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ON THE ALMOST SURE CENTRAL LIMIT THEOREMS 
IN THE JOINT VERSION FOR THE M A X I M A 

A N D MINIMA OF SOME R A N D O M VARIABLES 

Abstrac t . Let: { X } be a sequence of r.v.'s, and: Mn := max ( X i , . . . , Xn), mn : = 
min ( X i , . . . ,X n ) - Our goal is to prove the almost sure central limit theorem for the 
properly normalized vector {Mn,mn}, provided: 1) {X,} is an i.i.d. sequence, 2) {Xi} is 
a certain standardized stationary Gaussian sequence. 

1. Introduction 
The almost sure central limit theorem (ASCLT) has become an inten-

sively studied subject in recent years. The simplest versions of the ASCLT 
have been proved in the papers of Brosamler [3], Schatte [19], Fisher [12], 
Lacey and Philipp [13] and Berkes and Dehling [1], They relate to the AS-
CLT for the sums of independent r.v.'s. The ASCLT for sums has been later 
generalized by Peligrad and Shao [18], Matula [15], [16], Mielniczuk [17] and 
Dudzinski [8], for the sums of some weakly dependent r.v.'s. Starting from 
Cheng et al. [4] and Fahrner and Stadtmueller [11], the ASCLT for maxima 
of r.v.'s has become another popular direction of the research concerning the 
topic. The ASCLT for the maxima of independent r.v.'s has been proved 
in the mentioned papers. These results have been later extended by Csaki 
and Gonchigdanzan [6] and Dudzinski [7] to the cases of maxima of certain 
stationary Gaussian sequences. Some other valuable results concerning the 
issue of the ASCLT's are due to Berkes and Csaki [2], Stadtmueller [20] and 
Dudzinski [9], [10]. In Berkes and Csaki [2], the ASCLT's for the variety 
of functions of independent r.v.'s, such as maxima of partial sums, the Kol-
mogorov statistics, U-statistics etc. have been proved. In [20], the proof of 
the ASCLT for certain order statistics of i.i.d. r.v.'s has been given. In turn, 
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the result in [9] considers the ASCLT in its joint version for the maxima and 
sums of some r.v.'s, while the ASCLT for the vectors of several large maxima 
and for some random permanents has been stated in [10]. 

The purpose of our paper is to prove another version of the ASCLT, 
which is the ASCLT in its joint version for the maxima and minima of some 
r.v.'s. Namely, we investigate the almost sure convergence of the follow-

f 1 N 1 1 
ing sequence of logarithmic means: < — V] —I{Mn < un,mn < vn \ >, 

{logNn=1n J 
where: Mn, mn denote the maximum and minimum of some r.v.'s X\,..., 
Xn, respectively, and {un}, {vn} are certain numerical sequences. We shall 
show that the almost sure convergence occurs for such the logarithmic ave-
rages, provided {X,} is an i.i.d. sequence or {Xi} is some standard normal 
one. 

The following notations will be used in our paper: Mn := 
max(Xi , . . .,Xn), mn := min(Xi , . . .,Xn), MkyH := maxpf f e + 1 , . . .,Xn), 
mk,n '•= rciin(Xfc+1,..., Xn), r (n) := Cov (X\,X\+n), $ - the standard 
normal d.f., CG (CH) - the set of the continuity points of the d.f. G (H). 
Furthermore, / (n) <C g (n) and / (n) ~ g (n) will stand for / (n) = O (g (n)) 
and / (n) /g (n) —> 1, as n —> oo, respectively, and —> will denote that the 
convergence occurs at all the continuity points of the limit function. 

2. Main results 
Our first main result is the following ASCLT in the joint version for the 

maxima and minima of i.i.d. r.v.'s. 

THEOREM 1. Suppose that Xi,X2,... is an i.i.d. sequence with the common 
d.f. F. Then: 
(i) I f , for some numbers 0 < r < oo, 0 < rj < oo, the sequences {un}, {vn} 
satisfy, respectively: 

(1) n (1 - F (un)) — • T, nF (vn) —> rj, as n —> oo, 

we have 

1 * 1 (2) lim — y ^ -I {Mn < un, mn < vn} = e T ( l - e 7?) a.s., 
N—KX) l og J\ i—' n 

n = l 

(ii) I f , for some d.f.'s G, H, the sequences {an > 0}, {bn} and {an > 0}, 
{Pn} are such that: 

(3) P{an{Mn-bn) <x}^G(x), P{an(mn-(3n) <y}^H{y), 

we have for all x € CQ, y G CH that 
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(4) lim — ! — Y] -I {an (Mn - bn) < x, an (mn - /3n) < y} 
N—>00 log J\ *—' n 71—1 

— G{x)H (y) a.s. 

