

U. C. De, Avijit Sarkar

ON THREE-DIMENSIONAL LOCALLY ϕ -RECURRENT QUASI-SASAKIAN MANIFOLDS

Abstract. The object of the present paper is to study three-dimensional locally ϕ -recurrent quasi-Sasakian manifolds.

1. Introduction

On a 3-dimensional quasi-Sasakian manifold, the structure function β was defined by Z. Olszak [4] and with the help of this function he has obtained necessary and sufficient conditions for the manifold to be conformally flat [5]. Next he has proved that if the manifold is additionally conformally flat with $\beta = \text{constant}$, then (a) the manifold is locally a product of R and a 2-dimensional Kahlerian space of constant Gauss curvature (the cosymplectic case), or, (b) the manifold is of constant positive curvature (the non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a Sasakian structure). An example of a three-dimensional quasi-Sasakian structure being conformally flat with non-constant structure function is also described in [5].

In 1977, T. Takahashi [6] introduced the notion of locally ϕ -symmetric Sasakian manifolds and studied their interesting properties. In [3] the notion of local ϕ -symmetry has been generalized as the notion of locally ϕ -recurrent. In the present paper we wish to apply the concept of locally ϕ -recurrent on three dimensional quasi-Sasakian manifolds. The present paper is organized as follows. Section 1 is the introductory section. Section 2 contains some basic and preliminary results related with three dimensional quasi-Sasakian manifolds. In Section 3 we investigate the nature of the characteristic vector field of the manifolds. The nature of the curvature tensor of a three-dimensional locally ϕ -recurrent quasi-Sasakian manifold have been studied

1991 *Mathematics Subject Classification*: 53C15, 53C40.

Key words and phrases: Quasi-Sasakian manifold, locally ϕ -recurrent, manifold of constant curvature.

in Section 6. In the last section we have constructed an example to illustrate the results obtained in Section 4.

2. Preliminaries

Let M be a $(2n+1)$ -dimensional connected differentiable manifold endowed with an almost contact structure (ϕ, ξ, η, g) , where ϕ is a tensor field of type $(1,1)$, ξ is a vector field, η is a 1-form and g is the Riemannian metric on M such that [1], [2]

$$(2.1) \quad \phi^2(X) = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

$$(2.2) \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in T(M)$$

Then also

$$(2.3) \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(X) = g(X, \xi).$$

Let Φ be a fundamental 2-form defined by

$$\Phi(X, Y) = g(X, \phi Y), \quad X, Y \in T(M).$$

M is said to be quasi-Sasakian if the almost contact structure (ϕ, ξ, η, g) is normal and the fundamental 2-form Φ is closed ($d\Phi = 0$), which was first introduced by Blair [2]. The normality condition gives that the induced almost contact structure on $M \times R$ is integrable or equivalently, the torsion tensor field $N[\phi, \phi] + 2\xi \otimes d\eta$ vanishes identically on M . The rank of a quasi Sasakian structure is always odd [2], it is equal to 1 if the structure is cosymplectic and it is equal to $(2n+1)$ if the structure is Sasakian.

An almost contact metric manifold M of dimension three is quasi-Sasakian if and only if [4]

$$(2.4) \quad \nabla_X \xi = -\beta \phi X, \quad X \in T(M),$$

for a certain function β on M such that $\xi\beta = 0$, ∇ being the operator of the covariant differentiation with respect to the Levi-Civita connection of M . Clearly such a quasi-Sasakian manifold is cosymplectic if and only if $\beta = 0$. As a consequence of (2.4) we have [4]

$$(2.5) \quad (\nabla_X \phi)(Y) = \beta(g(X, Y)\xi - \eta(Y)X), \quad X, Y \in T(M),$$

$$(2.6) \quad (\nabla_X \eta)(Y) = g(\nabla_X \xi, Y) = -\beta g(\phi X, Y).$$

Let M be a three-dimensional quasi-Sasakian manifold. The Ricci tensor S of M is given by [5]

$$(2.7) \quad S(Y, Z) = \left(\frac{r}{2} - \beta^2\right)g(Y, Z) + \left(3\beta^2 - \frac{r}{2}\right)\eta(Y)\eta(Z) - \eta(Y)d\beta(\phi Z) - \eta(Z)d\beta(\phi Y),$$

where r is the scalar curvature of M .

