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SPECTRA OF THE OPERATOR OF THE FIRST
DIFFERENCE IN s,, 2, s& AND [, (o) (1< p < o)
AND APPLICATION TO MATRIX TRANSFORMATIONS

Abstract. In this paper we deal with the spectrum of the operator of the first

difference A considered as an operator from E to itself where F is one of the sets sq, 55, or

s, or I (@) (1 < p < 00). We apply these results to characterize matrix transformations

mapping in E ((A — AI)X) where F is either of the sets s%, or I, (r), for 1 < p < oo and
x € C, or N. This paper generalizes some results given in [8] and (3].

1. Introduction

In this paper we are interested in the study of the spectra of the oper-
ator of the first difference A. In [8] it was shown that the spectrum of A
considered as an operator mapping from s, to itself is equal to D (1,1/R).
Altay and Bagar studied [2] the fine spectra of the difference operator A on
co and c. Then in [3] Akhmedov and Basar dealt with the fine spectra A
over the sequence space [, (1 < p < 00). In [18, 19], Rhoades dealt with
the spectra of the weighted mean operator N, in B(l,) and in bug. In de
Malafosse [12] it was shown that under some conditions the spectrum of
N, considered as operator from s, to itself and from s9 to itself is equal to
{0}U{gn/Qn : n>1}, where Q, =Y r _, gm. Many results were gathered
by Malkowsky and Rakocevié in [16], among other things they have provided
characterizations of operators mapping from x (A™) to x/, where m is an
integer, x and )’ are either of the sets cg, ¢, or lo,. Characterizations of the
set (loo ((At)m) ,lx) for any given integer m > 1 were given by Kizmaz [6],
Colak and Et [4]. We also have in [8], necessary and sufficient conditions
for a matrix map to belong to (s, ((A — AI)*),s,), for any given complex
numbers g and .
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Here we deal with the spectrum of A considered as an operator from F to
itself where E is one of the sets sq, 9, sff), or lp (@) (1 < p < o0). Then we

apply these results to matrix transformations mapping in s3 ((A — A )h)

and mapping in I, (1) ((A — Al )h) where h is a complex number.

This paper is organized as follows. In Section 2, we recall some definitions
and results on sequence spaces and matriz transformations. Then in Section
3 we study the spectrum of A considered as an operator from FE to itself for

E = 354,582, s,(f), or I, (). Finally in Section 4 we characterize matrix trans-

formations between s ((A - Al )h> and F' and between I, (1) ((A — Al )h)

and F, where F' is either of the sets s, 32, sgc), l<p<ooand hisa

complex number.

2. Notations and preliminary results

For a given infinite matrix A = (@nm)n,m>1 we define the operators A,
for any integer n > 1, by

(1) A (X) =" anmm
m=1

where X = (zm,)m>1, and the series are assumed to be convergent for all n.
So we are led to the study of the operator A defined by AX = (An (X)),>,
mapping a sequence space into another sequence space. Throughout this
paper we will consider X and AX as column vectors.

A BK space FE is a Banach sequence space with continuous coordinates
P, : E — Cwhere P, (X)=zpforall X € Eandn=0,1,.... A BK space
E is said to have AK if every sequence X = (zp)n>1 € E has a unique
representation X = Y., Tme™ where e(™ denotes the sequence with
eg;n)zlandegm) =0 for j # m.

We will denote by s, cg, ¢, [ the sets of all sequences, the set of sequences
that converge to zero, convergent and bounded respectively. Then for given
sequence a € s we define the infinite diagonal matrix D, by [D,],,, = an
for all n. We will use the set U™ of all sequences (up),~,; € s such that
up, > 0 for all n. Using Wilansky’s notations {20], we define for any sequence
a = (an),>; € Ut and for any set of sequences E, the set

(l/a)_1 * F = {(mn)nzl €8s : (zn/an)n21 € E}

Throughout this paper we will write D, E = (1/ oz)_1 *F and put s, = Dyl

s = Dgycp and s = Dac, for a = (an)p>1 € UT, see [9]. Each of the

a
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spaces Do E, where E € {lw,c0,c}, is a BK space normed by || X|, =
sup,>; (|Zn| /an) and s has AK, see [13].

