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S P E C T R A OF T H E O P E R A T O R OF T H E F I R S T 
D I F F E R E N C E IN sa, s°a, sic) A N D lp (a) (1 < p < oo) 

A N D A P P L I C A T I O N TO M A T R I X T R A N S F O R M A T I O N S 

Abstrac t . In this paper we deal with the spectrum of the operator of the first 
difference A considered as an operator from E to itself where E is one of the sets sa, , or 

or lp (a) (1 < p < oo). We apply these results to characterize matrix transformations 
mapping in E ((A — A/) x ) where E is either of the sets > o r 'p (r)t f ° r 1 < p < oo and 
X £ C, or N. This paper generalizes some results given in [8] and [3]. 

1. Introduction 
In this paper we are interested in the study of the spectra of the oper-

ator of the first difference A. In [8] it was shown that the spectrum of A 
considered as an operator mapping from sr to itself is equal to D (1,1/R). 
Altay and Ba§ar studied [2] the fine spectra of the difference operator A on 
co and c. Then in [3] Akhmedov and Ba§ar dealt with the fine spectra A 
over the sequence space lp (1 < p < oo). In [18, 19], Rhoades dealt with 
the spectra of the weighted mean operator Nq in B(lp) and in bvo- In de 
Malafosse [12] it was shown that under some conditions the spectrum of 
Ng considered as operator from sa to itself and from to itself is equal to 
{0}U{<7n/Qn : n > 1} , where Qn = l 'M- Many results were gathered 
by Malkowsky and Rakocevic in [16], among other things they have provided 
characterizations of operators mapping from x (Am ) to where m is an 
integer, x and x' a r e either of the sets co, c, or Zoo- Characterizations of the 
set (Zoo ((A')"1) , Zoo) for any given integer m > 1 were given by Kizmaz [6], 
Qolak and Et [4], We also have in [8], necessary and sufficient conditions 
for a matrix map to belong to (sr ((A — A/)M), sr), for any given complex 
numbers fi and A. 
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Here we deal with the spectrum of A considered as an operator from E to 
itself where E is one of the sets sa, , Sa \ or lp (a) (1 < p < oo). Then we 
apply these results to matrix transformations mapping in .ŝ  ^(A — A 

and mapping in lp (r) ^(A — A w h e r e h is a complex number. 
This paper is organized as follows. In Section 2, we recall some definitions 

and results on sequence spaces and matrix transformations. Then in Section 
3 we study the spectrum of A considered as an operator from E to itself for 
E = sa, SQ, \ or lp (a). Finally in Section 4 we characterize matrix trans-
formations between ^(A — A a n d F and between lp (r) ^(A — A 

and F, where F is either of the sets s 7 , s^c\ 1 < p < oo and h is a 
complex number. 

2. Notations and preliminary results 
For a given infinite matrix A — (anm)n,m>i we define the operators An 

for any integer n > 1, by 
oo 

(1) -*4n (X) = ^ ^ 0-nmxm 
m— 1 

where X = ( x m ) m > i , and the series are assumed to be convergent for all n. 
So we are led to the study of the operator A defined by AX = (An (X))n>1 

mapping a sequence space into another sequence space. Throughout this 
paper we will consider X and AX as column vectors. 

A BK space E is a Banach sequence space with continuous coordinates 
Pn : E —> C where Pn (X) = xn for all X G E and n = 0,1, A BK space 
E is said to have AK if every sequence X = (xn)n>i £ E has a unique 
representation X = ]Cm=i ^ e ' " 1 ' where denotes the sequence with 
e f f l = 1 and e ^ = 0 for j ^ m. 

We will denote by s, Co, c, I<*> the sets of all sequences, the set of sequences 
that converge to zero, convergent and bounded respectively. Then for given 
sequence a 6 s we define the infinite diagonal matrix Da by [Da]nn = an 

for all n. We will use the set U+ of all sequences (un)n>i € s such that 
un> 0 for all n. Using Wilansky's notations [20], we define for any sequence 
a = (a„)n>1 G U+ and for any set of sequences E, the set 

( 1 / a ) " 1 *E= { ( z n ) n > i <E s : ( ^ / a ^ £ fi} . 