In a three-dimensional Riemannian manifold we always have

$$(2.8) \quad R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y - \frac{r}{2}(g(Y, Z)X - g(X, Z)Y)$$

where Q is the Ricci operator, i.e., $g(QX, Y) = S(X, Y)$ and r is the scalar curvature of the manifold. Now as a consequence of (2.7), we get for the Ricci operator Q

$$(2.9) \quad QY = \left(\frac{r}{2} - \beta^2\right)Y + \left(3\beta^2 - \frac{r}{2}\right)\eta(Y)\xi + \eta(Y)(\phi\text{grad}\beta) - d\beta(\phi Y)\xi,$$

where the gradient of a function f is related to the exterior derivative df by the formula $df(X) = g(\text{grad}f, X)$. From (2.7) we have

$$(2.10) \quad S(Y, \xi) = 2\beta^2\eta(Y) - d\beta(\phi Y).$$

Moreover, as a consequence of (2.8) – (2.10) we find

$$(2.11) \quad R(X, Y)\xi = \beta^2(\eta(Y)X - \eta(X)Y) + d\beta(\phi X)Y - d\beta(\phi Y)X,$$

for $X, Y \in T(M)$. From (2.8)

$$\begin{aligned} \eta(R(X, Y)Z) &= g(Y, Z)\eta(QX) - g(X, Z)\eta(QY) \\ &\quad + S(Y, Z)\eta(X) - S(X, Z)\eta(Y) \\ &\quad - \frac{r}{2}(g(Y, Z)\eta(X) - g(X, Z)\eta(Y)). \end{aligned}$$

For X, Y, Z orthogonal to ξ we obtain from above

$$(2.12) \quad \eta(R(X, Y)Z) = g(Y, Z)\eta(QX) - g(X, Z)\eta(QY).$$

3. Nature of the characteristic vector field of locally ϕ -recurrent three-dimensional quasi-Sasakian manifolds

DEFINITION 3.1. A quasi-Sasakian manifold is said to be locally ϕ -recurrent if there exists a non zero 1-form A such that

$$(3.1) \quad \phi^2((\nabla_W R)(X, Y)Z) = A(W)R(X, Y)Z,$$

for the vector fields X, Y, Z orthogonal to ξ .

If the 1-form vanishes, then the manifold reduces to a locally ϕ -symmetric manifold. From (3.1) and (2.1) we obtain

$$(3.2) \quad (\nabla_W R)(X, Y)Z = \eta((\nabla_W R)(X, Y)Z)\xi - A(W)R(X, Y)Z.$$

From (3.2) and second Bianchi identity we get

$$(3.3) \quad A(W)\eta(R(X, Y)Z) + A(X)\eta(R(Y, W)Z) + A(Y)\eta(R(W, X)Z) = 0.$$

By virtue of (2.12) we obtain from (3.3)

$$(3.4) \quad A(W)[g(Y, Z)\eta(QX) - g(X, Z)\eta(QY)]$$

$$\begin{aligned}
& + A(X)[g(W, Z)\eta(QY) - g(Y, Z)\eta(QW)] \\
& + A(Y)[g(X, Z)\eta(QW) - g(W, Z)\eta(QX)] = 0.
\end{aligned}$$

Putting $Y = Z = e_i$ in (4.3) and taking summation over i , where $i = 1, 2, 3$ and $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold M , we obtain

$$\begin{aligned}
(3.5) \quad & A(W)[3\eta(QX) - g(X, e_i)\eta(Qu_i)] \\
& + A(X)[g(W, e_i)\eta(Qu_i) - 3\eta(QW)] \\
& + A(e_i)[g(X, e_i)\eta(QW) - g(W, e_i)\eta(QX)] = 0.
\end{aligned}$$

