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ON THREE-DIMENSIONAL LOCALLY (/»-RECURRENT 
QUASI-SASAKIAN MANIFOLDS 

Abstrac t . The object of the present paper is to study three-dimensional locally 
(^-recurrent quasi-Sasakian manifolds. 

1. Introduction 
On a 3-dimensional quasi-Sasakian manifold, the structure function f3 

was defined by Z. Olszak [4] and with the help of this function he has ob-
tained necessary and sufficient conditions for the manifold to be conformally 
flat [5]. Next he has proved that if the manifold is additionally confor-
mally flat with ¡3 = constant, then (a) the manifold is locally a product of 
R and a 2-dimensional Kahlerian space of constant Gauss curvature (the 
cosympletic case), or, (b) the manifold is of constant positive curvature (the 
non-cosympletic case, here the quasi-Sasakian structure is homothetic to 
a Sasakian structure). An example of a three-dimensional quasi-Sasakian 
structure being conformally flat with non-constant structure function is also 
described in [5]. 

In 1977, T. Takahashi [6] introduced the notion of locally (/»-symmetric 
Sasakian manifolds and studied their interesting properties. In [3] the notion 
of local (/»-symmetry has been generalized as the notion of locally (/»-recurrent. 
In the present paper we wish to apply the concept of locally (/»-recurrent on 
three dimensional quasi-Sasakian manifolds. The present paper is organized 
as follows. Section 1 is the introductory section. Section 2 contains some 
basic and preliminary results related with three dimensional quasi-Sasakian 
manifolds. In Section 3 we investigate the nature of the characteristic vec-
tor field of the manifolds. The nature of the curvature tensor of a three-
dimensional locally (/»-recurrent quasi-Sasakian manifold have been studied 
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in Section 6. In the last section we have constructed an example to illustrate 
the results obtained in Section 4. 

2. Preliminaries 
Let M be a (2n + 1)-dimensional connected differentiable manifold en-

dowed with an almost contact structure ((p, r), g), where <f> is a tensor field 
of type (1,1), £ is a vector field, 77 is a 1-form and g is the Riemannian metric 
on M such that [1], [2] 
(2.1) <f>2(X) = -X + r1(X)t 7?(0 = 1, 

(2.2) g{<f>X, <f>Y) = g(X, Y) - V(X)rj(Y), X, Y € T(M) 
Then also 

(2.3) <fé = 0, rj((f)X) = 0, r,(X)=g(X,Z). 
Let $ be a fundamental 2-form defined by 

$(X,Y) = g(X,<l>Y), X,Y e T(M). 
M is said to be quasi-Sasakian if the almost contact structure (<f>, rj, g) is 
normal and the fundamental 2-form $ is closed (<i<E> = 0), which was first 
introduced by Blair [2]. The normality condition gives that the induced 
almost contact structure on M x R is integrable or equivalently, the torsion 
tensor field N[(f>,(f>] + 2£ <g> drj vanishes identically on M. The rank of a 
quasi Sasakian structure is always odd [2], it is equal to 1 if the structure is 
cosympletic and it is equal to (2n + 1) if the structure is Sasakian. 

An almost contact medtric manifold M of dimension three is quasi-
Sasakian if and only if [4] 
(2.4) = -MX, X G T(M), 
for a certain function ¡3 on M such that = 0, V being the operator of the 
covariant differentiation with respect to the Levi-Civita connection of M. 
Clearly such a quasi-Sasakian manifold is cosympletic if and only if ¡3 = 0. 
As a consequence of (2.4) we have [4] 
(2.5) (Vx<l>){Y) = l3(g(X,Y)Z-ri(Y)X), X,YeT(M), 

(2.6) (V*77)00 = 9(Vxt,Y) = -0g(<l>X,Y). 
Let M be a three-dimensional quasi-Sasakian manifold. The Ricci tensor S 
of M is given by [5] 

(2.7) S ( Y , Z ) = ( ^ - P 2 y ( Y , Z ) + ( s i 3 2 - ^ { Y ) r i ( Z ) - V { Y ) d f i ( < l > Z ) 

-V(Z)d(3(<l>Y), 
where r is the scalar curvature of M. 
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In a three-dimensional Riemannian manifold we always have 