Throughout this paper we will write DaE = (l/a)~1*E and put sa = Dal0Q, 
= Daco and s ^ = Dac, for a = (a n ) n > i £ U+, see [9]. Each of the 
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spaces DaE, where E £ {¿<x>)Co,c}, is a BK space normed by ||X||S = 
s u P « > i (knl /oLn) and has A K , see [13]. 

Now let a = (an)n>i, M = (/ in)n>i € U+. By Sai/x we denote the set of 
infinite matrices A = (a n m)n,m> 1 such that 

Mllsa„ =SUP( 7T 2 \anm\am) < 00. n>l / 

The set is a Banach space with the norm Let E and F be any 

subsets of s. When A maps E into F we shall write A £ (E, F), see [7]. So for 
every X £ E, AX £ F, {AX £ F will mean that for each n > 1 the series 
defined by An ( X ) = X)m=i anmXm is convergent and (An ( X ) ) n > 1 € F). 

For any subset E of s, we put 

AE = {Y £s : Y = AX for some X € E} . 

If F is a subset of s, we shall denote 

F(A) = Fa = {X£s : Y = AX £ F} . 

In [14] it was shown that A £ if and only if A £ 5a>/i. So we can 
write that ( s a , s M ) = This result comes from the next elementary 
lemma we will use throughout this paper. 

LEMMA 1 . Let a,/j £ U+ and let E, F c s. Then we have A £ (DaE, D^F) 

if and only if Dl^ADa £ (E,F). 

When sa = s^ we obtain the Banach algebra with identity Sa^ = Sa, 

(cf. [14]) normed by ||j4||5 = ||A||S . We also have A £ (sa,sa) if and 
only if A £ Sa. 

For any BK space E we denote by B (E) the Banach algebra of all 

bounded linear operators that map E to itself. In this paper we will use the 
set lp (a) — ( 1/a ) - 1 * lp = Dalp for p > 1. It can easily be seen that 

lP(a) = [x:\\X\\l(a) = ±{^J 

The set lp ( a ) = lp (-Di/a) is a BK space normed by H^llj ( a ) and has A K . 
We deduce that the set B (lp ( a ) ) of all bounded operators mapping lp (a) 

to itself is a Banach algebra (cf. [13]). Since lp (a) has AK, by [13, Lemma 
4, pp. 44] we have 

B(lp(a)) = (lp(a),lp(a)). 

If a = (rn)n>i, the matrix Da and the sets Sa, sa, and lp (a) 

are denoted by Dr, Sr, sr, s°r, and lp (r) respectively (see [8, 9]). When 

r = 1, we obtain si = l^, = cq and s^ = c, and putting e = ( 1 , 1 , . . . ) we 
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have Si = Se. It is well known, see [7] that (si, si ) = (co, si ) = (c, s j ) = Si. 

In the following we will use the next result. 

LEMMA 2. i) A G (co,co) if and only if A £ Si and 

lim anm = 0 for all m > 1. 
n—• oo 

iij A G (co, c) if and only if A E Si and 

(2) lim anm = lm for some lm G C and for all m > 1. 
n—HX> 

Hi) A G (c, c) if and only if A G SI, (2) holds and 
oo 

lim V^ anm = I for some I G C. 
n—»oo ' 

m=l 

3. The spectra of the operator A in the sets sa, , Sa\ or lp(a) 
(1 < p < oo) 
In this section we study the spectrum of the operator of the first dif-

ference mapping in sa and we explictly calculate the spectra <T(A,S/J), 

CT(A,Sj!j), and cr^A,S(„) Then we deal with the sets 

a (A, li (a)), a (A+, h (a)), a (A, lp (r)) and a (A+, lp (r)) for 1 < p < oo. 

3.1. On the spectrum of A considered as operator in sa, 
0 (c) s^, or 

Recall that B. Altay and F. Ba§ar [2] dealt with the fine spectra of the 
operator A considered as operator in co, c and respectively. Let E be a 
set of sequences and A be an operator mapping E to itself. We denote by 
a {A, E) the set of all complex numbers A such that XI — A considered as an 
operator from E to itself is not invertible. We have the next result where 
we use the notation D (Ao, r) = {A G C : |A — Ao| < r } for Ao G C and r > 0. 

THEOREM 3. [2, Theorems 2.1-2.12], [3, Theorem 2.8]. Let 1 < p < oo 

a (A, c0) = <7 (A, c) = a (A, lv) = £>(1,1). 