Now the Ricci operator Q is symmetric. So

$$(3.6) \quad g(X, e_i)\eta(Qu_i) = \eta(QX).$$

Similarly

$$(3.7) \quad g(W, e_i)\eta(Qu_i) = \eta(QW).$$

Again

$$(3.8) \quad A(e_i)g(X, e_i)\eta(QW) = A(X)\eta(QW).$$

Similarly,

$$(3.9) \quad A(e_i)g(W, e_i)\eta(QX) = A(W)\eta(QX).$$

Using (3.6)-(3.9) in (3.5) we obtain,

$$\begin{aligned}
(3.10) \quad & A(W)[3\eta(QX) - \eta(QY)] + A(X)[\eta(QW) - 3\eta(QW)] \\
& + A(X)[\eta(QW) - A(W)\eta(QX)] = 0,
\end{aligned}$$

or,

$$A(X)\eta(QW) - A(W)\eta(QX) = 0.$$

Putting $X = \xi$ we get from the above

$$A(\xi)S(W, \xi) - A(W)S(\xi, \xi) = 0.$$

Using (2.10) we have from the above

$$A(\xi)S(W, \xi) - 2\beta^2 A(W) = 0.$$

Again using (2.10) we see that

$$A(\xi)[2\beta^2\eta(W) - d\beta(\phi W)] = 2\beta^2 A(W),$$

or,

$$-A(\xi)d\beta(\phi W) = 2\beta^2 A(W),$$

where W is orthogonal to ξ . Putting $W = \xi$ from above we obtain, $2\beta^2 A(\xi) = 0$ which implies that $g(\xi, \rho) = 0$.

Thus we can state the following theorem:

THEOREM 3.1. *In a locally ϕ -recurrent quasi-Sasakian manifold of dimension three the characteristic vector field ξ and the vector field ρ associated to the 1-form A are orthogonal.*

4. Nature of the curvature tensor in three-dimensional locally ϕ -recurrent quasi-Sasakian manifold

From (2.8) we have

$$\begin{aligned} R(X, Y)Z &= g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y \\ &\quad - \frac{r}{2}(g(Y, Z)X - g(X, Z)Y). \end{aligned}$$

Putting $Z = \xi$ and using (2.10) we have

$$\begin{aligned} R(X, Y)Z &= \eta(Y)QX - \eta(X)QY + 2\beta^2\eta(Y)X - d\beta(\phi Y)X \\ &\quad - 2\beta^2\eta(X)Y + d\beta(\phi X)Y - \frac{r}{2}(\eta(Y)X - \eta(X)Y), \end{aligned}$$

or,

$$\begin{aligned} R(X, Y)\xi &= \eta(Y)QX - \eta(X)QY + \left(2\beta^2 - \frac{r}{2}\right)(\eta(Y)X - \eta(X)Y) \\ &\quad + d\beta(\phi X)Y - d\beta(\phi Y)X. \end{aligned}$$

Using (2.11) we have from above

$$\begin{aligned} (4.1) \quad \beta^2(\eta(Y)X - \eta(X)Y) &+ d\beta(\phi X)Y - d\beta(\phi Y)X \\ &= \eta(Y)QX - \eta(X)QY + (2\beta^2 - \frac{r}{2})(\eta(Y)X - \eta(X)Y) \\ &\quad + d\beta(\phi X)Y - d\beta(\phi Y)X \end{aligned}$$

or,

$$\begin{aligned} (4.2) \quad \beta^2(\eta(Y)X - \eta(X)Y) &= \eta(Y)QX - \eta(X)QY + \left(2\beta^2 - \frac{r}{2}\right)(\eta(Y)X - \eta(X)Y). \end{aligned}$$

The formula (4.2) yields

$$(4.3) \quad \left(\beta^2 - \frac{r}{2}\right)(\eta(Y)X - \eta(X)Y) = \eta(X)QY - \eta(Y)QX.$$

Putting $Y = \xi$ in (4.3) we have

$$(4.4) \quad QX = \left(\frac{r}{2} - \beta^2\right)(X - \eta(X)\xi) + \eta(X)Q\xi.$$

Now from (2.10), $S(\xi, \xi) = 2\beta^2$. Hence $g(Q\xi, \xi) = 2\beta^2g(\xi, \xi)$. So we have