The second of our main results is the following ASCLT in the joint version 
for the maxima and minima of some stationary standard normal sequences. 

THEOREM 2. Suppose that X\,X2,... is a standardized stationary Gaussian 
sequence. Let the covariance function r (n) := Cov {X\,Xi+n) satisfy 

(5) r (n) logn (loglogn) 1 + e <!C 1 for some e > 0. 

Then: 
(i) I f , for some numbers 0 < r < 00, 0 < rj < 00, the sequences {un}, {vn} 
satisfy, respectively: 

(6) n (1 — $ (un)) —> T, (vn) —>77, as n —> 00, 

we have 

1 N 1 
(7) lim ——- V - / {Mn < un, mn<vn} = e T ( l - e r') a.s., 

N—HX> l o g iV —' n n= 1 
(̂m̂) i / i/ie sequences {an > 0}, {&n} and {cxn > 0}, {/3n} are suc/i that: 

a n : = ( 2 1 o g n ) 1 / 2 , 

^ bn : = (2logn)1 / / 2 - ^ (21ogn)" 1 / 2 (loglogn + log47r), 

a n : = - ( 2 1 o g n ) 1 / 2 , 
(9) 

pn : = - (2logn) 1/ 2 + - ( 2 l o g n ) - 1 / 2 (loglogn + log47r), 

we have for all x, y € K that 

1 N 1 (10) lim — V " -I {an (Mn - bn) < x, an (mn - 0n) < y} N—too log Jy n n=1 

= exp (-e~~x) ( l - exp ( - e ~ y ) ) a.s. 

3. Auxiliary results 
In this section, we state and prove four lemmas, which will be needed for 

the proofs of our main results. The first lemma will be applied in the proof 
of Theorem 1, while the next three ones will be used in the proof of Theorem 
2. Here the first of the mentioned lemmas is. 
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LEMMA 1. Under the assumptions of Theorem 1 on X\,X2, • • •, and {un}, 

{vn}, we have for k < n that 

(11) |Cov (I{Mk < uk,mk > vk} ,I{Mn < un,mn > vn } )| < k/n. 

P r o o f . Let k < n. Notice that 

| Cov (I {Mk < uk,mk >vk},I {Mn < un, mn > vn})l 

< E \I {Mn < Un, mn >vn} - I {Mktn < un, mk,n > vn}| 

+ |Cov(I{Mk < uk,mk > vk},I{Mktn < un,mk,n > v„})|. 

Observe that, since the X[s are independent, the second component in the 
last derivation is equal to zero. As moreover, the event {Mn < un,mn > vn} 

is a subset of the event {Mk n < un, mk^n > vn}, we obtain 

(12) | C o v ( I { M k < uk,mk > vk},I{Mn < un,mn > un})| 

<c E \I {Mn < Un, mn > vn} ~ I {Mfejn < un, mk n > 

= P {Mktn < Un, mfc,n > vn} - P {Mn < un, mn > vn} • 

Thus, by (12) and an assumption that the X[s are i.i.d. r.v.'s with the 
common d.f. F , we get 

| Cov (I {Mk < uk, mk >vk},I {Mn < un, mn > u„})| 

< P {Xk+i <Un,..-,Xn< Un, Xk+1 > Vn, • • • , Xn > Vn} 
-P{X 1 <Un,...,Xn<Un,X 1 >Vn,...,Xn> Vn} 

= P {vn < Xk+i <Un,...,Vn<Xn< tin} 

- P {vn < Xi < Un,. . . ,Vn < Xk+1 < un,..., vn < Xn ^ Un} 

= (F K ) - F (vn))n~k - (F (un) - F (vn))n . 

This and the elementary fact that zn~k — zn < k/n, if 0 < z < 1, yield 

|Cov(I{Mk < uk,mk > vk},I{Mn < un,mn > un})| < k/n, 

which is the desired result (11). • 

We now formulate and prove three lemmas, which will be used in the 
proof of our second main result. 