To state the next results we need to recall some properties of the sequence 
C(a)a. 

3.1.1. Properties of the sequence C (a) a 

Here we shall deal with the operators represented by C (£) and A (£), see for 
instance [8]. The infinite matrix T = (tnm.)nm>i is said to be a triangle if 
tnm = 0 for m > n and tnn 0 for all n. Now let U be the set of all sequences 
(un)n>l e s with / 0 for all n. The infinite matrix C (£) = (cn m )n m>1 

for £ = ( f n ) n > i e U, is defined by 
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f 1 
Cram — { 

if m < n, 
Sra 
0 otherwise. 

c' = 0ram 

It can be proved that the matrix A (£) = (c'nm)n m > 1 with 

if m = n, 
—£n-i if m = n — 1 and n > 2, 
0 otherwise, 

is the inverse of C (£), that is C ( 0 (A (£) X) = A (£) (C (£) X) for all X E s. 
If £ = e we get the well-known operator of the first difference represented 
by A (e) = A and usually denoted by E = C (e). Note that A = E _ 1 and 
A and E belong to any given space SR with R > 1. 

Consider the following sets 

Ci = la G [/+ : C ( a ) a = ( — f V a m H G s\ = lc 
I V n > l 

and 
r = la G U+ : limsup f ^ i ) < l ) . 

I. n—>oo \ / J 
Prom [9, Proposition 2.1, pp. 1786] we get 

LEMMA 4. Lei a e J7+. Then 
i ) T c 

wj If a & C\ there are K > 0 and 7 > 1 such that 

an > ^7™ /or a// n. 

3.1.2. On the spectrum of A considered as an operator from E to 
itself where E = sa, or s ^ 

Now we can state the following result where p (A, E) = a (A, E)c is the 
resolvent set of A G (E, E). 

THEOREM 5. Let a G U+ and assume supn ( a n - \ / a n ) < 00. Then 
i) a (A, sQ) = a (A, ) and A G a (A, s a ) if and only if 

A = 1 or ( | A - If 1 <*„)„>! 
ii) a) We have 

(3) a (A, sa) = a (A, s°a) C D (1, lim s u p ^ ) , 
\ ra—>00 an J 

and the inclusion is strict. 



666 A. Fares, B. de Malafosse 

b) If (an-i/an)n>2 G c then 

- ( a , 4 c ) ) C D [ I , lim a n _ 1 
n—>oo a n 

Hi) For any R > 0 we have 

a (A, sR) = a (A, s°R) = a (A, = D(l,l/R). 

Proof , i) First show A G a (A, sa) if and only if A = 1 or (|A — l|n an)n>l ^ 
C\. Let A € p (A, sa). Then A — XI: sa —> sa is invertible and (A — A/)-1 € 
(sa, sa). First by Lemma 1 we have A — XI G (sa, sa) if and only if 

A'a = D1/a (XI — A) Da e Si, 

that is for any sequence a satisfying supn (an-i/an) < 00. For A / l we get 
(XI - A ) - 1 = (£„ro)n,m>i, where 

( ( ~ l ) n - m 
rr if m < n, 

(4) (,nm = WA - l ) n " m + 1 

I 0 otherwise. 

Since Sa = (sa,sa) the condition (XI — A ) - 1 G Sa is then equivalent to 
A 1 and 

( 5 ) x = 
n 

in 1 
in 

that is (|A — l|n ctn)n>1 G C\. We conclude that A G a (A, s a ) if and only if 
A = l o r (|A-l|n«„)"„>! ¿ C i . 

Now show a (A, sa) = a (A, s°). First show a (A, s a ) C a (A, s°). For 
this take A G p (A, s^). Then XI — A considered as operator from s^ to 
itself is invertible and (XI — A ) - 1 G s^). Since 

(s°a,s°a) C (s®,sa) = (sa,sa) 

we deduce XI — A maps sa to itself, (XI - A) 1 G (sa, sa) and A G p (A, sa). 
We conclude p(A,s^) C p(A,sa) and cx(A,sa) C <r(A,s°). Now show 
a (A, ) C a (A, sa). For this take A G p (A, sa). Then XI — A considered 
as operator from sa to itself is invertible and (XI — A) G (sa, sa)- From 
the characterization of we only need to show that 

| [ A y n J - 0 (n —»• 00) for all m. 