$Q\xi = 2\beta^2\xi$. From (4.4) and (4.5), we have

$$(4.6) \quad \begin{aligned} QX &= \left(\frac{r}{2} - \beta^2\right)(X - \eta(X)\xi) + 2\beta^2\eta(X)\xi \\ &= \left(\frac{r}{2} - \beta^2\right)X + (3\beta^2 - \frac{r}{2})\eta(X)\xi. \end{aligned}$$

Thus, in view of (4.6) we note that

$$(4.7) \quad S(X, Y) = \left(\frac{r}{2} - \beta^2\right)g(X, Y) + (3\beta^2 - \frac{r}{2})\eta(X)\eta(Y).$$

From (2.8), (4.6), and (4.7) we obtain

$$(4.8) \quad \begin{aligned} R(X, Y)Z &= \left(\frac{r}{2} - 2\beta^2\right)[g(Y, Z)X - g(X, Z)Y] \\ &\quad + \left(3\beta^2 - \frac{r}{2}\right)[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi \\ &\quad + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y]. \end{aligned}$$

Differentiating (4.8) covariantly with respect to W we get

$$\begin{aligned} (\nabla_W R)(X, Y)Z &= \left(\frac{dr(W)}{2} - 4\beta d\beta(W)\right)[g(Y, Z)X - g(X, Z)Y] \\ &\quad + \left(6\beta d\beta(W) - \frac{dr(W)}{2}\right)[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi \\ &\quad + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y] \\ &\quad + \left(3\beta^2 - \frac{r}{2}\right)[g(Y, Z)(\nabla_W \eta)(X)\xi + g(Y, Z)\eta(X)(\nabla_W \xi) \\ &\quad - g(X, Z)(\nabla_W \eta)(Y)\xi - g(X, Z)\eta(Y)(\nabla_W \xi) \\ &\quad + \eta(Y)(\nabla_W \eta)(Z)X + (\nabla_W \eta)(Y)\eta(Z)X \\ &\quad - (\nabla_W \eta)(X)\eta(Z)Y - \eta(X)(\nabla_W \eta)(Z)Y]. \end{aligned}$$

Here we take X, Y, Z, W orthogonal to ξ . Now we obtain from the above

$$(4.9) \quad \begin{aligned} (\nabla_W R)(X, Y)Z &= \left(\frac{dr(W)}{2} - 4\beta d\beta(W)\right)[g(Y, Z)X - g(X, Z)Y] \\ &\quad + \left(3\beta^2 - \frac{r}{2}\right)[g(Y, Z)(\nabla_W \eta)(X)\xi \\ &\quad - g(X, Z)(\nabla_W \eta)(Y)\xi]. \end{aligned}$$

Applying ϕ^2 on both sides of (4.9) we have

$$\phi^2(\nabla_W R)(X, Y)Z = \left(\frac{dr(W)}{2} - 4\beta d\beta(W)\right)[g(X, Z)Y - g(Y, Z)X].$$

Assuming the manifold as locally ϕ -recurrent we get from above

$$(4.10) \quad A(W)R(X, Y)Z = \left(\frac{dr(W)}{2} - 4\beta d\beta(W) \right) [g(X, Z)Y - g(Y, Z)X].$$

Putting $W = e_i$, where $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over $i, i = 1, 2, 3$, we have

$$R(X, Y)Z = \lambda [g(X, Z)Y - g(Y, Z)X],$$

$$\text{where } \lambda = \frac{(\frac{1}{2}dr(e_i) - 4\beta d\beta(e_i))}{A(e_i)}.$$

Now β is a scalar function and A is a non zero 1-form. Hence λ is a constant by Schurs' theorem. Hence we conclude the following:

THEOREM 4.1. *A three dimensional locally ϕ -recurrent quasi-Sasakian manifold is of constant curvature.*

5. Example

In this section we give an example of locally ϕ -recurrent quasi-Sasakian manifold of dimension three and which is of constant curvature. We take the 3-dimensional manifold $M = \{(x, y, z) \in \mathbf{R}^3 : x \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbf{R}^3 . Let $\{E_1, E_2, E_3\}$ be linearly independent global frame on M given by

$$E_1 = \frac{2}{x} \frac{\partial}{\partial y}, \quad E_2 = 2 \frac{\partial}{\partial x} - \frac{4z}{x} \frac{\partial}{\partial y} + xy \frac{\partial}{\partial z}, \quad E_3 = \frac{\partial}{\partial z}.$$