(2.8) R{X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(F, Z)X - S(X, Z)Y 

- r - ( g ( Y , Z ) X - g ( X , Z ) Y ) 

where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) and r is the scalar 
curvature of the manifold. Now as a consequence of (2.7), we get for the 
Ricci operator Q 

( 2 . 9 ) QY = ^ - jg^Y + ( V - 0 v ( V ) t + v(Y)(<i>9radf3) - d/3(4>Y)Ç, 

where the gradient of a function f is related to the exterior derivative df by 
the formula d f ( X ) = g(gradf, X ) . From (2.7) we have 
(2.10) S(Y,0 = 2(32v(Y)-df3(cj>Y). 

Moreover, as a consequence of (2.8) — (2.10) we find 
(2.11) R(X, Y)Ç = /?2(T?(F)X - n ( X ) Y ) + d(3(<j)X)Y - d(3(cj>Y)X, 

for X,Y G T(M). Prom (2.8) 

V(R(X, Y ) Z ) = g(Y, Z)V(QX) - g(X, Z)V(QY) 

+S(Y,Z)r1(X)-S(X,Z)r1(Y) 

-r-(g(Y,Z)r1(X)-g(X,Z)r1(Y)). 

For X, Y, Z orthogonal to £ we obtain from above 
(2.12) V(R(X, Y ) Z ) = g(Y, Z)V(QX) - g(X, Z)V(QY). 

3. Nature of the characteristic vector field of locally (/»-recurrent 
three-dimensional quasi-Sasakian manifolds 
D E F I N I T I O N 3 . 1 . A quasi-Sasakian manifold is said to be locally (/»-recurrent 
if there exists a non zero 1-form A such that 
(3 .1 ) 4>2((VWR)(X, Y ) Z ) = A(W)R(X, Y)Z, 

for the vector fields X, Y, Z orthogonal to 
If the 1-form vanishes, then the manifold reduces to a locally ^-symmetric 
manifold. From (3.1) and (2.1) we obtain 
( 3 . 2 ) (VWR)(X, Y)Z = r,((VwR)(X, Y)Z)Z - A(W)R(X, Y)Z. 

From (3.2) and second Bianchi identity we get 

(3 .3 ) A{W)r](R(X, Y ) Z ) + A(X)rj(R(Y, W)Z) + A(Y)t](R{W, X ) Z ) = 0 . 

By virtue of (2.12) we obtain from (3.3) 
(3 .4 ) A(W) [g(Y, Z)V(QX) - g(X, Z)V(QY)] 
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+ A(X)[g(W, Z)T](QY) - g(Y, Z)R1(QW)] 

+ A{Y)[g(X, Z)T](QW) - g(W, Z)V(QX)} = 0. 

Putting Y = Z = ei in (4.3) and taking summation over i, where i — 1, 2, 3 
and {ei} is an orthonormal basis of the tangent space at each point of the 
manifold M, we obtain 

(3.5) A(W)[3V(QX) - g(X, eMQei)} 
+ A(X)[g(W,el)r](Qei)-3rl(QW)] 
+ A{ei)[g{X, ei)V(QW) - g(W, e^QX)} = 0. 

Now the Ricci operator Q is symmetric. So 

(3.6) g(X,ei)r1(Qei) = r1(QX). 

Similarly 

(3.7) g{W,ei)r]{Qei) = r]{QW). 

Again 

(3.8) A{ei)g{X, e^QW) = A(X)V(QW). 

Similarly, 

(3.9) A(ei)g(W, ei)ri(QX) = A{W)rj{QX). 

Using (3.6)-(3.9) in (3.5) we obtain, 

(3.10) A(W)[3ri(QX) - V(QY)} + A(XMQW) - 3V(QW)} 
+ A(XMQW) - A(W)T](QX)\ - 0, 

or, 
A(X)V{QW) - A(W)V{QX) = 0. 

Putting X = £ we get from the above 

A(£)S(W,Q-A(W)S(Z,O = 0-
Using (2.10) we have from the above 

A(0S(W,0 - 202A(W) = 0. 