As we have seen above (XI — A ) - 1 G Sa implies (|A — l|no;n)n>1 G C\ and 
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by Lemma 4 ii) |A — l|n an —• oo (n —> oo) and so 

I lAd nm I — 

Oir 

(A - i f a . "•Tl 

\m = | ( A - l H a m = 0 ( 1 ) (n —> oo) 
|(A - 1) \an 

for each m = 1 , 2 , . . . . We deduce A G P ( A , S ° ) . So we have shown 
a (A, ) C a (A, s a ) and since a (A, sa) C a (A, we conclude a (A, sa) 

ii) a) Let A G CT(A, sQ). By Lemma 4 i) we easily deduce that 
(|A - l| n a n ) n > 1 i Ci implies (|A - l | n O n > 1 £ T and 

—-rlimsup ( ——- J > 1 
J-1 n—>oo \ Ocn J |A 

that is |A — 1| < limsupn^oc (an_\/an). This shows that (3) holds. Fur-
thermore since C\ / r , by [10, Remark 6, p. 255] the inclusion is strict and 
we have shown ii) a). 

ii) b) Let A be such that |A — 1| > lim^oo (a n - i/a n ) = 
l i m s u p ^ ^ (a n - i/a n ) . Then there is an integer qo such that 

( 1 Oin-l \ ^ 
SUP u 77 < L 

n>q0+l VIA - J-l an J 

Now define by S9 0 = ( c n m ) n m > 1 the triangle whose entries of the qo first rows 
and of the qo first columns are equal to those of A\ = (1/ (A — 1)) (AI — A), 
(Tnn = 1 for all n and anm = 0 for all n, m with n > qo + 1 and m <n. We 
easily see that XI — A G s « ^ and 

| | J - A a £ * | | s = sup F U 1 u a n ~ 1 ) < 1 , 
n>90+iV|A-l| an J 

from [13, Corollary 9, p. 47] we deduce A = (AASg o ) _ 1 <E (s i c ) , s i c ) ) and 

(AI - A)" 1 = (A - 1) _ 1 E*>A G «ic )) • 

So we have shown that A ^ D (1, lim^oo (a„_ i/an)) implies A G p (A , ,£>) 
and we conclude that ii) b) holds. 

iii) The identity a (A, sr) = D ( 1 ,1/R) was shown in [8], so by i) we also 
have a (A, s°R) =D(1,1/R). 

Now we show a ^A, s^^j = D ( l , l / R ) . Prom the characterization of 

(c, c) we deduce the characterization of For the convenience of 
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the reader recall that A e (s } ) if and only if D1/RADR G (c,c), 

that is D1/RADr G Si , l im^oo [D1/RADR\NM = LRN for all m, and 

limn-ooEm=i [DI/RADR]NM = I. Now take A € p j A , « ^ ) . Putting 

A^ = Di/R (AI — A ) - 1 DR, we easily see that 

||A'fl||Sl = ^ + |A - 1| < oo. 

So we have A'R G S\ and since A'R is a band matrix we have (XI — A) G 

for all A G C. Furthermore we have ( A / - A ) - 1 G ^ . I ) ' 

Then (AI - A ) " 1 G SR and by (4) we obtain 

(6) x = flsup(V 
n 1 

= iisup < 

^ (|A — 1| R)n~m+1 

[( i r + 1 i I 

| A—1| J2 
< OO. 

Then 1/ (|A - 1| R) < 1 and we conclude A £ D (1,1/R) and D (1,1/72) c 
. ( A , . < § ) . 

The inclusion o ^A, C D (1,1/R) is a direct consequence of ii) b) 

and we conclude a ^A, = D (1,1/R). • 

As a direct consequence of Theorem 5 ii) we can state the following 
corollary. 

COROLLARY 6. i) a ^A, S(N)N) = a ^ A , ^ = D ( 1 , 1 ) . 

ii) If lim supn^oo (an-i/an) = 0 then a (A, sa) = {1 } . 
Hi) a (A, sa) = {1 } where a = (nl)n, or (nn)n . 

P r o o f , i) By Theorem 5 i) (|A - l T n ) ^ G Ci if and only if 

Cn = rr ^ = O (1) (n oo). 

