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ON THREE-DIMENSIONAL LOCALLY ¢-RECURRENT
QUASI-SASAKIAN MANIFOLDS

Abstract. The object of the present paper is to study three-dimensional locally
¢-recurrent quasi-Sasakian manifolds.

1. Introduction

On a 3-dimensional quasi-Sasakian manifold, the structure function 3
was defined by Z. Olszak [4] and with the help of this function he has ob-
tained necessary and sufficient conditions for the manifold to be conformally
flat [5]. Next he has proved that if the manifold is additionally confor-
mally flat with 8 = constant, then (a) the manifold is locally a product of
R and a 2-dimensional Kahlerian space of constant Gauss curvature (the
cosympletic case), or, (b) the manifold is of constant positive curvature (the
non-cosympletic case, here the quasi-Sasakian structure is homothetic to
a Sasakian structure). An example of a three-dimensional quasi-Sasakian
structure being conformally flat with non-constant structure function is also
described in [5].

In 1977, T. Takahashi [6] introduced the notion of locally ¢-symmetric
Sasakian manifolds and studied their interesting properties. In [3] the notion
of local ¢-symmetry has been generalized as the notion of locally ¢-recurrent.
In the present paper we wish to apply the concept of locally ¢-recurrent on
three dimensional quasi-Sasakian manifolds. The present paper is organized
as follows. Section 1 is the introductory section. Section 2 contains some
basic and preliminary results related with three dimensional quasi-Sasakian
manifolds. In Section 3 we investigate the nature of the characteristic vec-
tor field of the manifolds. The nature of the curvature tensor of a three-
dimensional locally ¢-recurrent quasi-Sasakian manifold have been studied
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in Section 6. In the last section we have constructed an example to illustrate
the results obtained in Section 4.

2. Preliminaries

Let M be a (2n + 1)-dimensional connected differentiable manifold en-
dowed with an almost contact structure (¢,&, 7, g), where ¢ is a tensor field
of type (1,1), £ is a vector field, 7 is a 1-form and g is the Riemannian metric
on M such that [1], [2]

(2.1) PX) = -X +n(X)¢, n() =1,

(2.2) 9(¢X,¢Y) = g(X,Y) —n(X)n(Y), X,Y € T(M)
Then also

(23) p¢=0, n(¢X)=0, n(X)=g(X§).

Let ® be a fundamental 2-form defined by
B(X,Y) = g(X,4Y), XY € T(M).

M is said to be quasi-Sasakian if the almost contact structure (¢,&,7,g) is
normal and the fundamental 2-form ® is closed (d® = 0), which was first
introduced by Blair [2]. The normality condition gives that the induced
almost contact structure on M x R is integrable or equivalently, the torsion
tensor field N[¢, 9] + 2§ ® dn vanishes identically on M. The rank of a
quasi Sasakian structure is always odd [2], it is equal to 1 if the structure is
cosympletic and it is equal to (2n + 1) if the structure is Sasakian.

An almost contact medtric manifold M of dimension three is quasi-
Sasakian if and only if [4]

for a certain function 8 on M such that {8 = 0, V being the operator of the
covariant differentiation with respect to the Levi-Civita connection of M.
Clearly such a quasi-Sasakian manifold is cosympletic if and only if 3 = 0.
As a consequence of (2.4) we have [4]

(2.5) (Vxo)(Y) = B(g(X,Y)§ — n(Y)X), X,Y € T(M),

(2.6) (Vxn)(Y) = g(Vx{Y) = —Bg(¢X,Y).
Let M be a three-dimensional quasi-Sasakian manifold. The Ricci tensor S
of M is given by [5]

1) 50.2) = (5 -8 )av.2) + (38 = § a0 )n(2) - n(v)as02)
—n(Z)dB(eY),

where 7 is the scalar curvature of M.
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In a three-dimensional Riemannian manifold we always have
2.8) R(X,Y)Z =g(Y,Z)QX — g(X,Z)QY + S(Y, Z)X — S(X, Z)Y
~5(6(Y, 2)X - 9(X, 2)Y)
where @ is the Ricci operator, i.e., g(QX,Y) = S(X,Y) and r is the scalar

curvature of the manifold. Now as a consequence of (2.7), we get for the
Ricci operator @

29) Qv = (5= 87 + (36— § )n)é + (¥ )bgrads) - da(eV e

where the gradient of a function f is related to the exterior derivative df by
the formula df (X) = g(gradf, X). From (2.7) we have

(2.10) S(Y,€) = 26°n(Y) — dB(gY).
Moreover, as a consequence of (2.8) — (2.10) we find
(211)  R(X,Y)¢ = (n(Y)X —n(X)Y) +dB(¢X)Y — dB(¢Y)X,
for X,Y € T(M). From (2.8)
n(R(X,Y)Z) = g(Y, Z)n(QX) — g(X, Z)n(QY)
+8(Y, Z)n(X) - S(X, Z)n(Y)

~5(9(Y, 2)n(X) - g(X, Z)n(Y)).
For X,Y, Z orthogonal to £ we obtain from above
(2.12) n(R(X,Y)Z) = g(Y, Z)n(QX) — 9(X, Z)n(QY).