Again using (2.10) we see that 

A{0W2V{W) - dP(4>W)] = 2 ( 3 2 A ( W ) , 

or, 
-A(£)di3(<t>W) = 2P2A(W), 

where W is orthogonal to Putting W = £ from above we obtain, 2P2A(£) 
= 0 which implies that g(£, p) = 0. 

Thus we can state the following theorem: 
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THEOREM 3 .1 . In a locally 4>-recurrent quasi-Sasakian manifold of dimen-
sion three the characteristic vector field £ and the vector field p associated 
to the 1-form A are orthogonal. 

4. Nature of the curvature tensor in three-dimensional locally 
</>-recurrent quasi-Sasakian manifold 

From (2.8) we have 

R(X, Y)Z = g(Y, Z)QX - g{X, Z)QY + S(Y, Z)X - S(X, Z)Y 

-r-(g(Y,Z)X-g(X,Z)Y). 

Putting Z = £ and using (2.10) we have 

R(X, Y)Z = v{Y)QX - r](X)QY + 2(32V(Y)X - d/3(4>Y)X 

- 2(32r1(X)Y + dP(<i>X)Y - r)(Y)X - v(X)Y), 

or, 

R(X, Y)£ = r,(Y)QX - v(X)QY + (V - 0 (n(Y)X - rj(X)Y) 

+ d(5{4>X)Y - dp(4>Y)X. 

Using (2.11) we have from above 

(4.1) (32(V(Y)X - V(X)Y) + df3((j)X)Y - d/3(<t>Y)X 

= V(Y)QX - t](X)QY + (2(32 - r-)(V(Y)X - r,(X)Y) 

+ dp(4>X)Y - d(3(<t>Y)X 
or, 

(4.2) p\n(Y)X-n{X)Y) 

= v(Y)QX - V(X)QY + - - j (n(Y)X - V(X)Y). 

The formula (4.2) yields 

(4.3) ( V - 0 (rj(Y)X - rj(X)Y) = rj(X)QY - rj(Y)QX. 

Putting Y = £ in (4.3) we have 

(4.4) QX = ^ - ^ {x - V(X)0 + V(X)QH-

Now from (2.10), = 2/32. Hence g(Q£,£) = 2(32g(£,£). So we have 
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= 2 ß 2 £ . Prom (4.4) and (4.5), we have 

(4.6) Q X = ^ - (X - V ( X ) 0 + 2 ß 2
V ( X ) t 

Thus, in view of (4.6) we note that 

(4.7) S ( X , Y ) = C - - ß 2 ) g ( X , Y ) + { Z ß 2 - ^ { X ^ Y ) . 

From (2.8), (4.6), and (4.7) we obtain 

(4.8) R ( X , Y ) Z = - 2 ß 2 \ [ g ( Y , Z ) X - g ( X , Z ) Y ] 

+ - - J [ g ( Y , Z ) V ( X ) £ - g ( X , Z ) V { Y ) S 

+ V ( Y ) r t ( Z ) X - V ( X ) r , ( Z ) Y ] . 

Differentiating (4.8) covariently with respect to W we get 

( V W R ) ( X , Y ) Z = ( ^ p - 4 ß d ß { W ) j [ g ( Y , Z ) X - g ( X , Z ) Y ] 

+ ( f i ß d ß i W ) - ) \ g ( Y , Z ) r , ( X ) t - g ( X , Z ) V { Y ) i 

+ r ] ( Y ) r ] ( Z ) X - r 1 ( X ) r ] ( Z ) Y } 

+ - - [ g ( Y , Z ) { V w r i ) { X ) S + 9 { Y , Z ) r , ( X ) ( V w t ) 

- g ( X , Z ) { V W V ) ( Y ) Z - g ( X , Z ) r , ( Y ) ( V w O 

+ r } { Y ) { V w r 1 ) { Z ) X + ( V w r , ) { Y M Z ) X 

- ( y w r i ) ( X ) V ( Z ) Y - T } ( X ) ( V w t i ) ( Z ) Y ] . 

Here we take X , Y , Z , W orthogonal to Now we obtain from the above 

(4.9) ( V W R ) ( X , Y ) Z = { ^ p - 4ßdßiW^J \ g ( Y , Z ) X - g ( X , Z ) Y ] 

+ ( 3 ß 2 - ^ [ g ( Y , Z ) ( V w V ) ( X ) Z 

- g ( X , Z ) ( y w r i ) ( Y ) Z ] . 

