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ON THE ALMOST SURE CENTRAL LIMIT THEOREMS
IN THE JOINT VERSION FOR THE MAXIMA
AND MINIMA OF SOME RANDOM VARIABLES

Abstract. Let: {X;} be a sequence of r.v.’s, and: M, := max (X1,...,Xn), mn :=
min (X31,...,Xn). Our goal is to prove the almost sure central limit theorem for the
properly normalized vector {M,,m.}, provided: 1) {X;} is an i.i.d. sequence, 2) {X;} is
a certain standardized stationary Gaussian sequence.

1. Introduction

The almost sure central limit theorem (ASCLT) has become an inten-
sively studied subject in recent years. The simplest versions of the ASCLT
have been proved in the papers of Brosamler [3]|, Schatte [19], Fisher [12],
Lacey and Philipp [13] and Berkes and Dehling [1]. They relate to the AS-
CLT for the sums of independent r.v.’s. The ASCLT for sums has been later
generalized by Peligrad and Shao [18], Matuta [15], [16], Mielniczuk [17] and
Dudziriski [8], for the sums of some weakly dependent r.v.’s. Starting from
Cheng et al. [4] and Fahrner and Stadtmueller [11}, the ASCLT for maxima
of r.v.’s has become another popular direction of the research concerning the
topic. The ASCLT for the maxima of independent r.v.’s has been proved
in the mentioned papers. These results have been later extended by Csaki
and Gonchigdanzan [6] and Dudzinski [7] to the cases of maxima of certain
stationary Gaussian sequences. Some other valuable results concerning the
issue of the ASCLT"s are due to Berkes and Csaki [2], Stadtmueller [20] and
Dudzinski [9], [10]. In Berkes and Csaki [2], the ASCLT’s for the variety
of functions of independent r.v.’s, such as maxima of partial sums, the Kol-
mogorov statistics, U-statistics etc. have been proved. In [20], the proof of
the ASCLT for certain order statistics of i.i.d. r.v.’s has been given. In turn,
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the result in [9] considers the ASCLT in its joint version for the maxima and
sums of some r.v.’s, while the ASCLT for the vectors of several large maxima
and for some random permanents has been stated in [10].

The purpose of our paper is to prove another version of the ASCLT,
which is the ASCLT in its joint version for the maxima and minima of some

r.v.’s. Namely, we investigate the almost sure convergence of the follow-

N
ing sequence of logarithmic means: {@ nzzjl %I {M,, < up,my < vn}},
where: M,,, m, denote the maximum and minimum of some r.v.’s Xq,...,
X, respectively, and {un}, {vn} are certain numerical sequences. We shall
show that the almost sure convergence occurs for such the logarithmic ave-
rages, provided {X;} is an i.i.d. sequence or {X;} is some standard normal
one.

The following notations will be used in our paper: M, :=
max(Xy,...,X5), mp = min(Xy,...,Xy), Mgy = max(Xg+1,..., Xn),
Mipn = min(Xgt1,...,X5), 7(n) = Cov (X1, Xi4n), ® - the standard
normal d.f., Cg (Cq) - the set of the continuity points of the d.f. G (H).
Furthermore, f (n) < g(n) and f (n) ~ g (n) will stand for f (n) = O (g (n))
and f(n)/g(n) — 1, as n — oo, respectively, and = will denote that the
convergence occurs at all the continuity points of the limit function.

2. Main results

Our first main result is the following ASCLT in the joint version for the
maxima and minima of i.i.d. r.v.’s.