3. Nature of the characteristic vector field of locally ¢-recurrent
three-dimensional quasi-Sasakian manifolds

DEFINITION 3.1. A quasi-Sasakian manifold is said to be locally ¢-recurrent
if there exists a non zero 1-form A such that

(3.1) F(VwR)(X,Y)Z) = AW)R(X,Y)Z,
for the vector fields X, Y, Z orthogonal to £.

If the 1-form vanishes, then the manifold reduces to a locally ¢-symmetric
manifold. From (3.1) and (2.1) we obtain

(32)  (YwR)(X,Y)Z = n(VwR)(X,Y)2)i — AW)R(X,Y)Z.
From (3.2) and second Bianchi identity we get

(3.3) AWMR(X,Y)Z)+ A(X)n(R(Y,W)Z)+ A(Y)n(R(W,X)Z) = 0.
By virtue of (2.12) we obtain from (3.3)

(34)  AW)[g(Y, Z2)n(QX) — 9(X, Z)n(QY)]
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+A(X)[g(W, Z)n(QY) — g(Y, Z)n(QW))

+AY)[9(X, Z)n(Q@W) — g(W, Z)n(Q@X)] =
Putting Y = Z = ¢; in (4.3) and taking summation over i, where i = 1,2,3
and {e;} is an orthonormal basis of the tangent space at each point of the
manifold M, we obtain

(3.5)  AW)[3n(QX) — g(X, e;)n(Qes)]
+ A(X)[g(W, e)n(Qe;) — 3n(QW)]
+ A(e:)[9(X, e)n(Q@W) — g(W, ei)n(QX)] =

Now the Ricci operator ) is symmetric. So

(3.6) 9(X, ei)n(Qe:) = n(QX).
Similarly

(3.7) g(W, ei)n(Qe:) = n(QW).
Again

(3.8) Ales)g(X, e)n(QW) = A(X)n(QW).
Similarly,

(3.9) Aei)g(W, e)n(QX) = AW)n(QX).

Using (3.6)-(3.9) in (3.5) we obtain,
(3.10)  A(W)[Bn(QX) — (QY)] + AX)[(QW) — 3n(QW)]
A(X)n(QW) — A(W)n(QX)] =0,
or,
A(X)n(Q@W) — AW)n(QX) = 0.
Putting X = £ we get from the above
A(E)S(W, &) — A(W)S(£,€) = 0.
Using (2.10) we have from the above
A(E)S(W, &) — 262 A(W) = 0.
Again using (2.10) we see that
A(&)[28°n(W) — dB(¢W)] = 28°A(W),
or,
—A(£)dB(sW) = 262 A(W),
where W is orthogonal to £. Putting W = ¢ from above we obtain, 232 A(£)

= 0 which implies that g(¢, p) = 0.
Thus we can state the following theorem:
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THEOREM 3.1. In a locally ¢-recurrent quasi-Sasakian manifold of dimen-
sion three the characteristic vector field & and the vector field p associated
to the 1-form A are orthogonal.

4. Nature of the curvature tensor in three-dimensional locally
¢-recurrent quasi-Sasakian manifold

From (2.8) we have
R(X,Y)Z =g(Y,2)QX — g(X,Z2)QY + S(Y,Z)X — 8(X,Z2)Y
-39V, 2)X - 9(X, 2)Y).
Putting Z = £ and using (2.10) we have
R(X,Y)Z = n(Y)QX — 1(X)QY + 26%n(Y)X — dB(¢¥)X
- 280(X)Y +dB($X)Y - Z(n(¥)X —n(X)Y),
or,
ROXY)E = n(V)QX ~nCOQY + (26° - 1) (V)X = n(X)Y)
+dB(@X)Y - dB($Y)X.
Using (2.11) we have from above
(41) (V)X —n(X)Y) +dB(¢X)Y — dB(¢Y)X
= n(Y)QX —n(X)QY + (26% - 1)(n(Y)X —n(X)Y)
+dB(¢X)Y — dB(#Y)X

or,

(@2 FH)X - n(X)Y)
—n(V)QX = ()QY + (26° = 1) n(¥)X = n(XO)Y).

The formula (4.2) yields

r

@3) (- F)@0X - n(X)Y) =n(X)QY - (1)@,
Putting Y = £ in (4.3) we have
(4.4 Qx = (5 - 8) (X - 1009 + n(X)Qe.

Now from (2.10), S(&,€) = 262. Hence g(Q¢,€) = 232g(£,€). So we have
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Q¢ = 2B%¢. From (4.4) and (4.5), we have

(46) X = (5 - )X = n(x)e) + 28%0(30¢
_ (5 ~ )X + (367 - g>n<x>e.