Applying 4>2 on both sides of (4.9) we have 

c f > 2 ( V w R ) ( X , Y ) Z = ( ^ p - - 4 ß d ß ( W ) J [ g ( X , Z ) Y - g ( Y , Z ) X ] . 
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Assuming the manifold as locally (/»-recurrent we get from above 

(4.10) A(W)R(X, Y)Z = ( ^ p - m m ) ) [9(X, Z)Y - g(Y, Z)X}. 

Putting W = Cj, where {e8 } is an orthonormal basis of the tangent space 
at each point of the manifold, and taking summation over i,i = 1,2,3, we 
have 

R(X, Y)Z = A [g (X, Z)Y - g(Y, Z)X], 

where A = 
Now ¡3 is a scalar function and A is a non zero 1-form. Hence A is a 

constant by Schurs' theorem. Hence we conclude the following: 

THEOREM 4.1. A three dimensional locally (p-recurrent quasi-Sasakian man-
ifold is of constant curvature. 

5. Example 
In this section we give an example of locally «/»-recurrent quasi-Sasakian 

manifold of dimension three and which is of constant curvature. We take 
the 3-dimensional manifold M = { (x, y,z) 6 R3 : a; / 0}, where (x, y, z) are 
the standard coordinates in R 3 . Let {E\,E2,E3} be linearly independent 
global frame on M given by 

„ 2 0 ^ 3 4 z d d „ d 
E1 = - — , E2 = 2- — + xy—, E3 = —. 

x ay ox x ay oz oz 

Let g be the Riemannian metric defined by 

g(Eu E3) = g(E2, E3) = g{E1,E2) = 0, 

g(Ei, EX) = g{E2, E2) = g(E3, E3) = 1. 

Let 77 be the 1-form defined by r](U) = g(U,E3) for any U G x(M).Let </> 
be the (1,1) tensor field defined by 4>EX = E2, <F>E2 = -EX, <F>E3 = 0. Then 
using the linearity of (J) and g we have T](E3) = 1, CP2U =-U + T](U)E3 and 
g(4>U, (F>W) = g(U, W) - 7 ] ( U ) T ] ( W ) for any U, W € x(M). 

Thus for E3 = ((f), 77, g) defines a contact metric structure on M. 
Hence we have [Eu E2] = 2£3 + f £ i , [^1,^3] = 0, [E2, E3] = 2EX. 
The Riemannian connection V of the metric g is given by 

2 g ( V x Y , Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) 

-g(Y,[X,Z]) + g(Z, [X,Y]). 

Taking E3 = £ and using the above formula for Riemannian metric g, we 
can show that 

^EiE3 = —2E2, Ve2E3 = 2E\, VE3E3 = 0, V^-Ei = 2E2, 

VBlE2 = lEu Ve2E!=0, VE2E2 = 0, VE3E2 = 0, V£l£i = -2E2. 
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From the above it follows that the manifold under consideration is a quasi-
Sasakian manifold of dimension three. Using the above relations, we can 
easily calculate the non-vanishing components of the curvature tensor as 
follows: 

(5.2) R{E2,El)El = --E2, R{El,E2)E2 = --Ek, 
x x 

and the components which can be obtained from these by symmetric prop-
erties. Since {Ei, E2, E3} form a basis of M 3 , any vector field W can be 
taken as 

W = a-iEi + a2E2 + a3E3 

where ai G R+(the set of all positive real numbers), i = 1, 2, 3. Thus the 
covariant derivatives of the components of the curvature tensor are given by 

{VwR)(E2,E1)E1 = (VwR){E1,E2)E2 = - 8 %E2. 
xz x* 

Now from the properties of g, <f>, and R(X, Y)Z it follows that the manifold 
satisfies 
(5.3) (f>2(VwR)(X, Y)Z = A(W)R(X, Y)Z, 
for the non-vanishing 1-form A(W) = In view of (5.2) and (5.3) we 
conclude that the manifold under consideration is locally (^-recurrent and is 
of constant curvature. 
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