 
the identity 

t{s(xi ,x2,...,xn)) « s(t(xi),... ,t(xn)). 
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P r o o f . 

t(s(x i,x2, •. .,xn)) f» i ( s ( i (x i ) , . . .,t(xn))) by Lemma l(i) 
m s(t(x\),... ,t(xn)) by Lemma l(ii). • 

LEMMA 3. For every term u of type T , the identity u « t{u) follows from 

EjVfe(y)-

P r o o f . We proceed by induction on the complexity of the term u. In the 
base case, when u is a variable, the claim follows from the definition of the 
mapping u —> u. Inductively, when u — f%(u\,... ,u n j ) for some i £ I, we 
have 

u = fi(W, • • •, uTH) by the definition of u 
« fi(t(ui),..., t(uni)) by the induction hypothesis 

« t(fi{ui,... ,uUi)) by L e m m a 2 

»t{u). • 

LEMMA 4. For any term u of depth > k, the identity u ^u can be deduced 
from ZNk(v)-

P r o o f . This claim follows immediately from Lemma 3 and Lemma l(ii). • 

For the next lemma we need some additional notation regarding substi-
tution of a term for a variable. We will denote by u{x/p) the term obtained 
by substitution of the term p for every occurrence of the variable x in the 
term u. 

LEMMA 5. Let u and p be any terms, and let x be any variable. Then the 
identities u(x/p) « u(x/p) ¡=s u(x/p) « u(x/p) are consequences o/Sjvfc(v)-

P r o o f . Assuming that x = X\ for notational convenience, we have 

u(x/p) « u(p,x2,..., xn) b y t h e definit ion of u 

R* u(p, X2, • • •, xn) by Lemma l(i). 

This shows that u(x/p) ~ u(x/p) is a consequence of Ejvfc(y)- Also, 

u(x/p) = u(x,xi,.. .,x^)(x/p) 

= u(t(x),x2,... ,x^)(x/p) since x is a variable 

= u(t(j>),X2, 
« u(p, x j , . . . , xn) by Lemma 3, 

so that u(x/p) « u(x/p) u(x/p) is a consequence of Sjvfe(v)- This also 
implies that u(x/p) & u(x/p) and u(x/p) ~ u(x/p)) since u ss u by Lemma 
l(i), so we have u(x/p) ~ u(x/p) ~ u(x/p) ~ u(x/p) as a consequence of 
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LEMMA 6. For any k-normal identity p « q ofV, we can inflate any deduc-
tion of p « q from the basis E y into a deduction o f p ^ q from Ejv f c(y)-

P r o o f . Since p « q is an identity of V, there exists a deduction of p « q 
from the basis Ey using Birkhoff's five rules of deduction. We will call this 
deduction the given deduction. We take the given deduction and replace 
each step Uj ~ Wj by uj « uJJ, to produce a sequence of identities called the 
derived list. We shall show that the derived list is a deduction oipmq from 
^Nk(V)i by verifying that the justification for each step j in the derived list 
is the same as the justification for step j in the given deduction. Consider 
the identity u j ~ Wj at any step j in the given deduction. If step j was an 
instance of an identity from Ey, then step j in the derived list is an instance 
of the corresponding identity from Ey ^ ^Nk(v)- If step j was an instance 
of the reflexive, symmetric, or transitive rules of deduction, then clearly step 
j in the derived list is an instance of the same rule. 

Now suppose that step j in the given deduction was an instance of Rule 
4, the compatibility rule, on some previous steps of the deduction. Then step 
j has the form / ¿ ( u i , . . . , uni) & /¿(u>i,..., wni), deduced from some earlier 
steps Uj « Wj for 1 < j < n*. According to our construction of the derived 
list, step j in the derived list is fi{u\,..., un%) ~ fi(vJi,..., wni). By defini-
tion of the u —>u operator, this is equal to fi(IZT,..., u^T) ss fi(W[,..., wni), 
which can be deduced from the corresponding earlier steps uj f» w] in the 
derived list, again by Rule 4. 