It is well known that for x ^ 1 real we have 

„ 2 n i - , 2 n\> XH (flX ~ TI ~ 1) + 1 x + 2x H h nx = x[l + x + x -\ hx = x— ^ . 
v y ( I - * ) 2 
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Hence we obtain 
1 , ra |A — 1| — n — 1 1 1 

Cfi — A — II r~~ r r 
n ( l - | A - l | 2 ) " ( l - | A - l | 2 ) l A - i r 1 

and cn — 0 ( 1 ) (n —> oo) if and only if |A — 1| > 1. We conclude that 
(|A — l | n rc ) n > 1 ^ C\ if and only if |A — 1| < 1 and by i) we conclude that 

ii) is a direct consequence of Theorem 5 ii) a). 
iii) Trivially we have limsupn_>00 / a n ) = 0 for a = (n n) n , or (n!)n . 

• 

3.2. Spectrum of A considered as an operator in lp (a) 
In this subsection we will characterize the sets a (A, (a)) and 

a (A + , /i (a)) and explicitly calculate a (A, lp (a)) and a (A +,lp (a)). 
In the following we will use two lemmas where we consider the set E* = 

B (E, C) of all continuous linear functionals on E where E is a Banach space 
and the ¡3—dual of E is denoted by . For L € B(E) the operator L* is 
defined by L* ((f) (u) = <p(L (u)) for all (p G E* and for all u G E. We have 
the following well known result. 

L E M M A 7 [5, p p . 71] . Let E be a normed space. Then L G B(E) implies 
a(L,E) = a(L*,E*). 

When E is a BK space with AK there is a relation between E* and E13. 
Recall that E@ is the set of all sequences a = (a„) n > 1 such that anXn is 
convergent for all X G E. Prom [20, Theorem 7.2.9, pp. 107] we deduce that 
the map E? E* defined by ~(<z) = a : E - > C ( a S E p ) where a ( X ) = 
S^Li o,nxn for all X G E is an isomorphism onto E*. This means that E* 
is isomorphic to 

EP which is denoted by E* = E13. From [20, Theorem 
4.4.2, pp. 66] we deduce (D aE)* = ( D a E A s a direct consequence of the 
preceding we get the next lemma. 
L E M M A 8 . Let a G U+ and assume that E is a BK space with AK. Then 
(.DaE)* = D1/aEP. 

We will also use the sets and defined by 

r + = | a £ U + : limsup < 1 
n—>oo \ Oln J 

and 

(n —> oo) 
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where cs is the set of all convergent series. From [11, Proposition 6.1, pp. 
3199] we have the following result. 

LEMMA 9. We have r+ c . 
Concerning the spectrum of the operator A from lp (a) to itself, we have 

the next result where we put A + = A4. 

THEOREM 10. Let a eU+. Then 
i) a) A € a (A, l\ («)) if and only if 

(7) A = 1 or f 1 ) i C+. V|A-1| anJn 

b) A € a (A + , l\ (a)) if and only if 

(8) A = l 0 r ( ^ n I C [ . 
\ an /„> 1 

ii) We have 

cr (A,/1(a)) C D ( 1, limsup (an/an+i) ) and 

u (A+,/i (a)) C D ( 1, limsup (a n + i/a n ) J. 
\ n—*oo / 

Hi) Let r > 0 and 1 < p < 00. Then 

a (A, lp (r)) = D (1, l/r) and a (A+, lp (r)) = D (1, r). 

P r o o f , i) a) By Lemma 7 we have a (A,li (a)) = a (A + , (Zi (a))*) and 
since by Lemma 8 we have 

(h (a))* = (DJi)* = = I>i/aZoo = «ì/a 

we deduce a (A, l\ (a)) = o (A + , Si/a). Then A € p (A + , Si/Q) means that 
(AI - A+) _ 1 e Si/a, that is 

Ia - i r _ n + i « m } < 0 0 ' 
vm=n1 1 ' 

Reasoning as in Theorem 5 we conclude A € a (A, l\ (a)) if and only if A = 1 
or 

i) b) We have (r(A+ ,Zi(a)) = a (A, (Zi (a))*) and as we have just seen 
(li (a))* = si/a. So a (A+, l\ (a)) = a (A, Si/a) and we conclude by Theo-
rem 5 i). 
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ii) As we have just seen A G a (A, l\ (a)) implies that either A = 1 or (7) 
holds. By Lemma 9 condition (7) implies (|A — l |~ n / a n ) n > 1 T + and 

|A — 1| < limsup a n . 