LEMMA 2. Under the assumptions of Theorem 2 on X\,X%, • • •, and {un}, 

{un}> t (n), we have for k < n that 

(13) E\I{Mn < un,mn > vn} — I {Mk n < un,mktn > Ml 

<g; k/n + (loglogn)~^1+£^ for some £ > 0. 
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P r o o f . Let k < n. Since the event {Mn < un,mn > vn} is a subset of the 
event {Mk)U < un,mktn > vn}, we have 

E\I{Mn < un,mn > vn} - I{MKn < un,mKn > 

= P {Mk,n < Un, m k i n > v n } - P { M n < u n , m n > v n } . 

Therefore, 

( 1 4 ) E 11 {Mn < un, mn >vn} - I {Mkin < un, mk>n > 

= (P {M f c j n <un} + P {mKn > v n } - P {{MKn < un} U {mktn > v n } } ) 

- (P {Mn <un} + P {mn > v n } - P {{Mn < un} U {mn > w n } } ) 

= (P {MKn < U n } - P {Mn < Un}) + (P {m^n > Vn} - P {mn > V n } ) 
+ (P {{Mn < U n } U {mn > wn}} - P {{MKn < un} U {mKn > Vn}}) • 

As {{Mn < Un} U {mn > u n } } is a subset of {{Mk,n < un} U {mktn > u n } } , 
we get 

P {{Mn < un} U {mn > v n } } - P {{Mk n < un} U {m fc,n > v n } } < 0. 

This and (14) yield 

( 1 5 ) E\I{Mn < un,mn > vn} - I{Mk,n < un,mkin > u„ }| 

< (P {Mk)n < u n } - p {Mn < un}) + (P {mKn > vn} - P {mn > vn}). 

It follows from the proof of Lemma 2.4 in Csaki and Gonchigdanzan [6] that 

( 1 6 ) P {Mk n < U n } - P {Mn < Un} 

<C k/n + (loglogn)~^1+e:^ for some e > 0. 

Thus, it remains to estimate the difference (P {mk^n > vn} — P {mn > vn}). 
Clearly, we have 

(17) P {m f c ) n > vn} - P {mn > vn} 

= P {— m a x (—Xk+i,..., —Xn) > vn} - P { - m a x ( - X i , . . . , -Xn) > vn} 

= P {max ( — . . . , —Xn) < -vn} - P { m a x ( - X i , . . . , -Xn) < - u „ } . 

Set: Mn := max ( - X i , . . . , -Xn), Mk^n : = max ( - X k + 1 , . . . , -Xn), r (n) := 
Cov (—X\, — X i + n ) . It is obvious that r (n) = r ( n ) . In addition, since the 
sequence { X i } is standard normal, the sequence {—Xi} is standard normal 
as well, and Mk,m M n are the maxima of some standardized stationary 
Gaussian r.v.'s. Due to an assumption on {vn} in (6) and the fact that 

(vn) = n (1 - $ ( - « „ ) ) ~ n exp / v ^ F ( - « „ ) , 
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we get: 

(18) exp — -——— ~ for some K > 0, 
V 2 J n 

( - v n ) ~ ( 2 1 o g n)1'2. 

Thus, by applying (17) and replacing Mn by Mn and un by (—vn) in the 
proof of Lemma 2.4 in Csaki and Gonchigdanzan [6], we obtain 

(19) P {mfc)„ > vn} - P {mn >vn} = P |M fc>n < - w n } - P {Mn < - v n } 

<C k/n + (loglogn) -^1+£) for some e > 0. 

The relations in (15), (16) and (19) imply 

E 11 {Mn < Un, mn > Vn} - I {Mktn < Un, mk,n > 

< k/n + ( loglogn)" ( 1 + e ) for some e > 0, 
which is the desired result (13). • 

We now give the proof of the following auxiliary result. 

LEMMA 3. Under the assumptions of Theorem 2 on X\,X2, • • •, and {un}, 
{vn}, r (n), we have for k < n that 

(20) |Cov (I {Mk < uk, mk > vk} , I {MKn < un, mkjTl > v„})| 

<C (loglogn)~^1+e^ for some £ > 0. 