Finally, suppose that step j in the given deduction was an instance of 
deduction Rule 5, the substitution rule, on some previous line u ¡=s w. Then 
step j in the given deduction has the form u{x/z) ~ w(x/z) for some term 
z, and step j in the derived list is u{x/z) ~ w(x/z). When we apply the 
substitution rule to the earlier step u « w in the derived list, we obtain 
u(x/z)) ~ w{x/z). That these two identities are equivalent under Y,Nk(V) 
then follows from Lemma 5. Thus, the derived list is a deduction of p sa q 
from £jvfc(v)- • 

Using these lemmas we can now prove Theorem 1. We need to show that 
any identity p « q which holds in V and is fc-normal can be deduced from the 
purported basis set From Lemma 4, it follows that we can deduce 
each of p « p and q « q from Sjvfc(y)- From Lemma 6, we can also deduce 
p ~q, and hence we can indeed deduce p « q from E/Vt-fV) required. 

The process used for Theorem 1 is a bit redundant, since it inflates all the 
identities from the original basis Ey, even those identities which are already 
fc-normal. The basis construction could clearly be stream-lined by inflating 
only those identities from Ey which are not fc-normal, and keeping those 
which are /c-normal in their original form. 
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We illustrate this streamlining in more detail in the special case that 
k — 1, where the ^-normalization of V coincides with the usual normaliza-
tion of V, denoted by N(V). In this case the weak idempotent identities 
in and T,W2 involve only fundamental terms of the form / ¿ ( x i , . . . , xni). 
This means that the sets and T,W2 can be replaced by the set of identi-
ties fi(xi,..., xni) ~ fi(xi,..., xp-1, t(xp),..., xni) ~ t(fi(xi,..., xni), for 
every index i G I and every 1 < p < nl. 

A further simplification to our basis construction can be made in the case 
that k = 1 when the special term t used to inflate identities also has depth 
1. In this case, t has the form fi0(x,..., x) for some fixed index io £ I. Thus 
to construct the basis E ^ y j , we can use the following four-step process on 
the identities u m v in a given basis Ey for V, as described in [12]: 

1) If u » v is a normal identity, then we put u ~ v in 
2) If u v is a non-normal identity but not an idempotent identity 

fj(x,..., x) ~ x for any operation symbol f j , then one of u and v, say v, is 
a variable, and we put the identity u ~ t(v) in EJV(V)-

3) If an operation symbol f j ^ /¿0 is idempotent in V, then we add 
fio(x,...,x) « fj(x,...,x) to EN(V). 

4) For every j E I and every 1 < p < rij, we add to Sjv(v) the following 
weak idempotent identities: 

f j ( x 1, . . . , Xnj) ~ i ( / j ( x 1, . . . , Xnj)) ~ f j ( x 1) • • • 1 xp—li t(xp)i xp+1) • • • ) xrij)-

This results in a simplified version of Theorem 1, for the case k = 1, as 
described in [12]: 

T H E O R E M 2. ([12]) Let V be a variety with an idempotent term. Given a 
basis for V, the set constructed as above is a basis for N(V). 

3. Examples 
In this section we illustrate Theorems 1 and 2 with a number of examples, 

reviewing some known basis results and providing a new basis in the case of 
the variety of pseudo-complemented lattices. 

E X A M P L E 1. We illustrate Theorem 2 for the type (2 , 2 ) variety L of lattices. 
This variety has a well-known basis XL consisting of the associative, commu-
tative, absorption and idempotent laws for meet and join. Bases have been 
constructed for the varieties obtained from L using a number of different 
equational properties. Well-known bases for N(L) and the externalization 
of L are described in [2], [12] and [5]. A basis for the 2-normalization NziL) 
was given in [3]. The regularization Reg(L) of L was shown to be the variety 
QL of quasilattices by Padmanabhan in [13]. 
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Following the process used for Theorem 2, with the idempotent term 
t(x) = x V x of depth 1, yields the following well-known basis for N(L) (see 
[12], [2]): 

commutativity x\ V £2 ~ £2 V £1, x\ A X2 ~ £2 A £1 
associativity £1 V (£2 V £3) « (xi V £2) V £3 

x i A (^2 A £ 3 ) ( x i A £2) A £ 3 

weak absorption £1 V (£1 A £2) ~ £1 V £1, £1 A (£1 V £2) ~ x\ A £1 
weak idempotence x\ V (£2 V £2) V £2, £1 A (£2 A £2) ~ £1 A £2 

£1 V £1 « £1 A £1 
E X A M P L E 2 . In [6] bases were constructed for Nk(V) for any subvariety V 
of the type (2) variety B of bands, or idempotent semigroups. To illustrate 
Theorem 1 we construct here a basis for the variety N2(B). Following the 
convention of denoting the binary operation of type (2) by juxtaposition, we 
start with the standard basis for B, 