THEOREM 1. Suppose that X1, Xs,... is an i.i.d. sequence with the common
d.f. F. Then:

(1) If, for some numbers 0 < 7 < 00, 0 < 7 < 00, the sequences {un}, {vn}
satisfy, respectively:

(1) n(l— F(up)) — 7, nF(v,) = 1n, as n — 00,

we have

N
1 1
@) I}L“;ologzvnzzlgf {Mp < tn,mp <vp} =€ (1€ as,

(i) If, for some d.f.’s G, H, the sequences {an > 0}, {bn} and {ay > 0},
{Bn} are such that:

) P{an(Mp—b,) <z} 5G(z), Plon(my—Fa) <y} = H(y),
we have for all x € Cg, y € Cy that
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N

) 1 1
(4) A}Enoo log N ; "n"I {an (Mn - bn) <z,0m (mn - ﬂn) < y}

=G(z)H(y) a.s.

The second of our main results is the following ASCLT in the joint version
for the maxima and minima of some stationary standard normal sequences.

THEOREM 2. Suppose that X1, Xs,... is a standardized stationary Gaussian
sequence. Let the covariance function r (n) := Cov (X1, X14n) satisfy

1+¢€

(5) r (n)logn (loglogn) 7° <« 1 for some e > 0.

Then:

(1) If, for some numbers 0 < 7 < 00, 0 < 7 < 00, the sequences {un}, {vn}
satisfy, respectively:

(6) n(l—®(u,)) -7, n®(v,) > 1, asn — oo,

we have

(7)

N
. 1 1 - -
A 1o 2l M S Sva} =T (1-e7) s,

(ti) If the sequences {a, > 0}, {bn} and {an > 0}, {Bn} are such that:

an := (2logn)"/?,

(8)
by = (2logn) /2 — % (2logn) Y2 (loglogn + log 47)

Qp = — (2logn)1/2 ,

(9) 1
B = —(2logn)/? + 3 (21ogn)~ 2 (loglogn + log 4r) ,

we have for all x, y € R that

N

) 1 1
(10) 1\}51100 logN nz_::l 51 {a’n (Mn - bn) S T, 0pn (mn - ,Bn) S y}

=exp (—e7%) (1 —exp (—e7?)) a.s.

3. Auxiliary results

In this section, we state and prove four lemmas, which will be needed for
the proofs of our main results. The first lemma will be applied in the proof
of Theorem 1, while the next three ones will be used in the proof of Theorem
2. Here the first of the mentioned lemmas is.
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LEMMA 1. Under the assumptions of Theorem 1 on X1,X2,..., and {u,},
{vn}, we have for k < n that

(11) |Cov (I {M} < ug,mg > vi}, I {My < up,mp > vp})| < k/n.
Proof. Let k < n. Notice that

|Cov (I {My, < ug,mg > v}, {My <up,mp > vp})
L E|I{M, <up,mp > v} — I {Mgp < tUn,mpn > vn}l

+ |{Cov (I { My < ug,mi > g}, I {Min < Un,Mipn > vn})|.

Observe that, since the X/s are independent, the second component in the
last derivation is equal to zero. As moreover, the event {M,, < up,m, > v}
is a subset of the event {Mj , < up, Mk pn > vn}, we obtain
(12)  |Cov (I {M} < ug,my > v}, I {Mpn < up,mpn > vn})|

< E II {Mn < Up, My > vn} - I{Mk,n < Up, Mg > vn}'

= P{Mk,n < uq, Mk n > Un} - P{Mn < Up, My > 'Un} .

Thus, by (12) and an assumption that the X/s are i.id. r.v.’s with the
common d.f. F, we get

|Cov (I {My, < ug,mg > v}, {M, < up,my,>uvn})
< P{Xk+1 Stp,y .oy Xn S Uy, Xgp1 > Uny ooy Xp > 'Un}
—P{X) <upy...,Xn <tn, X1 >Un,...,Xn>vn}
:P{vn < Xk+1 S Uny- vy, VUn < Xy Sun}
—P{v, < X1 <tUpy..yUn < Xip1 S Uny .oy Un < Xp < up}
= (F (tn) = F (02))" % = (F (un) = F (v))" .
This and the elementary fact that 2% — 2” < k/n, if 0 < z < 1, yield
|Cov (I {My, < ug,mg > vg}, {M, <u,,my,>uv,})| < k/n,
which is the desired result (11). =

We now formulate and prove three lemmas, which will be used in the
proof of our second main result.