P r o o f . Let k < n. We have 

|Cov (I {Mk < uk,mk > vk} , I {Mkjn < un,mktn > vn})| 

= |P {Mk < uk, mk > vk, Mk<n < un, mkin > vn} 
—P {Mk < uk,mk > vk}P{Mk,n < un, mk>n > vn}\ • 

It is easy to check that 
|Cov(I{Mk < uk,mk > vk},I{Mktn < un,mk^n > u„})| 
= |P{vk < Xi < uk,...,vk < Xk< uk,vn < Xk+1 < un,...,vn < Xn < un}. 
-P{vk < Xi < uk,...,vk < xk< uk}P{vn < Xk+i < un,...,vn < Xn< Un}\. 

Let , . . . , X n^ denote a standard normal vector, which has the same 
distribution as . . . ,Xn), but is independent of ( X i , . . . ,Xk). Put: 

= Xh i = 1,... ,n}, 
(21) f - 1 

irji = Xi, i = 1,..., k\ r]i = Xi, i = k + 1 , . . . , n j . 
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Thus, we can write that 

|Cov (I {Mk < itfc, mk > vk} , I {Mfc>„ < un, mk,n > «n})| 

= IP {vk < € l < U k , . . . , V k < £ k < Uk, Vn < <Un,...,Vn<£n< Un} 

- P {vk < T ] l < U k , . . . , V k < T ] k < Uk, vn < T]k+1 < U n , . . . , V n < T ] n < U n } \ . 

Denote by f\ - the n-dimensional normal joint density function of the se-
quence {£1,. . . ,£fc>£fc+i> • • • >£n}> based on the positive definite covariance 
matrix A1, and by /o - the n-dimensional normal joint density function of 
the sequence {771,..., rjk, t]k+i, • • •, Vn}, based on the positive definite cova-
riance matrix A0. By using these notations together with the last equality, 
we have 

(22) | C o v ( I { M k < uk,mk > vk},I{MktTl < un,mk,n > vn } )| 
«n Un Uk Uk 

= \ ••• \ \ • • • \ h (yi> •••iVk, Vk+i, •••,yn)dyi... dykdyk+1 ...dyn 

Vn Vn Vk Vk 

Un Un Uk Uk 

~ \ • • • \ \ ••• \ fo(yi,---,Vk, Vk+i, ...,yn)dyi... dykdyk+i ...dyn 

Vn Vn vk vk 

Set Ah := hA1 + (1 - h) A0, 0 < h < 1. The matrix Ah is positive definite 
with units down the main diagonal and the elements hAjj + (1 — h) A^- for 
i j. Let fh stand for the n-dimensional normal joint density function, 
based on the covariance matrix Ah, and 

F{h) := 

Un Un Uk Uk 

\ • • • \ \ • • • \ fh (yii • • •> Vk, Vk+i, •••,yn)dy\... dykdyk+i... dyn. 
Vn Vn Vk Vk 

Then, due to (22), 

(23) I C o v ( I { M k < uk,mk > vk},I{Mk:n < un,mk,n > u„})| 

= |F ( 1 ) - F (0)| = 

where 

F' (h)dh 

F' (h) = 

u„ unuk uk dfh(yi,...,yk,yk+1,...,yn) 

\ ... ) \ ••• \ Q^ dyi ... dykdyk+i... dyn. 
Vn Vn Vk Vk 

The density fh depends on h only through the elements A^, i < j, of the 

matrix Ah. Notice that, as A^ = hAjj + (1 - h) A^, if i < j, we get 
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OAij/dh = A -̂ — A°- for i < j. Furthermore, since = 1, we obtain 
dkhJdh = 0. Hence 

u„ un uk Uk flf dAh 

F ' ( h ) = E I ••• H • • S ^ ^ d y i . . . d y k d y k + 1 . . . d y n 
i<j Vn V„ Vk Vk ij 

Un Un Uk "fc Q i 
= E ( A i - A y ) ! • • • S S • • • S • • • *«kdyk+i.. • dyn. 