Now let a = (an),>1, 4 = (n),>; € UT. By S, we denote the set of
infinite matrices A = (@nm)n m>1 such that

1 )
A = sup| — a a < 00.
4], nzﬂ’(un;’ aml

The set Sa, s ¢ Banach space with the norm ||Af|g, . Let E and F be any
subsets of s. When A maps E into F we shall write A € (E, F), see [7]. So for
every X € E, AX € F, (AX € F will mean that for each n > 1 the series
defined by A, (X) = > .~ | GpmTm is convergent and (A (X)),s, € F).
For any subset E of s, we put B
AE={Y c€s :Y = AX for some X € E}.
If F is a subset of s, we shall denote
F(A)=F4={Xes :Y=AX € F}.
In [14] it was shown that A € (sq,s,) if and only if A € So,. So we can

write that (sq,Su) = Sau. This result comes from the next elementary
lemma we will use throughout this paper.

LEMMA 1. Leta,u € Ut and let E, F C s. Then we have A € (Do E, D, F)
if and only if Dy;,AD, € (E, F).

When s, = s, we obtain the Banach algebra with identity S, , = Sa,
(cf. [14]) normed by [|A|lg, = ||Allg, .- We also have A € (sq,54) if and
only if A € S,. '

For any BK space E we denote by B(E) the Banach algebra of all
bounded linear operators that map E to itself. In this paper we will use the
set I, (@) = (1/a) ' * 1, = Dyl,, for p > 1. Tt can easily be seen that

o~ (1zal\?
- . P _ ol
I, (a) = {x XN o = nz::l ( - ) < oo}.
The set I, (a) =1, (D1/4) is a BK space normed by 1 X1l1,(a) and has AK.
We deduce that the set B(l, (a)) of all bounded operators mapping I, (a)
to itself is a Banach algebra (cf. [13]). Since I, (o) has AK, by [13, Lemma
4, pp. 44] we have
B(lp () = (Ip (@) , I (@) -

If @ = (r")n>1, the matrix D, and the sets Su, sa, 82, s‘(f) and I, (a)
are denoted by D, S;, s, 32, sgc) and I, (r) respectively (see (8, 9]). When
(©)

r =1, we obtain s; = l, 5(1) = ¢g and slc = ¢, and puttinge = (1,1,...) we
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have S = Se. It is well known, see [7] that (s1, s1) = (co, 51) = (¢, 81) = 5.
In the following we will use the next result.

LEMMA 2. i) A € (cg,c0) 3f and only if A€ S and

lim anpm =0 for allm > 1.
n—oo

it) A € (co,c) if and only if A € S1 and

(2) lim anm = lm for some l,, € C and for allm > 1.
n—oo

itt) A € (c,c) if and only if A € S1, (2) holds and
x
lim anm =1 for some l € C.

00
m=1

3. The spectra of the operator A in the sets s,, sJ, s((f ), or I, (o)
(1<p<oo)
In this section we study the spectrum of the operator of the first dif-
ference mapping in s, and we explictly calculate the spectra o (A, sg),

o (A, s%) , O (A, sE?) and o (A, s(n)n) . Then we deal with the sets
o (Al (), o (A1, L (@), o (A, 1, (r)) and o (AT, 1, (7)) for 1 < p < 0.

3.1. On the spectrum of A considered as operator in s,,
s9, or sgf)

Recall that B. Altay and F. Bagar [2] dealt with the fine spectra of the
operator A considered as operator in ¢g, ¢ and I, respectively. Let E be a
set of sequences and A be an operator mapping E to itself. We denote by
o (A, E) the set of all complex numbers A such that AI — A considered as an
operator from E to itself is not invertible. We have the next result where

we use the notation D (Ag,7) = {A € C: A= x| <r}for g € Cand r > 0.
THEOREM 3. [2, Theorems 2.1-2.12], [3, Theorem 2.8]. Let 1 <p < 0o

o(A,c0) =0 (A,c) =0 (A, ) =D(1,1).