LEMMA 2. Under the assumptions of Theorem 2 on X1, Xo,..., and {u,},
{vn}, 7 (n), we have for k < n that

(13)  E|I{M, <up,mp >vp} — I {Mgpn < tn, Mg pn > vn}l
< k/n+ (loglogn)~ 9 for some € > 0.
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Proof. Let k < n. Since the event {M, < u,, m, > v,} is a subset of the
event {Mj n < Un, Mk > Un}, we have

E|I{M, <up,mp > v} — I {Mgpn < tUn, Mg pn > vn}

=P {Min < Un,mppn > vn} — P{M, < up,mp > vp}.

Therefore,

(14) E|I{My <up,mp > vp} —I{Mgp < Un,mgpn > vn}

= (P{Mign <un}+ P{migpn >vn} — P{{Min < un}U{min > vn}})
—(P{M, <up}+ P{mp > v} — P{{M, < up} U{m, > vn}})
= (P{Min < un} — P{M, <up}) + (P{mgn > vn} — P{mn > v})

+ (P{{M, <up}U{mp >vp}} — P{{Mikn < up}U{min > vn}}).

As {{M, < up}U{mp > v,}}is a subset of {{My, <up}U{mr, > vn}},
we get

P{{M, <up}U{m, >vp}} — P{{Min < up}U{mgn > vs}} <0.
This and (14) yield

(15)  EI{Mp, <up,mp>vp} — I {Mgpn < Up, Mg n > Un}

S (P{Mypn < un} — P{M, < up}) + (P{mgyn > v} — P{mp > vp}).

It follows from the proof of Lemma 2.4 in Csaki and Gonchigdanzan [6] that
(16) P{Mk,n < Un} - P{Mn < Un}
< k/n+ (loglogn)™*® for some ¢ > 0.

Thus, it remains to estimate the difference (P {my, > vp} — P {mn > vp}).
Clearly, we have

(17)  P{mgnp > vn} — P{my > vp}

= P{—max (—Xg41,...,—Xpn) > vp} — P{—max(—Xy,...,—Xy) > v}
= P{max (—Xk41,...,—Xn) < —vp} — P{max (—X1,...,—Xp) < —vp}.
Set: My, := max (—Xy,...,—Xn), My, := max (—Xpy1,..., —Xn), ¥ (n) :==

Cov(—X1,—X14n). It is obvious that 7 (n) = r (n). In addition, since the
sequence {X;} is standard normal, the sequence {—X;} is standard normal
as well, and Mkn, M, are the maxima of some standardized stationary
Gaussian r.v.’s. Due to an assumption on {v,} in (6) and the fact that

—Up 2
0 (o) = (1 - # (=0.)) ~ nexp( - oL ) VET (o),
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2

. Ko7 (-

(18) exp(—#) ~ KV (—tn) for some K > 0,
n

(=vn) ~ (2logn)"/2.
Thus, by applying (17) and replacing M, by M, and u, by (—vn) in the
proof of Lemma 2.4 in Csaki and Gonchigdanzan [6], we obtain
(19) P{mgn, >vp}—P{mp>v,} =P {Mk,n < —vn} - P {Mn < —vn}
< k/n+ (loglogn)~ "% for some e > 0.

The relations in (15), (16) and (19) imply

E|I{M, < up,mp > vp} — I {Mgpn < Up, Mgpn > vn}]

< k/n+ (loglogn) "% for some € > 0,

which is the desired result (13). =

We now give the proof of the following auxiliary result.

LEMMA 3. Under the assumptions of Theorem 2 on X1, Xo,..., and {u,},
{vn}, r (n), we have for k < n that

(20)  [Cov (I {My < ug,mp > vg}, I {Mypn < tn,Mgp > vn})]

—(1+¢

< (loglogn) ) for some £ > 0.