So we have shown the first inclusion. The second inclusion comes from the 
identity a (A + , l\ (a)) = a (A, s ^ ) and Theorem 5 ii). 

iii) To show a (A, lp (r)) C D ( l , l / r ) we will show D ( l , l / r ) C C 
p (A, lp (r)). Take A £ D ( l , l / r ) . We have 

W ( I - ^ ) X \ \ i ( r ) = 

and 

E \%n— 11 
y*np 

| | ( / - A A ) X | | , ( r ) = 
pW |A — 1| r 

(|A 

11*11 W 

1 ' n=2 
E \Xr, 

r(n-l)p 

Hence III - A> I B(ip(r)) < 1 whenever |A — l | r > 1, and since B(lp(r)) = 

(lp (r) , lp (r)) is a Banach algebra, (cf.[13]) we have ( A e ( l p ( r ) , l p ( r ) ) 

and A G p (A, lp (r)). So we have shown that a (A, lp (r)) C D (1,1/r). 
Conversely we show D (1,1/r) c a (A, lp (r)). For this take A G 

p (A, lp (r)). Then (XI - A)-1 G (lp (r), lp (r)) and since e ^ G lp(r) we 
deduce 

\n—1 • 

So 

E 
n=1 L ( r | A - l | ) " J 

< oo 

and 1/ (r |A — 1|) < 1. We have shown A G p (A, lp (r)) implies |A - 1| > 1/r 
that is D (1,1/r) C a (A, lp (r)). We conclude a (A, lp (r)) = D( 1,1/r). 

We show a(A+,lp(r)) = D ( l , r ) . First consider the case p > 1. Let 
q > 1 such that 1 /p + 1 /q = 1. Then I* = lp and by Lemma 8 we have 
( D l / r l q y = Drlq and (lq (1/r))* = (D1/rlq)* = Drl$ = Drlp = lp (r). Then 
we show A G (lq (1/r) ,lq (1/r)). Put A r = DrAD1/r, from Minkowski's 
inequality we get 

.1/9 1 V / , 

n=1 n=1 
oo 

r 

1/9 
+ 

n=l 

) 
oo 

H E n=l 
1 ' r ^ H ) « ^ -
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So Ar G (lq ,lq) and A G (lq(l/r) ,lq(l/r)). By Lemma 7 we conclude 
CT (A +,lp (r)) = a (A, lq (1/r)) = 

Case when p = 1. As we have seen in i) a) we have (h (r))* = Si/ r . We 
conclude 

a ( A + , h (r)) = a (A, (h (r))*) = a (A, s1/r) = W(l^r). 

4. Application to matrix transformations mapping in ^(A — A 

and in lp (r) ^(A - A r > 0, h G C and N integer 

4.1. On the set (E(T),F) 
Here we will reformulate a theorem due to Malkowsky and Rakocevic 

[17]. For this we consider the triangle T and put T~l = (snm)n m > 1 and 
R = We can state the next result, where A is the matrix with rows 
An = (RAtf for all n and An = ( a „ i , . . . , a n m , . . . ) . 

LEMMA 11. [17] Let E be a BK space with AK and F be an arbitrary subset 
of s. Then we have A G (E (T), F) if and only if 

A G (E,F) 

and 
V{i) G (E, c) for all i, 

where V^ = {Km)^^ is defined by 

wi i £"=m simaij 1 < m < n, 
n m 1 0 for m > n. 

LEMMA 12. Let E be a BK space with AK and F be any set of sequences. 
Then A G (E (T), F) if and only if 

AT'1 G (E,F) 

and 

E D ^ J - 1 G (E, c) for all i = 1 , 2 , . . . . 

P r o o f . We show A = AT'1 and V® = E D ^ ^ T " 1 . We have 

[K)'= RAi={T-1)tAi = {AnT~1)t. 
So 

Q"njSjm I J J Jm> 1 j=m 
An ~ AnT — ( 'y ^ 
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and A = AT . Now for each integer i we have 

( an 
an ai2 0 

T.D, (AIN)V 

an ai2 . a^, 

\ 
and trivially V ^ = Y,D(a .n^T 1. This concludes the proof. 