Thus, in view of (4.6) we note that
(@7 S(KY)= (G- A9, Y) + (387 - Dn(X)n(¥).
From (2.8), (4.6), and (4.7) we obtain

(4.8)  R(X,Y)Z = (g - 2ﬂ2> [9(Y, 2)X — g(X, Z)Y]

+ (307 - ) o, 2008 - 9(X, 2
+ (¥ )n(2)X —n(X)n(2)Y].
Differentiating (4.8) covariently with respect to W we get
OwRY)Z = (T30~ 45a50) ) o(v, 20X - o, 23
dr(W)
2

¥ (6ﬂdﬂ(W) -

+n(Y)n(Z)X —n(X)n(2)Y]

)[y(Y, Zn(X)e - 9(X, Z)n(Y)E

+ (382 = £ ) lov. 2)(Twn) 06 + 9%, Z)n(X) (Vi)

—9(X, 2)(Vwn)(Y)§ — g(X, Z)n(Y)(Vw)
+0Y)(Vwn)(2)X + (Vwn)(Y)n(2)X
— (Vwn)(X)n(2)Y - n(X)(Vwn)(2)Y].

Here we take X,Y, Z, W orthogonal to £&. Now we obtain from the above

dr(W)

(4.9) (VwR)(X,Y)Z = (

n <3g2 - 5) [9(Y, Z)(Vwn)(X)E

—9(X, Z)(Vwn)(Y)E].
Applying ¢? on both sides of (4.9) we have

PR 1Z = (T

_ 4BdBW >)[g<Y, 2)X - g(X, 2)Y]

_ 4ﬂdﬂ(W)) 9(X, 2)Y - g(Y, Z)X].
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Assuming the manifold as locally ¢-recurrent we get from above
dr(W
) — 4pasm) ) laX. 2)Y - 9, )]

Putting W = e;, where {e;} is an orthonormal basis of the tangent space
at each point of the manifold, and taking summation over ¢,¢ = 1,2, 3, we
have

(4.10) A(W)R(X,Y)Z = <

R(X,Y)Z = Ng(X, 2)Y — g(Y, Z)X],

Lar(e;)— .
where )\ — 297 zl)q(él)?dﬂ(el))'

Now (3 is a scalar function and A is a non zero 1-form. Hence A is a
constant by Schurs’ theorem. Hence we conclude the following:

THEOREM 4.1. A three dimensional locally ¢-recurrent quasi-Sasakian man-
ifold is of constant curvature.

5. Example

In this section we give an example of locally ¢-recurrent quasi-Sasakian
manifold of dimension three and which is of constant curvature. We take
the 3-dimensional manifold M = {(z,y,z) € R3 : z # 0}, where (z,y, 2) are
the standard coordinates in R3. Let {Ej, Es, E3} be linearly independent
global frame on M given by

20 g 4z 0 0 0
=——, Fp=2—— —— —, E3=—.

20y 2 %ox zoy Yo T &

Let g be the Riemannian metric defined by

9(E1, E3) = g(En, E3) = g(E1, E2) =0,
9(Er, Br) = g(E», E2) = g(Es3, E3) = 1,

Let n be the 1-form defined by n(U) = g(U, E3) for any U € x(M).Let ¢
be the (1, 1) tensor field defined by ¢F1 = Ey, ¢pEy = —FE;, ¢E3 = 0. Then
using the linearity of ¢ and g we have n(F3) = 1, $*U = —U +n(U)E3 and
9(oU, ¢W) = g(U, W) — n(U)n(W) for any U, W € x(M).

Thus for E3 =&, (4,&,7,9) defines a contact metric structure on M.

Hence we have [Ey, Ey| = 2E3 + 2Ey, [Ey, E3] = 0, [Es, Es] = 2E1.

The Riemannian connection V of the metric g is given by

2g(VXY, Z) = Xg(Y’ Z) + Yg(Z,X) - Zg(Xa Y) - g(X7 [Y’ Z])

Taking F3 = £ and using the above formula for Riemannian metric g, we
can show that

Vg E3 = —2F;, VEg,E3=2E, Vg,E3=0, Vg, E =2E;,
Ve By =2E), VgE =0, Vg,E; =0, Vg,Ey=0, Vg E; = —2E,.

E,
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From the above it follows that the manifold under consideration is a quasi-
Sasakian manifold of dimension three. Using the above relations, we can
easily calculate the non-vanishing components of the curvature tensor as
follows:

4 4
(5.2) R(Ey E))Ey=~-E;,  R(E\,B2)Ez=——E,

and the components which can be obtained from these by symmetric prop-
erties. Since {E1, E, E3} form a basis of M3, any vector field W can be
taken as

W =a1F1 + asFEs + azF3

where a; € R*(the set of all positive real numbers),i = 1,2,3. Thus the
covariant derivatives of the components of the curvature tensor are given by

a a
(VwR)(Eq, F1)Ey = —85%15'1, (VwR)(En, E2)Es = _833_;E2'

Now from the properties of g, ¢, and R(X,Y)Z it follows that the manifold
satisfies

(5.3) *(VwR)(X,Y)Z = AW)R(X,Y)Z,

for the non-vanishing 1-form A(W) = Q—gl In view of (5.2) and (5.3) we
conclude that the manifold under consideration is locally ¢-recurrent and is
of constant curvature.
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