Proof. Let k < n. We have

|Cov (I {M}, < ug,mg > vi}, I {Mgpn < tn,Mgpn > Un})|

= |P{My < ug,mg > vp, M < Un, Mpp > Vn}
—P {My < ug,mg > v} P{ M5 < Uun,Mppn > vn}l.
It is easy to check that

|Cov(I{M} < ug,my > v}, I{Mpgn < tp,Mipn > Un})|

= |P{’Uk < Xy < gyt < X < ug,v, < Xk+1 L Upyeonyp < Xp < un}.
—P{ug < X1 < ugyernyt < X < up}P{vn < Xi1 < UnyeeyUn < Xy < un}

Let (Xk.’_l, R Xn) denote a standard normal vector, which has the same
distribution as (Xgy1,...,X5), but is independent of (X;,...,X). Put:
{&=X5,i=1,...,n},

(21) . .
{mzxi,Z:1,,.,,k;m:Xi,z=k:+1,...,n}.
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Thus, we can write that

[Cov (I {M]C < ug, mi > vk} ,I{Mk,n < Up, Mgy > vn})|

=[P{vs <& Sk, Uk < &k S Uk, U < &1 SUny oo, Un < €n S U}
—P{’Uk <m S Ukyovo, Uk < 7k < Uk, Up < Mk+1 L Upy.reyUn < Tn < un}l

Denote by fi - the n-dimensional normal joint density function of the se-

quence {&1,...,&k,&k+1,---,&n}, based on the positive definite covariance

matrix Al, and by fp - the n-dimensional normal joint density function of

the sequence {1, ..., Mk Mk+1,---,"n}, based on the positive definite cova-

riance matrix A°. By using these notations together with the last equality,
we have

(22) |Cov (I {M), < ug,mg > vg}, I {Mgp < tn,Mgpn > vn})

Un Up Uk Ug
1 T o T A bkt w0 b . g - di
Un Un Vg Vg
Un Un Uk U
VbV Ao vk Ykt W) dyn - dykdyis - - .
Un Un Uk Vg

Set A" := hA! + (1 — h)A% 0 < h < 1. The matrix A" is positive definite
with units down the main diagonal and the elements hAzlj +(1-h) A?j for
i # j. Let fj stand for the n-dimensional normal joint density function,
based on the covariance matrix A*, and

F(h):=
Un Un Uk Uk
VootV Vv vt wn) Ay - dykdyisr - dyn.
Un Un Uk Vg

Then, due to (22),
(23) |Cov (I {M}, < ug,mi > v}, I {Mgn < tn, Mgy > vn})

1
_|F (1)~ F(0)] = SF'(mdhj,
0
where

F'(h) =

u Un Uk Uk

4 r 0 yeees Yks e

S S S S I (41 yakhka yn)dyl...dykdyk_,_l...dyn.

Un Un Vg Vg

The density f;, depends on h only through the elements A%, i < j, of the

377
matrix A" Notice that, as A?j = hAilj + (1-h) A?j, if ¢ < j, we get
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OAL/Oh = A}; — A for i < j.
OAL/OR = 0. Hence
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Furthermore, since A?i = 1, we obtain