l<j Vn v„ Vk Vk ij 

By the property of the multidimensional normal density (see Cramer and 

Leadbetter [51, p. 26), we have — ^ ^ . Therefore, 
dA 2j dyldy3 

Un Un Uk Uk o2 f 
F' (h) = ( A i - - A?.) i . . . n • • • ! Q^t.dy 1 • • • • • • dVn-

i<j Vn Vn Vk Vk 

Set: 

f uk, m = l , . . . , k , f vk, m = l , . . . , k , 
(24) wm:=i zm:=< 

[ un, m — k + 1,..., n, [ vn, m = k + 1,..., n, 

a n d : w : = ( i o i , . . . , wn), z : = ( z u . . . , zn), dy := dyi... dykdyk+1... dyn. 
Let in addition, fh (y% = a, yj = b) denote the function of n — 2 variables, 

obtained by putting yt = a, yj = b into the formula on fh{yi, • • •, yu-, Vk+1, 
...,yn). Then 

w' 
= £ (A-j - A%) \ . . . \ f h ( y i = Wi, y j = W j ) dy' 

i<j z' 
w' 

- £ (A^ - A?.) \ . . . \ f h ( y i = Wi, y3 = Zj) dy' 

i<j z' 
w' 

- ^ (4- - A%) \ . . . \ f h ( y i = Zi, y3 = W j ) dy' 
i<j z' 

w' 
+ £ (Ai- - A?.) \ . . . \ f h ( y i = Zi,yj = Z j ) dy', 

i<j z' 

dyi... dyi-idyi+\... d y j - i d y j + i . . . dyn, 1 < i < j < n, 

dy2 dyn-1, i = l , j = n. 

where 

dy' = dy'^ := 
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Moreover, we can dominate the last integrals by replacing (A*- — A ^ ) and 
— (A^- — A ? ) by their absolute values, and by allowing the variables to run 
from — oo to oo. Therefore, 

oo 
(25) F' (h ) < E 1 4 - 4 1 S • • • S fh (yi = m, yj = Wj) dy' 

i<j -oo 
oo 

+ ^ | Al - K% 15 • • • 5 fh (yt = wuV] = Z j ) dy' 

i<j -oo 

oo 
+ J ] |Ajj- - A?. I j • • • J fh (yi = zh y3 = Wj) dy' 

i<j -oo 
oo 

+ £ I A*,. - K% I j • • • j A (Vi = Zl, yj = Zj) dy'. 

i<j -oo 
Notice that 

oo oo 

j • • • \ fh (yi = Wi, yj = Wj) dy', \---\fh(yi = wh yj = Zj) dy', 

—oo —oo 
oo oo 

\ •••\fh(yi = Zi, yj = Wj) dy', \---\fh(yi = Zi, yj = Z j ) dy' 
—oo —oo 

are the joint densities of two standard normal r.v.'s, evalueted at (Wi,Wj), 
(Wi,Z j ) , (zi, Wj), (Z i , Z j ) , respectively, with the correlation A^-. Thus: 

oo 
(26) \---\fh(Vi = Wi,yj = Wj)dy' 

—oo 
1 ( Wf - 2 A i i W i W j + W2: 

2tt(1 - (AM 2 )V2 
r < - 2Kjwiwi + wj \ 

e X P \ 2(1 - (A^ ) 2 ) / ' 

(27) \---\fh(Vi = Wi,Vj = Zj) dy' 

1 f 2M>;WiZj + 2? • 

2tt(1 - (AM2 )1/2 

f wf-2A ^wjzj + z^ 

e X P l 2 ( 1 - ( A M 2 ) / ' IJ/ ) V V \ IJ 

(28) \ • • • \ fh (yi = Zi, yj = Wj) dy' 

— OO 
1 f zf - 2 A t e w , + W> • 

2^(1 - (AM 2 )V2 

f zf-2A?jziwj + wj] 

e X P l 2 ( 1 - ( A M 2 ) / ' l] J / v V V ZJ 
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(29) \---\fh(yi = Zi, Vj = Zj,) dy' 

1 r z f - 2k%ZiZj + z2 

exp< — 
27r(l - ( A ^ ) 2 ) 1 / 2 2 ( 1 - ( A ^ ) 2 ) 

W e have A'1- ^ + ( l ~ / i ) A° . < max(|Ay |, |A°.|) = : P i j . Clearly 

a2 - 2A^a6 + b2 _ a 2 - 2A^ab + b2 a 2 - 2|Aj.| |a| |6| + b2 

1 - ( A £ . ) 2 " ( 1 - | A S | ) ( 1 + |AJ|) - ( l - | A j | ) ( l + p y ) 