To state the next results we need to recall some properties of the sequence

C(a)a.

3.1.1. Properties of the sequence C (o)«

Here we shall deal with the operators represented by C (£) and A (£), see for
instance [8]. The infinite matrix T = (tpm),, > 1S said to be a triangle if
tnm = 0form > n and t,, # 0for all n. Now let U be the set of all sequences
(un),>1 € s with u, #0 for all n. The infinite matrix C (§) = (cnm)
for £ = (&n),>1 € U, is defined by

n,m>1
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1 .
— if m <n,
Cnm = s’n
0 otherwise.

It can be proved that the matrix A (£) = (cpm )y m>1 With

¢n if m = n,
Com =14 —bn_1 ifm=n—1landn>2,
0 otherwise,

is the inverse of C' (£), thatis C (§) (A (§) X) = A () (C(§) X) forall X € s.
If £ = e we get the well-known operator of the first difference represented
by A (e) = A and usually denoted by ¥ = C (e). Note that A = ¥~ and
A and X belong to any given space Sp with R > 1.

Consider the following sets

G- {actric@a= ((Xan) en-inf,

m=1

and
Oy

I'= {ozEU+ hmsup( ) <1}.
n—oo Qn
From [9, Proposition 2.1, pp. 1786] we get

LEMMA 4. Let o € Ut. Then
Z) ' c ¢y,
it) If o € Cy there are K > 0 and v > 1 such that

an > K" for all n.

—

3.1.2. On the spectrum of A considered as an operator from E to

itself where F = s,, s, or s,(,)

Now we can state the following result where p(A, E) = o (A, F)° is the
resolvent set of A € (E, E).

THEOREM 5. Let o € Ut and assume sup,, (an—1/an) < co. Then
i) 0 (A, sa) =0 (A, 8%) and A € 0 (A, 54) if and only if

A=1or (]A—1"an),>1 ¢ C1.
i) a) We have

(3) o (A, sq) =0 (A, sg) cD <1,lim supan_1>,

n—oo Op

and the inclusion is strict.
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b) If (an_l/a")n22 € c then

o (A,s,(:)) cD <1, lim a"‘1>.

n—00 (I,

iit) For any R > 0 we have
o (A sg)=0(A,s}) =0 (A, s%)) =D(1,1/R).

Proof. i) First show A € 0 (A, s4) if and only if A = Lor (|A = 1" o), ¢
Ci.Let A € p(A, sq). Then A—AI : sq — 4 is invertible and (A — AI)~! €
(Say Sa)- First by Lemma 1 we have A — Al € (sq, 8o) if and only if

Al =Dy (AT = A) Dy € S,

that is for any sequence « satisfying sup,, (an—1/an) < co. For A # 1 we get
(M = A) ™' = (éam)pm>1, Where
(~)™
(4) om={ (A -1
0 otherwise.

if m<n,

Since Sy = (Sa, o) the condition (A\I — A)™! € S, is then equivalent to
A#1and

%_1 A — 1|m Om

) =su = = < 00,
5) X np< A=1"an >

that is (|A — 1|" a),,5, € C1. We conclude that A € o (A, so) if and only if
A=1or (A—1|"an),-; ¢ Ci.

Now show o (A, sa)_z o (A, s2). First show o (A, s4) C o (A,s8). For
this take A € p(A,s%). Then M — A considered as operator from s3 to
itself is invertible and (AI — A)~! ¢ (s2,52). Since

(sg,sg) C (Sg,sa) = (Sa 8a)

we deduce M — A maps s, to itself, (A — A) ™ € (54, 8q4) and X € p(A, 54).
We conclude p(A,s%) C p(A,54) and 0 (A, s,) C o (A,s5). Now show
o (A,s2) C o (A, sq). For this take A € p (A, s5). Then AI — A considered
as operator from s, to itself is invertible and (A] — A)™! € (54, So). From

the characterization of (s3,s2) we only need to show that

|[A%],,,.] =0 (n— oo) for all m.