Un Un U Uk afh 8Ah
/
F(h):ZS...S {... SBA’L oy dyedyers - dyn
i<j Vn Un Vg
Un Un Uk Uk
0
=3 (Al NEr {’,: dyn .. ey - .
1<j Un Un Vg
By the property of the multidimensional normal density (see Cramer and
2
Leadbetter [5], p. 26), we have 8f2 e . Therefore,
1 0 Un Un Uk Uk 62f
!
F (h):Z(Aij—Aij) b1 Dy, dyi ... dyrdyps - . . dyn.
1< Un Un Vg Vg
Set:
ug, m=1,...,k, v, m=1,...k,
24 Wy, 1= Zm =
(24) " {un,m:k+1,...,n, i {vn,m:k+1,...,n
and: w:=(wy,...,wp), 2:=(21,...,2n), dy :=dy1 ... dyxdyg+1 - - - dyn.
Let in addition, fx (y; = a,y; = b) denote the function of n — 2 variables,
obtained by putting y; = a, y; = b into the formula on fi,(y1, ..., ¥k, Yk+1,
.+yYn). Then
& fn
F (h) = AL — AO .
0= 3 (= A9)S [ ay
J
=3 (A5 =AY hn (s = wi gy = wy) dy’
1<J z/
=) (A] th( = w;,yj = z;) dy’
1<j z’
=3 (A o N fn s = 25,95 = wy) dy’
1<J z’
+Z (A N o (i = 2,45 = ) dy’,
1<J z’
where
dy' = dy;j — dyy ... dyi1dyivr ... dyj_ldyj+1 .. dyn, 1'< 1 <.j <n,
dys......... dyn—1, i=1,j=n.
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Moreover, we can dominate the last integrals by replacing (Agj —A?j) and
—(A}j - A?j) by their absolute values, and by allowing the variables to run
from -—-00 to oo. Therefore,

o0
(25) F/(h)SZ|A}j_A?j Voo (i = wiyyy = wj) dy’
i<j ~o0
+D |G =AY S = iy = 25) dy’
1<j —0o
? oC
+D MG =AY (= 2y = wy) dy’
i<j ~o0
+Z |Azlj _A?j S th (vi = 2,95 = zj)dyl-
<y —oo
Notice that
o0 [ o]
Voo Vi =woyy =w)dy',  {- Vfa (0 = wi,y; = 25) dy’,
—00 -0
[0 @] [0 ¢]
Voo Nm@i=a,y=w)dy, V- Vfalui=z,y=2)dy
—0o0 —co

are the joint densities of two standard normal r.v.’s, evalueted at (w;,w;),
(ws, 25), (%, w;), (2, 24), respectively, with the correlation Ai‘] Thus:

26)  \-- Vfn (v = wi,y5 = wy) dy’
o B 1 { w? — ZA%wiwj + w?-
" =R P T a0 (AL }
@7 N V(v =wiy = 2) dy’
- B 1 w? — 2Afjwizj + zjz
" 2n(1— (AF))72 exp{‘ 2(1— (AL)?) } |
28) N\ Vfu (i = 2,95 = wy) dy’

B 1 22 — 2A£‘jziwj + wjz
~ 2n(1— (AL)2)12 e"p{" 2(1— (AL)?) }
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o0

29)  §-o Vfu(wi = 20,05 = 25,) dy’

- B 1 — 20l 225 + 22
—27r<1—(A£;>2>1/2e"p{ 301~ (A7) }

= pAL + (1= ) AY| <

We have

(lA 18 |A :|) =: pij. Clearly
a® — 2A%sab + b? B a® — 2A%ab + b? a? — 2|A%||a| || + b2
1— (A2 (- JABD+ALD = (1= AL (1 + py)
2 4 p2
> ‘1’:;;,

a? — 2|c||al |b] + b

where the last relation follows from the fact that T—1d reaches
its minimum for ¢ = 0. This and (26)—(29) imply:
o 1 w? +w?
30) |- | (yi=wi,y-=w-)dy's———exp{ ke 4
S _OOS T 21 (1~ pf;)1/2 2(1+py5)

oo 1-p2)1/2 2(14p4)

o0 z-l-w

(32) S th (yz—zz,y]—w;)dy _27T(—1/7-)1/26XP{
ij

—0o0

1+ng

i
(31) S'o'o'§fh(y¢=wi7y1=zj)d3’/52_7r(1—'_e}(p{ o }
i
i)