S b = {£i£i = £1, £1 (X2X3) = {xix2)x3}. 
Then letting t(x) = (££)£, we get identities 

((£l£l)£l)((£l£l)£l) « (£i£i)£i, 

({X1X1)X1)(((X2X2)X2)((X3X3)X3)) « ((£i£i)£i)((£2X2)£2))((^3a;3)®3), 
((£l£l)£l)(£2£3) ~ Xl{x2X3), 
XI(((X2X2)X2)X3) SS XI(X2XS), 
Xl(x2({x3x3)x3)) tt Xl(x2X3), ..., 

(£l£2)£3 ~ (((^lS2)£3)((^1^2)a;3))((^1^2)^3), • • • , 
where the first two identities are from the identities on the next three 
lines are from E ^ , and the last line gives identities from HW2. 

The basis £jv2(B) = U Swi U can now be refined to the basis 
exhibited in [6], consisting of associativity and the two identities xyz ~ 
x2yz ~ xyz2. It is clear that associativity is a consequence of our basis 
Ejv2(B), and hence we may follow the custom of omitting brackets in our 
identities. We can deduce from our basis both x3 ~ £6 and x3 ~ xr\ and 
hence x3 « xa for all a > 4. Then we get x2yz & x{xyz) ss x(x3yz) « 
x4yz ss x3yz ~ xyz, and similarly for xyz2 sa xyz. Conversely, the identities 
xyz ~ x2yz ~ xyz2 plus associativity yield our basis Ejv2(B) as well. 

E X A M P L E 3. As another example we construct a basis for the variety N(G) 
where G is the variety of all groups, considered as algebras of type (2,1). 
We start with the basis 

EG = {xl{x2X3) « (£l£2)£3,a;r1( :cla;2) ~ {x2xi)x^1 ,X^1(XIX2) « £2} 
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for G. As our idempotent term we use t(x) = x~1(xx), which satisfies 
t(x) ~ x. Following the construction for Theorem 1, we keep the first two 
identities of the basis £<3, and change the third one to x±1{x\x2) ~ t(x2). 
Then we add the weak idempotent identities xt(y) « xy « and 

~ x - 1 « i ( x _ 1 ) , for the two operation symbols of our type. 

EXAMPLE 4. In our final example we produce a new basis for the normal-
ization of the type (2,2,1) variety PL of pseudo-complemented lattices or 
p-algebras. This variety has been studied in [1], and a basis for the regu-
larization of PL has been given by Penner in [14]. Penner showed that just 
as the regularization of the variety L of lattices is the variety QL of quasi-
lattices, so the regularization of the variety PL of pseudo-complemented 
lattices consists of all pq-algebras. 

The variety PL of all pseudo-complemented lattices has a basis T*PL 

consisting of the eight lattice axioms from SL plus the following four axioms: 

51. x\ A (x2 A £2) « X2 A x\ 

52. x\ A (x\ A £2)* ~ x\ A X2 

53. X\ A (x2 A X2)* ~ Xi 

54. (x i A z i ) * * « x i A x { . 

In order to exhibit an equational basis for N(PL), we carry out the four-
step construction from Theorem 2, using t{x) = x\/x. On the identities from 
the basis for L, this results in the set E ^ L ) already described in Example 
1. In addition, we keep the normal identities SI, S2 and S4, and replace S3 
with its normalized version. Then we add the additional weak idempotent 
identities needed for the additional unary operation *: x* ¡=s (x V x)* « 

x* V x*. Thus we need the following five identities: 

N l . {x2 A X2) A x i ~ X2 A x<2 

N2. xi A (x i A X2)* ~ x\ A X2 

N3. X\ A (x2 A X2)* ~ x\ V X\ 

N4. {x2 A X2)** 

N5. ( x i V x i ) * « x j « X j V x i . 

Note that by N l we have both (X2 A X2) A (x i A x j ) ~ X2 A and 
(x\ A x'i) A (x2 A X2) « x\ A x\ so by commutativity it follows that £2 A x2 

« x\ A x*. This leads to the following new result: 

T HEOREM 3. = E ^ L ) U {ATI , N2, N3, i V 4 , N5} is an equational 

basis for N(PL). 

Bases for Nk(PL) for k > 1 may also be produced, using the method of 
Theorem 1. 
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