4.2. Application to matrix transformations from ^(A — A 
to s^ 

In the following we will use the operator Ah, where h 6 C. For this we 
need the next notation 

-h + k-1 
k 

-h (-h + 1)... (-h + k - 1) . 
k\ 

if jfe > 0, 

if k = 0, 

(cf. [1]). To simplify we will write [—h, k] = 

= (rn m)n ; T n> 1 , we have 

[—h,n — m] if m < n, 

h + k-1 
k 

Then if 

(10) Tnrn. — 
0 if m > n. 

We can state the following result. 

THEOREM 13. Let a, Then 
i) Let h G C and A ^ 1. We have 
a) A € ( (A - Xlf^j , s^ if and only if 

(11) 

(12) sup 

• ^ oo oo 

E ! T + m - f c 
71 n k=l m=k (1-A) 

Oik > < oo, 

f n n {£ £ fc 
fe=l m=k 

m — k] 
din 

ak } < oo for i = 1, 2 , . . . , ^h+m—k 

( 1 3 ) J ^ o i E m " (l _ ? 7 + m ~ f c } = l k f 0 r S O m e 
m=k ^ ' 
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b) A e (s° ((A - A J)'1) , if and only if (11), (12), (13) hold and 

l i m { — ¿ [ f t , m - f c ] a J )=0 fork = 1,2,...-, 

c) A € (s° ((A - A/)'1) , i c ) ) if and only if (11), (12), (13) hold and 

lim { — V [h, m-k] . 1 = lk for some lk, k, i = 1 , 2 , . . . , 
I Mn (1 - \)h+m k J 

ii) Let h be an integer and assume |A — 1| > l imsup^^ (an-\/an). 
Then 

a) A e ( 4 ((A - A/)'1) , if and only if 

(14) sup( — y^ \anm\am J < oo; 
n Wn m = 1 J 

b) A € ^(A — A , if and only if (14) holds and anm/fin —• 0 
(n —> oo) for m, — 1,2,...; 

c) A € ^(A — A , s^ J if and only if (14) holds and anm/fin —> 
l'm (n f°r some l'm> m = 2) • • • • 

Proof , i) Since s^ is a BK space with AK, it is enough to apply Lemma 12 
with T = (A - AJ)\ We easily see that T " 1 = (A - A/)_/l is the triangle 
defined by 

r /» , \h,n — ml 
(A -XI) h = — ^ — J for m < n. LV ' inm (1 _ y^h+n-m 

Then 
oo 

[a (A - AI)- h] nk=J2 lh,m- k] for all n,k> 1. 
m=k 

Since , sM) = the condition A (A — A I) h G s^) is equivalent to 
(11). For each integer i we obtain 

n 
VDMn (A - XI)-h\nk = for ifc < n. 

We conclude from the characterization of (s^, c) which can be deduced from 
Lemma 2. 
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ii) a) If |A — 1| > l imsup^oo ( a n - i / a n ) , then A G p (A, and A — XI 
is bijective from to itself and s^ ^(A — A = . We then have 

( ( A - A / / 1 ) , ^ ^ , 

this gives the conclusion of ii) a). The cases ii) b) and ii) c) can be shown 
in a similar way using Lemma 2. • 

Reasoning as above and using Theorem 10 iii) and the characterization 
of (lp, I oo), (cf. [16]) we get the next result whose the proof is elementary 
and left to the reader. 

THEOREM 14. Let N be an integer, let r be a real > 0 and n € U+. Assume 
1 < p < oo and put q = p/ (p — 1). Then 

i) A € (zp (r) ( (A - A , s^ if and only if 
f 1 n OO g 

(15) sup 
n ^ [¿n k=1 m=k ( 1 - A ) N+m-k rkq > < oo, 

(16) sup { ¿ ¿ [ i V . m - f c ] 
ain 

k=1 m=k 

lim rk [N,m- k] 

( 1 - A ) 

aim, 

N+m—k 
,M < oo for i = 1 , 2 , . . . , 

= Ik for some € C k, i = 1, 2 , . . . . 
m=k (1 - X)N+m~ 

ii) If |A - 1| > l/r then A € (lp (r) ( (A - AI)N>) , s^ if and only if 

s u p { l f > „ m k " T / M ) < oo. 

Acknowledgemen t . The authors are grateful to Professor Malkowsky 
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