23 S * S Iy’ < 1 22 +z
( ) _oo fh(yl_zl)y.]_z]) y_27l'(1—,022])1/2 { 1+pz]

By (30)-(33) and (25), we get

(34) F'(h) < ; |Azlj - A?j or (1 _lpgj)lﬂ eXp{_%}
+;|A Wexp{_%}

2
+ 218~ *%T"{Tﬂfﬂ}
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Observe that, due to (5), r (n) — 0, as n — oo. This and the remark before
the statement of Lemma 4.3.2 in Leadbetter et al. [14] imply supp>1 |r (n)| =
0 < 1, which yields that sup;; |p;;| = 6 < 1. Therefore,

1 1
< = C (6).
2m(1 = )2 7 2m (1 — 62)1/2 @)

Let C = C (4). Obviously C is a positive constant, which depends only on
d. Due to (34), (35), we deduce that F’ (h) is not greater than the sum

w? +w w? + 22
CZlAgj‘A?ﬂexp{ 2(1+pg }+CZ|A A?jleXp{mPi—]j)}

1<j 1<j

1 A0 zi + wj zi2+z]2-
+CZlAij Aij|exp{———2(1+p )}+CZ|A” Am[exp{———2(1+pij) .

1<J 1<j

(35)

This and the relation in (23) imply
(36) |Cov (I {My, < ug,mp > vg}, I {Mgpn < tn, Mgpn > vn})

! wiz+w2~

057
1

+ C(S,Z;'A A9j|exp{ 1+pm }

+c§§|Agj—A2j|exp{ Z1::] }

+ CS);J AL — AY] exp{—%}dh.

By the definitions of the sequences {&1,...,&.}, {m,...,mm} in (21), we
obtain that the elements AU, A?J, i < 7, of their covariance matrices A, A°,
are defined as follows:

A}j =Cov(X;, X;)=r(j—1),i<j,

AO — Cov(X;, Xj)=r(j—1),1<i<j<kork+1<i<j<m,
0, i=1,...kj=k+1,....n

Hence, provided i < j,

AL - rG -9, i=1,..,kji=k+1,...,n
U 0, otherwise.

This, (36) and the definitions of {wn, }, {zm} in (24) imply
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|CO’U (I {Mk < ug, mi > 'Uk} aI{Mk,n < U, Mg > ’Un})l

k n u2 U?L
<CY Y G- ilew{-zEren

i—lj—k+1
+CZ Z |r(j — 1) exp{ 2uf+v }
= 1J Pl (1+ ps5)
+CZZ |r (j — i)| exps — vk-}—u
1+pz)
i=1 j=k+1 J
k - v+v
+CZ Z |r (7 —9)| exp{ —k__n_ }
i=1 j=k+1 2(1+ pig)

Thus,
(37)  |Cov (I {My < ug,mp > v}, I{Mkn < Up, MEp > Unl})

n—1 +u 9 +U12l
< k; Ir (2)] exp{ (;LI:_ i } + kZ |7 (¢) exp{———ur’f+~ |r(t)|)}

n—1 2 2
v2 +u vy + v
+ k r(t exp{ —k 7 __ }+k r exp{—#}
2 IrOlexey ~3 7 1 Gp Z' 201+ r ()
= A1+ Ay + A3+ Ay,

It follows from the assumptions on {u,}, {v,} in (6) and Lemma 2.1 in Csaki
and Gonchigdanzan [6] that

(38) A; < (loglogn) ™€) for some £ > 0, i = 1,2,3,4.
The relations in (37), (38) establish the desired result (20). m

LEMMA 4. Under the assumptions of Theorem 2 on X1, Xa,..., and {u,},
{vn}, 7 (n), we have for k < n that

(39) lim P{M, < un,mp > v} = e " where 7, 5 satisfy (6).
n—00
Proof. Let {X’Z} be an ii.d. standard normal sequence. Put: M,

max(X'l,...,Xn), My = min(Xl,L..,X'n). First, we shall estimate the
term |P {M,, < up,my > vn} — P{M, < up, M, > vy }|. Observe that