Let g be the Riemannian metric defined by

$$g(E_1, E_3) = g(E_2, E_3) = g(E_1, E_2) = 0,$$

$$g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1.$$

Let η be the 1-form defined by $\eta(U) = g(U, E_3)$ for any $U \in \chi(M)$. Let ϕ be the $(1, 1)$ tensor field defined by $\phi E_1 = E_2$, $\phi E_2 = -E_1$, $\phi E_3 = 0$. Then using the linearity of ϕ and g we have $\eta(E_3) = 1$, $\phi^2 U = -U + \eta(U)E_3$ and $g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W)$ for any $U, W \in \chi(M)$.

Thus for $E_3 = \xi$, (ϕ, ξ, η, g) defines a contact metric structure on M .

Hence we have $[E_1, E_2] = 2E_3 + \frac{2}{x}E_1$, $[E_1, E_3] = 0$, $[E_2, E_3] = 2E_1$.

The Riemannian connection ∇ of the metric g is given by

$$\begin{aligned} 2g(\nabla_X Y, Z) &= Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) \\ &\quad - g(Y, [X, Z]) + g(Z, [X, Y]). \end{aligned}$$

Taking $E_3 = \xi$ and using the above formula for Riemannian metric g , we can show that

$$\nabla_{E_1} E_3 = -2E_2, \quad \nabla_{E_2} E_3 = 2E_1, \quad \nabla_{E_3} E_3 = 0, \quad \nabla_{E_3} E_1 = 2E_2,$$

$$\nabla_{E_1} E_2 = \frac{2}{x}E_1, \quad \nabla_{E_2} E_1 = 0, \quad \nabla_{E_2} E_2 = 0, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_1} E_1 = -2E_2.$$

From the above it follows that the manifold under consideration is a quasi-Sasakian manifold of dimension three. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:

$$(5.2) \quad R(E_2, E_1)E_1 = -\frac{4}{x}E_2, \quad R(E_1, E_2)E_2 = -\frac{4}{x}E_1,$$

and the components which can be obtained from these by symmetric properties. Since $\{E_1, E_2, E_3\}$ form a basis of M^3 , any vector field W can be taken as

$$W = a_1E_1 + a_2E_2 + a_3E_3$$

where $a_i \in R^+$ (*the set of all positive real numbers*), $i = 1, 2, 3$. Thus the covariant derivatives of the components of the curvature tensor are given by

$$(\nabla_W R)(E_2, E_1)E_1 = -8\frac{a_1}{x^2}E_1, \quad (\nabla_W R)(E_1, E_2)E_2 = -8\frac{a_1}{x^2}E_2.$$

Now from the properties of g , ϕ , and $R(X, Y)Z$ it follows that the manifold satisfies

$$(5.3) \quad \phi^2(\nabla_W R)(X, Y)Z = A(W)R(X, Y)Z,$$

for the non-vanishing 1-form $A(W) = \frac{2a_1}{x}$. In view of (5.2) and (5.3) we conclude that the manifold under consideration is locally ϕ -recurrent and is of constant curvature.

References

- [1] D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture notes in Math. No 509. Springer Verlag 1976.
- [2] D. E. Blair, *The theory of quasi-Sasakian structure*, J. Differential Geom. 1 (1967), 331–345.
- [3] U. C. De, A. A. Shaikh and S. Biswas, *On ϕ -recurrent Sasakian manifolds*, Novi Sad J. Math. 33 (2) (2003), 43–48.
- [4] Z. Olszak, *Normal almost contact metric manifolds of dimension three*, Ann. Polon. Math. 47 (1986), 41–50.
- [5] Z. Olszak, *On three dimensional conformally flat quasi-Sasakian manifolds*, Periodica Math. Hungar. 33 (2) (1996), 105–113.
- [6] T. Takahashi, *Sasakian ϕ -symmetric spaces*, Tohoku Math. J. 29(1977), 91–113.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KALYANI
 KALYANI 741235, WEST BENGAL, INDIA
 e-mail:uc_de@yahoo.com

Received August 4, 2007.