> a 2 + 62 

1 + ftj ' 

lows fron 

its minimum for c = 0. Th is and (26 ) - (29 ) imply: 

, . r ,, , i r i a2-2\c\\a\\b\ + b2 
where the last relation follows f rom the fact that — reaches 

1 — c 

00 I f w2 + w2 ) 
(30) i - ̂  5 fa (m = wl, Vj = Wj) dy' < e x P ( " ¿ ( T T ^ ) j ' 

00 1 f w2 + z2 

(31) P ( - ^ Y T ^ ) / ' 

00 1 f z2 + w2 

(32) \-..\fh (w = y3=W]) dy' < 2?r(1 ,)1/2 j> 
Ji]> 

v2 i ~2 0 0 l r z - i 
(33) i • J fa ( K = , W = z , ) d y ' < 2 7 r ( 1 _ p , ) 1 / 2 exp | - j . 

By (30 ) - (33 ) and (25), we get 

( 3 4 ) 

2?r(l 

1 

2tt(1 
- / ^ ) 1 / 2 

1 

2tt(1 - P?;)1 / 2 

i<3 

Z? + Z^ 

Kj 



On the almost sure central limit theorems 715 

Observe that, due to (5), r (n) —• 0, as n —» oo. This and the remark before 
the statement of Lemma 4.3.2 in Leadbetter et al. [14] imply supn>i |r (n)| = 
5 < 1, which yields that supj^ \pij\ = S < 1. Therefore, 
< 3 5 ) 

Let C = C (S). Obviously C is a positive constant, which depends only on 
5. Due to (34), (35), we deduce that F' (h) is not greater than the sum 

^ E l A i - A S I ^ - ^ J ^ E l A i - A S I ^ - ^ } . 

This and the relation in (23) imply 

( 3 6 ) | Cov (I {Mk < uk, mk >vk},I {MKn < un, mktTl > u„ } )| 

^ D A ^ I e x p f ^ h 

1 ( _L z 2 N 

1 ( Z? + W1-

By the definitions of the sequences {£ i , . . . ,£n}> . . . , r/n} in (21), we 
obtain that the elements A|j; A? , i < j , of their covariance matrices A1, A0, 
are defined as follows: 

A}j = Cov (Xu Xj) = r (j — i), i < j, 

i Cov ( X i , Xj) = r (j — i), 1 < i < j < k or A: + 1 < i < j < n, 

%3 \ 0, i = 1,... ,k, j = k + 1,... ,n. 

Hence, provided i < j, 

i A i _ A o j = i\r(j -i)\,i = l , . . . , k , j = k + l , . . , , n , 
13 %3 1 0 , otherwise. 

This, (36) and the definitions of {zm} in (24) imply 
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|Cov ( I {Mk < uk, mk > v k } , I {Mk}U < un, mktTl > un})| 

Thus, 

( 3 7 ) | C o v ( I { M k < uk,mk > v k } , I { M k , n < un,mKn > u n } ) | 

^ E M O I e x p j - ^ ^ l . / E M ^ I e x p j - ^ l ^ } 

=: Ai + A2 + A3 + A4. 

It follows from the assumptions on {un}, {vn} in (6) and Lemma 2.1 in Csaki 
and Gonchigdanzan [6] that 

(38) Ai < ( loglogn)" ( 1 + £ ) for some e > 0, i = 1,2,3,4. 

The relations in (37), (38) establish the desired result (20). • 

Lemma 4. Under the assumptions of Theorem 2 on Xi,X2,.. •, and {un}, 
{vn}, t (n), we have for k < n that 

( 3 9 ) l i m P {Mn < un,mn > vn} = where r, 77 satisfy (6). 
n—>00 

P r o o f . Let {Xi} be an i.i.d. standard normal sequence. Put: Mn := 
max(Xi , . . . , Xn), fhn := m i n ( X i , . . . , Xn). First, we shall estimate the 
term | P {Mn < un,mn > vn} — P{Mn < un,mn > un}|. Observe that 

P {Mn < Un, mn > v n } - P | m „ < u n , m n > v n } | = 

P { v n < X i < u n , . . • , v n < X n < u n } - P \ v n < X i < u n , . . . , v n < X n < u n \ \ . 
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Thus, by applying similar methods to those used in the estimation of 
the term | C o v (I {Mk < uk, mk > vk} , I {MkiTl < un, mk>n > i;n})| in the 

proof of Lemma 3, with: = Xi, i = 1 , . . . , n}, = Xi, i = 1 , . . . , n j , 
{wm = un, m = 1 , . . . , n} , {zm = vn, m = 1 , . . . , n} , we get, for some posi-
tive constant C, that 