’P{Mn < Up, My > Up} — P{Mn < U, Ty, > 'vn}

’P{vn<X1§un,...,vn<Xn§un} — P{vn<)~(1 Sun,...,vn<Xn§un} .
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Thus, by applying similar methods to those used in the estimation of
the term |Cov (I {Mj < ug,mk > vk}, {Mpn < un,Mgn > vp})| in the

proof of Lemma 3, with: {{; = X;,i=1,...,n}, {m =X;,i=1,... ,n},
{wm =up,m=1,...,n}, {zm =vn,m=1,...,n}, we get, for some posi-
tive constant C, that

P{M, < up,mp > vp}— P{Mn < Un, My > vn}

n—-1 n . ) ’U,721+'U/?l
<c) N IT(J—’)|exp{_2(1+lr(j—i)l)}

i=1 j—i+1

LY Y ri-9 jexpf - Jff—z)n}

i=1 j=i41

n—1 n ‘ w2+l
+ 0% 3 ra-vten{ -y

i=1 j=i+1

n—-1 n ' v2 +’U
+o3 3 w6t sty

i=1 j=i+1

Hence

(40) ‘P{Mn < Up,Mp >vp} — P {Mn < Up, Ty > vn}

= v2 4+ u2 v2 + 02
*";""(t"e"p{ 20 +1r (O] }”“"Z"" ool 5w G )
By (6), we have:

eXP( ui) ~ K;\/n@, exp(—(_vn)2) ~ Kav2m (~vn)

2 2 n

for some K, K3 > 0, up ~ (2logn)Y/?, (—vn) ~ (2log n)l/z. This, (40) and
Lemma 2.1 in Csaki and Gonchigdanzan [6] yield

(41) 'P{Mn < Uy, My > ’Un}—P {Mn < Up, My > 'Un} —(14¢)

< (loglogn)

for some € > 0.
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—(1+¢)

Since (loglogn) — 0, as n — 00, it follows from (41) that

(42) hm ‘P{M < Up,Mp > Uy} — P{M <un,mn>vn} =0.

Moreover, due to Theorem 1.8.2 in Leadbetter et al. [14], we obtain that,
provided 7, n satisfy (6), then

(43) lim P {Mn < U, it > vn} _ (),

n—00

Due to (42), (43)

lim P{M, < up,mp > vp} = lim P{Mn < Up, p > Un} — e~ (T+M),

n—o0 n—o0

which is the result (39), we wished to prove. =

We now give the proofs of our main results. They make an extensive use
of the earlier proved Lemmas 1-4.

Proof of Theorem 1(i). First, we will show that, under the assump-
tions of Theorem 1(i),

N
1 1
(44) § - (I {Mn < Up, My > 'Un} - P{Mn < Up, My > U'n})
log N n
— 0 a.s.
N—oo

Put p, := I {M,, < un,my > vy}. In order to prove (44), we will estimate
the variance

M1
(45) VGT(Z ;,an) < Z Var ,un) + 22 ICOU Bk, ,un)l

n=1 1<k<n<N
= B1 + By
Obviously
Y1
46 B — < 00.
(46) 1<<7§n2 00

Thus, it remains to estimate the component Bz in (45). By Lemma 1, we

have
N-1

N N-1
1 1
4 meY 3 AEY S LT g
k=1 n=k+1 k=1 n=k+1 k=1
Due to (45)-(47)
M1
(48) Var (Z EI {M,, < up,mp > vn}) < log N.

n=1
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This and Lemma 3.1 in Csaki and Gonchigdanzan [6] imply (44). It follows
from Theorem 1.8.2 in Leadbetter et al. [14] that

(49) lim P{Myp < tn,mp > vp} = e where 7, 7 satisfy (1).
n—oo

Since (44), (49) hold, then, by the regularity property of logarithmic means,
we have
N

1
- = = e (Tt
(50) ]\}E,nc: log N nEZI nI{Mn <up,mp>uvpt=€e " as.

Furthermore, it follows from Theorem 1.1 in Csaki and Gonchigdanzan [6]
that, provided 7 satisfies (1),

lim 1
N—»oo lOg N

Due to (50), (51)

(51)

Z —I{M, <up}=¢€¢" as.