As we have seen above (A] — A)™! € S, implies (|A — 1" On)p>1 € C, and
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by Lemma 4 ii) |A — 1|" a,, — 0o (n — 00) and so

ALl | = P
I[ a]nm' (/\__ 1)n—m+la

n

1 P
(A =1)" o,
for each m = 1,2,.... We deduce A € p(A,sg). So we have shown
o (A, s8) C o (A, sq) and since o (A, so) C 0 (A, s5) we conclude o (A, sq)
=0 (A,sY).
ii) a) Let A € 0(A,s,). By Lemma 4 i) we easily deduce that
(IA = 1" an),>1 ¢ C1 implies (|A = 1|" ap),,5; ¢ T and

e (3)
that is |A — 1| < limsup,,_,, (an—1/an). This shows that (3) holds. Fur-
thermore since C; # T, by [10, Remark 6, p. 255] the inclusion is strict and
we have shown ii) a).

ii) b) Let A be such that |A—1] > limpoo (p_1/0pn) =
limsup,,_, o, (@n—1/ar). Then there is an integer go such that

1 an—l)
sup < 1.
n>qo+1 (|)‘ —1] an

Now define by £% = (0nm),,,,> the triangle whose entries of the qq first rows
and of the gq first columns are equal to those of Ay = (1/ (A — 1)) (Al — A),
Onn = 1 for all n and oy, = 0 for all n, m with n > ¢o + 1 and m < n. We

easily see that A\ — A € <s,(f), sff )) and

=[A-1"am 0(1) (n— o)

1 Qp -1
I- A% = sup (—————n—> <1,
H ”Sa >0t |/\ — 1| an,

from [13, Corollary 9, p. 47] we deduce A = (A,£%)! ¢ (s((),C ),s,(f)) and

M-—A)'=(A-1)"1zwA e (sgf), 359) .

So we have shown that A ¢ D (1,limy, o (an—1/a)) implies A € p (A, sff))
and we conclude that ii) b) holds.

iii) The identity o (A, sg) = D (1,1/R) was shown in [8], so by i) we also
have o (A,s%) =D (1,1/R).

Now we show o (A,sS?) = D(1,1/R). From the characterization of

(¢, ¢) we deduce the characterization of (sg), sg) ) For the convenience of
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the reader recall that A € (sg) g?) if and only if Dy/gADR € (c,c),
that is Dy pADr € S, limpoo [Dl/RADR]nm = [, for all m, and
limp o0 D ooy [Dl/RADR]nm = Il. Now take A € p(A, s&?). Putting
A = Dy/p (M — A)7! Dp, we easily see that

|a%]s, = 5 + =11 < oo
So we have A%, € S; and since A} is a band matrix we have (A] — A) €
(sg),sg?) for all A € C. Furthermore we have (A — A)™ € (sg),sg)).
Then (A — A)™! € S and by (4) we obtain

= 1
6 = Rsu
( ) X np (TnZZI (IA _ 1| R)n—m+1
(lA 1[R)n+1 DY 11R
= Rsup T l < 00.
[X=1[k — 1

Then 1/ (JA — 1| R) < 1 and we conclude A ¢ D(1,1/R) and D(1,1/R) C
o (A, sg)).

The inclusion o (A, sg) ) C D(1,1/R) is a direct consequence of ii) b)
and we conclude o (A, sg)) =D(1,1/R). =

As a direct consequence of Theorem 5 ii) we can state the following
corollary.

COROLLARY 6. i) o (A S(n),, )=a< , (n ) D(1
A, 8a) = {}

or (n™),, -

it) If limsup,,_, (@n-1/an) = 0 then o (
iti) 0 (A, sq) = {1} where a = (n!),,,
Proof. i) By Theorem 5 i) (|A — 1" n),5; € C, if and only if
R (R L (i R AP

n = nA—1J"

It is well known that for x # 1 real we have

=0(1) (n—> 00).