P {Mn < un, mn > vn} - P |Mn < un, fhn > | 

+ E | r O - « ) | e x p { - < + v l 

i-1 j=i+1 ^ 

"n 1 "n 

n—1 n 

n—1 n 

2(1 + | r ( j - 01) 

t * + < 
2(1 + 1 r ( j ~ 01) 

< + v2 \ v „ ^ 2 ( 1 + , r ( i _ < ) | ) 

Hence 

( 4 0 ) | p { M „ < un,mn >vn} - P j M n < un,mn > j | 

- E M O I e x p j - ^ ^ J . n E H ^ p f - ^ ^ } . 

By (6), we have: 

ul\ KiV2nun f (-vn)2\ K2V2Ir(-vn) 
exp —— , exp 

2 / n \ 2 J n 

for some K U K 2 > 0, un ~ (2logn) 1 / 2 , ( - u n ) ~ (2logn) 1 / 2 . This, (40) and 
Lemma 2.1 in Csaki and Gonchigdanzan [6] yield 

(41) P{Mn < un,mn > vn}-P^Mn < un,rhn > u n J| < ( loglogn)~ ( 1 + e ) 

for some e > 0. 
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Since (loglogn)-^1+£) —» 0, as n —> oo, it follows from (41) that 

(42) lim P {Mn < un, mn > vn} - P \Mn <un,mn>vn\\= 0. 
n—>oo L J I 

Moreover, due to Theorem 1.8.2 in Leadbetter et al. [14], we obtain that, 
provided r, 77 satisfy (6), then 

(43) lim PIMn < un,mn > = e " ^ . 
n—too I J 

Due to (42), (43) 

lim P {Mn < un, mn > vn} = lim P{Mn< un, rhn > vn \ = e~(T+7?\ 
n—>oo n—>oo I J 

which is the result (39), we wished to prove. • 

We now give the proofs of our main results. They make an extensive use 
of the earlier proved Lemmas 1-4. 

Proo f of Theorem l(i). First, we will show that, under the assump-
tions of Theorem l(i), 

1 N 1 
(44) — ~(I {Mn < un, mn >vn}-P {Mn < un, mn > vn}) 

log iV n = i n 

—> 0 a.s. 
N—>oc 

Put ¡jin '•= I {Mn < un,mn > vn}. In order to prove (44), we will estimate 
the variance 

f N 1 \ N 1 1 
(45) Far J < Far (/xn) + 2 ] T — \Cov ( f i k , Mn)| 

n=l ' n = l l<k<n<N 

=: Bx + B2. 
Obviously 

N 1 
(46) Bx « V < 0 0 . 

n=1 

Thus, it remains to estimate the component B2 in (45). By Lemma 1, we 
have 

N-1 N 1 , N—l N n N—l 1 

k=1 n = f c + l fc=l n=k+1 fe=l Due to (45)-(47) 

/ " 1 \ 
(48) Var f ^ - 7 {Mn <un,mn> vn}J < log TV. 

71—1 
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This and Lemma 3.1 in Csaki and Gonchigdanzan [6] imply (44). It follows 
from Theorem 1.8.2 in Leadbetter et al. [14] that 

(49) lim P{Mn < un,mn > vn} = e~^T+r)\ where r , 77 satisfy (1). 
n—>oo 

Since (44), (49) hold, then, by the regularity property of logarithmic means, 
we have 

1 * 1 
( 5 0 ) l i m V - J {Mn < mn > vn] = e (r+??) a.s. 

N-* 00 log JM ' n n= 1 

Furthermore, it follows from Theorem 1.1 in Csaki and Gonchigdanzan [6] 
that, provided r satisfies (1), 

I N I 
( 5 1 ) l i m — —I{Mn < u n } = e T a . s . 
v ' N-foo log N n 

7 1 = 1 

Due to (50), (51) 

1 N 1 
(52) lim — y - I {Mn < Un, m„ < vn} 

N—>oo log N ' n 
n=1 

I N I 1 N 1 
= lim — Y] - I {Mn < un} - lim — - I {Mn < un, mn > vn] 

Af—>00 log N 1' n iv—»00 log N n n=1 n=1 

= e~T - = e~T ( l - e - " ) a.s. 