(52) A}l_lgo ogN Z —I{M, < up,mp, <uvp}
1
lim —I{M, < <
= Jlim logN Z { Un} — hm logN Z I{M, < up,mp > vyp}

=e " —e (T+’7) =e 7 (1 - e_") a.s.

Derivations in (52) imply the result (2) in our assertion. =

Proof of Theorem 1(ii). Under the assumptions in (3), the result (4)
follows immediately from Theorem 1(i), by identifying uy,, v, with z/a,+by,
y/an + Bn, and 7, n with —log G (z), —log (1 — H (y)), respectively. w

Proof of Theorem 2(i). The idea of this proof is similar to the idea of
the proof of Theorem 1(i). First, we will show that, under the assumptions
of Theorem 2(i),

N
1 1
E = (I {Mp<tn,mp>vp}—P {My,<un,m,>vn}) e 0 a.s.
—00

53
(53) logNn:1 n

Put np:=1 {M,<unp,mp>v,}. In order to prove (53), we will estimate the
variance

N
1
(54) Var(Z Enn> < Z —Var (n,)+ 22 |Cov (M, 0|

n=1 1<k<n<N
=: D1 +Ds.
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Clearly
(55) Dy <<Z — <o0.

Thus, we only need to estimate the component Dj in (54). We have
|Cov (N, ) |= |Cov (I { My <ug,mr>vi}, I {Mp<un,mp>v,})|
LE I {Mp<up,mp>vn}—I {Mj n<tin, Mg n>vn}|
+|Cov (I {M<ug, mp>vi}, I {Mppn<tn, mpn>vn})|.
Thus, by Lemmas 2, 3,
|Cov (i, )| <k /n+ (log log n) ~1+) for some £>0.
This and the definition of Ds in (54) imply

N-1 N
1k 1 _
(56) D2<<z Z Eﬁ—i_ Z R(loglogn) (1+€)::D21+D22.

k=1 n=k+1 1<k<n<N
By the estimation of By in the proof of Theorem 1(i), we get
(57) Do <log N.
We have the following estimate for Doy in (56)

1
(58) D2 <<Z e Z Z o Tte

n (log log n n (loglogn)
log N (log N
o8 H_EZ— ___O_g_)Tﬁ for some £>0.
(loglog N) — (loglog N)
Due to (56)—(58)
log N)?
(59) D2<<(l(—fg-ﬁ))1? for some £>0.
og log
Thus, by (54), (55) and (59),
N 2
1 (log N)

60 Var —I{M,<u,,m,>v &« ——>—"—-— for some £>0.
(60) (; n (Mo < n}) (loglog N)'*¢

This and Lemma 3.1 in Csaki and Gonchigdanzan [6] imply (53).
Moreover, it follows from Lemma 4 that

(61) lim P{Mngun,mn>vn}:e_(7+”), where 7, 7) satisfy (6).
n—00

Since (60), (61) hold, then, by the regularity property of logarithmic means,
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we obtain that

(62) lim —

N
1
fd ——(T+n)
o g N nE=1 nI {My<up,mp,>v,}=e a.s.

Furthermore, it follows from Theorem 1.1 in Csaki and Gonchigdanzan [6]
that
N

. 1 1 _

By using (62), (63) and proceeding analogously as in (52), we immediately
get

N
, 1 1 ., _
U 2 DSt Sin) e (1) .

which is the result (7), we wished to prove. =

Proof of Theorem 2(ii). It is easy to check that, provided ay, by, an,
Br, are defined such as in (8), (9), assumption (6) holds with: u, := z/a,+bn,
T:=¢e"% up :=y/an+ P, n:= e Y. Therefore, the almost sure convergence
in (10) follows from Theorem 2(i), by identifying u,, v, with z/a, + by,
y/an + Bn, and 7, n with e™* e7Y, respectively. =
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