" (nz—n—1)+1
(1-z)

z4+22% 4+ +nz=z(1+z+22 4+ +2") =z
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Hence we obtain
nA-1-n-1 l 1

n(1—|/\—1|2) n(1_|)\_1|2)|)\_1|n—1

and ¢, = O(1) (n — oo) if and only if |]A—1] > 1. We conclude that
(IA = 1" n),>, ¢ C1 if and only if [A - 1| < 1 and by i) we conclude that

o (A,5),) =DL1).
ii) is a direct consequence of Theorem 5 ii) a).
iii) Trivially we have limsup,, ,, (an—1/0n) = 0 for a = (n"),,, or (n!),, .
||

cn = |A—1f

3.2. Spectrum of A considered as an operator in [, (a)

In this subsection we will characterize the sets o (A,l; (a)) and
o (A, 11 (o)) and explicitly calculate o (A, 1, (@) and o (AY, [, (a)).

In the following we will use two lemmas where we consider the set E* =
B (E,C) of all continuous linear functionals on F where F is a Banach space
and the S—dual of E is denoted by EP. For L € B(E) the operator L* is
defined by L* (¢) (u) = ¢ (L (u)) for all ¢ € E* and for all u € E. We have
the following well known result.

LEMMA 7 [5, pp. 71]|. Let E be a normed space. Then L € B(FE) implies
o(L,E) =0 (L* E*).

When FE is a BK space with AK there is a relation between E* and E®.
Recall that E? is the set of all sequences a = (@n),>q Such that > >° | anz, is
convergent for all X € E. From [20, Theorem 7.2.9, pp. 107] we deduce that
the map ~: E — E* defined by (a) =a: E — C (a € EP) where @ (X) =
ZZO=1 anZ, for all X € FE is an isomorphism onto E*. This means that E*
is isomorphic to E? which is denoted by E* = E®. From [20, Theorem
4.4.2, pp. 66] we deduce (Do E)* = (DoE)". As a direct consequence of the
preceding we get the next lemma.

LEMMA 8. Let o € Ut and assume that E is a BK space with AK. Then
(DoE)" = Dy,EP.

We will also use the sets 't and C/’} defined by

rt= {ae U* : limsup (a"H) < 1}.

n—00 an

and
o0

i ={acvrNes: L(Ta)=0m (o))

" Nk=n
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where cs is the set of all convergent series. From [11, Proposition 6.1, pp.
3199] we have the following result.

LEMMA 9. We have Tt C C}.

Concerning the spectrum of the operator A from [, («) to itself, we have
the next result where we put AT = A,

THEOREM 10. Let o € Ut. Then
i) a) A€ o (A1 (a)) if and only if

- 1 ~T
(7 A=1or (IA_]',nan)n21¢Cl'
b) A € o (AT, 11 (@) if and only if
(8) A=1or (l/\—_1—|) ¢a
On n>1
it) We have

n—oo

o(AL(e))C D <l,lim sup (an/an+1)) and

o(At,li(a)) CD (1, lim sup (an+1/an)).

n—o0
itt) Let r >0 and 1 < p < 0o. Then
o (Al () = D{L /) and o (A1, (r)) = D(L 7).
Proof. i) a) By Lemma 7 we have o (A, l; (o)) = o (A%, (l;1 («))*) and
since by Lemma 8 we have
(l ()" = (Dah)" = Dyjaly = Dijaloo = $1/a
we deduce o (A,l1 (a)) = 0 (A%, 51/4). Then A € p(A*,5s1/,) means that
A -AT) e S1/a, that is
= 1 a
stllp{mZ::n —|)\ _ 1|m_n+1 ai} < 00.
Reasoning as in Theorem 5 we conclude A € ¢ (A, 3 () ifand only if A =1
or