Derivations in (52) imply the result (2) in our assertion. • 

P r o o f of T h e o r e m 1 (ii). Under the assumptions in (3), the result (4) 
follows immediately from Theorem l(i), by identifying un, vn with x/an+bn, 
y/an + (3n, and r , 77 with — log G (x) , — log (1 — H (y)), respectively. • 

P r o o f of T h e o r e m 2(i). The idea of this proof is similar to the idea of 
the proof of Theorem l(i). First, we will show that, under the assumptions 
of Theorem 2(i), 

1 N 1 
n ^ Vn \ P { Mn <un,mn>vn}) — > 0 a.s. log N ' n Af—»00 

n=1 
Put rjn:=I {Mn<un,mn>vn}. In order to prove (53), we will estimate the 
variance 

/ N 1 \ N 1 1 
( 5 4 ) Varl^-rin) < + 2 ^ — \Cov Vn)\ 

1 ' n=1 l<k<n<N 

=: Di+D2. 
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Clearly 

N 1 
(55) 2<°°-

n=l 

Thus, we only need to estimate the component Z?2 in (54). We have 

\Cov(r]k,r]n)\= \Cov (I {Mk<uk,mk>vk} , I {Mn<un,mn>vn})\ 

<^E\I {Mn<un,mn>vn}-I {Mk,n<un,rrik,n>vn}\ 

+ |Cov (I {Mk<uk, mk>vk} , I {Mktn<un, mk^n>vn})\ 

Thus, by Lemmas 2, 3, 

I Cov (r}k,r]n) | < k/n+(log log n)~ ( 1+e ) for some £>0. 

This and the definition of £>2 in (54) imply 

(56) D2<<"£ £ £ i-aoglogn)-^)^:^^^. 
fc=1 n=k+1 1 <k<n<N 

By the estimation of B2 in the proof of Theorem 1 (i), we get 

(57) £>2i<logAT. 

We have the following estimate for D22 in (56) 
N .. n—1 1 N . I 1 ^ logn 

(58) D22 < V — — - — 
^ n (log log n) £ k ^ n (log log n) l+e 

log iV ^ l (log AT)2 f 
<C 5 777 / - < — — — f o r some e>0. 

(log log JV) n (log log iV) 

(59) £>2«:,, , J u + e for some e>0. 

n=3 

Due to (56)-(58) 

(log AT) 

(log log AT) 

Thus, by (54), (55) and (59), 

(60) Var(Y] —I {Mn<un,mn>vn}\ <C for some £>0. 
/ (log log AT) 

This and Lemma 3.1 in Csaki and Gonchigdanzan [6] imply (53). 
Moreover, it follows from Lemma 4 that 

(61) lim P {Mn<un, mn>vn}=e~(T+r,\ where r, 77 satisfy (6). 
n—>00 

Since (60), (61) hold, then, by the regularity property of logarithmic means, 
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we obtain that 

1 N 1 
(62) lim - J ^ - I { M n < u n , m n > v n } = e - ( T + r i 0 . s . 

N-> oo log N ' n n=l 

Furthermore, it follows from Theorem 1.1 in Csaki and Gonchigdanzan [6] 
that 

1 1 
(63) lim — y ^ —I {Mn<un}=e~T a.s. 
v ' N^oologN ¿-'n x f 

° n=1 

B y using (62) , (63) and proceeding analogously as in (52) , we immediately 
get N 

1 ^ 1 
J i m 1 ^ y^ - I {Mn<Un,mn<vn}=e~T (l-e~v) a.s., 
N-> oo log N n n=l 

which is the result (7) , we wished to prove. • 

P r o o f o f T h e o r e m 2(ii). It is easy to check that , provided an, bn, an, 
(3n are defined such as in (8), (9) , assumption (6) holds with: un := x/an+bn, 
T := e~x, vn : = Y/OTN + Pn, V '•= e~y• Therefore, the almost sure convergence 
in (10) follows from Theorem 2(i) , by identifying un, vn with x/an + bn, 
y/an + (3n, and r , rj with e~x, e~y, respectively. • 
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