) (r=ires) L, 6

i) b) We have o (A*,l1 (a)) = o (A, (l1 (a))*) and as we have just seen
(i (@))" = $1/a- S0 0 (AT, 11 (@)) = 0 (A, s1/,) and we conclude by Theo-
rem 5 i).
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ii) As we have just seen A € o (A,l; (a)) implies that either A =1 or (7)
holds. By Lemma. 9 condition (7) implies (|]A —1|™" /oy,) ., ¢ Tt and
|A — 1] < limsup In_

n—oo On+1

So we have shown the first inclusion. The second inclusion comes from the
identity o (A*,1; (a)) = 0 (A, 51/4) and Theorem 5 ii).

ili) To show o (A,l,(r)) € D(1,1/r) we will show D(,1/r)° c
p(A,l,(r)). Take A ¢ D(1,1/r). We have

1= Ay Xy = — i i i s
VELEO TINCIP & e ) T (V=1 r)P g \ e De

and

(T =A%) Xl = ﬁ I XM, ¢ -
Hence [|I — A)l|g(, ) < 1 whenever |[A—1|r > 1, and since B(lp (r)) =
(I, (), 1, (r)) is a Banach algebra, (cf.[13]) we have (A))~" € (Ip (), 1, (1))
and A € p(A, 1, (r)). So we have shown that o (A, 1, (7)) c D (1,1/r).
Conversely we show D(1,1/r) C o(A,l,(r)). For this take A\ €
p (Al (r)). Then (M —A)™! € (I, (r),l, (r)) and since e € I, (1) we

deduce o
-7 () = (257 <

o0 1 P
——| <o
X [omer
and 1/ (r |A —1]) < 1. We have shown A € p (A, (r)) implies |A — 1| > 1/r
that is D (1,1/r) C o (A, 1, (r)). We conclude o (A, 1, (r)) = D(1,1/r).

We show o (A*,l,(r)) = D(1,r). First consider the case p > 1. Let
g > 1 such that 1/p+1/q = 1. Then lg = lp and by Lemma 8 we have
(D1rlg)" = Dyl and (Ig (1/r))* = (Dylg)” = Dyl§ = Dyl = 1, (r) . Then
we show A € ({,(1/r),l;(1/r)). Put A, = D,AD;,, from Minkowski’s
inequality we get

So
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So A, € (lg,1y) and A € (l4(1/r),l4(1/r)). By Lemma 7 we conclude
o (A% () = 0 (A, (1/r)) = D (L,7).

Case when p = 1. As we have seen in i) a) we have (1 (r))* = s1/,.. We
conclude

o (ATl (r) =0 (A, (L (r))") =0 (A, s1/,) = D(L,7). .

4. Application to matrix transformations mapping in s% ((A Al )
and in [, (1) ((A — Al ), r >0, h € C and N integer

4.1. On the set (E(T), F)
Here we will reformulate a theorem due to Malkowsky and Rakocevié
[17]. For this we consider the triangle T and put T~! = (8nm)pm>1 and

R= (T"l)t. We can state the next result, where A is the matrix with rows
;1-:1 = (RA%)t for all n and A, = (an1,- -, nm, - - - )-

LEMMA 11. [17] Let E be a BK space with AK and F be an arbitrary subset
of s. Then we have A € (E(T),F) if and only if

Ae (E,F)

and
V@ e (E,c) for alli,

where V) = (wl is defined by

nm)n,le
. Z’.’ SirnQis 1<m<n

w’L — j=m Jgmtty = = P
o 0 for m > n.

LEMMA 12. Let E be a BK space with AK and F be any set of sequences.
Then A € (E(T), F) if and only if

AT ! ¢ (E,F)

and
ED(am)nT_l €(E,c) foralli=1,2,....

Proof. We show A= AT~! and V() = %D, , T1. We have
(A.) = Ral, = (17) A, = (A1)
So

o0
1 -1
An = AnT = (J:Z’m aanjm)mzl
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and A = AT~!. Now for each integer ¢ we have

a;1

a1 a2 0
ZD(a’iﬂ)n =

;1 Gi2 . Qin

and trivially v = ED(am)nT_l. This concludes the proof. =

4.2. Application to matrix transformations from s2 ((A Al) )
to s,

In the following we will use the operator A*, where h € C. For this we
need the next notation

(—h+k—1) ~ —h(—h+1).];;'.(—h+k—1) itk >0,
k 1 if k=0,

-h+k-1
(cf. [1]). To simplify we will write [—h,k] = ( +k ) Then if
AP = (Tnm)p m>1, We have

[-h,n—m] ifm<n,
0 if m > n.

(10) Tnm = {

We can state the following result.

THEOREM 13. Let o, p € Ut. Then
i) Let h € C and A # 1. We have

0) Ae (sg ((A _ AI)h) ,s”) if and only if

1 «— a
(11) sup{—n % ak} < 00,
k= =k

n

(12) Sup{i

L

n
Qim
E [h,m — k _—
h+m—k
m= /\)

ak}<oof0ri=1,2,...,

n
. Aim _ _ .
(13) nllI}olo{m:k [h,m — k] W} = lk fO’f' some lk, k = 1,2,. vy
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b) Ac (sg ((A - /\I)h> ,sg) if and only if (11), (12), (13) hold and

1 n
lim{u—Z[hm k] a";:_{_m k}:Ofork:1,2,...;

n—oo

c) A€ (sg ((A - )\I)h) ,sff)) if and only if (11), (12), (13) hold and

n

. 1 Qim .
lim {— Z [h,m—k?]m} :lk fOT some lk, k,Z: 1,2,...,

mmeelbn 1k
it) Let h be an integer and assume |A —1| > limsup,_, ., (@n—1/0n).

Then
a) A€ (sg ((A - /\I)h) ,sﬂ) if and only if

1 oo
(14) sup(— Z |@nm| am> < 00;
n Hn m=1

b) A€ (sg ((A - /\I)h> ,sﬂ) if and only if (14) holds and anm/pn — 0
(n — 00) form=1,2,...;
c) A (s ((A ) ) sff)) if and only if (14) holds and anm/pn —

I, (n— o00) for somell,, m=1,2,....

Proof. i) Since s? is a BK space with AK, it is enough to apply Lemma 12
with T = (A — AI ) We easily see that T~! = (A — A\I)™" is the triangle
defined by

~h [h, n-— m]

nm (1 -
Then

[A(A—,\I)— ] Z [h,m — k ‘;')“" for all n, k > 1.

Since (83, 5,) = Sa,u the condition A (A — A)h e (5%, s,) is equivalent to
(11). For each integer ¢ we obtain

n
— Z aim——————[h’m — A for k < n.

YD,y (A—A)7" —

We conclude from the characterization of (s, c) which can be deduced from
Lemma 2.
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ii) a) If |\ — 1| > limsup,,_,. (an—1/an), then A € p (A, s2) and A — AJ
is bijective from s to itself and s ((A — Al )h) = 5. We then have

(sg ((A — )\I)h) ,su) = Sa,u
this gives the conclusion of ii) a). The cases ii) b) and ii) c) can be shown
in a similar way using Lemma 2. =

Reasoning as above and using Theorem 10 iii) and the characterization
of (Ip,1s0), (cf. [16]) we get the next result whose the proof is elementary
and left to the reader.

THEOREM 14. Let N be an integer, let r be a real > 0 and p € UT. Assume
l<p<ooandputq=p/(p—1). Then

i)Ae (z,, (r) ((A . )\I)N) ,s#) if and only if

15 supy — Nm—k| —————1 ™} < o0,
19 |3 Wom ks
n n @ q
(16) SUP{ZZ[Nam—k]—E%m T‘kq}<00f07'i=1,2,...,
™ Yk=1lm=k (1-23)
n
lim 7* N,m—kaz#zl or somel, € Ck,i=1,2,....
A T;c[ ](1—A)N+m"“ k f k

#) If I\ —1| > 1/r then A € (l,, (r) ((A . ,\I)N) ,s#) if and only if

1 & _
sup{—- Z (|anm|rm)p/(p 1)} < 00.
n n m=1
Acknowledgement. The authors are grateful to Professor Malkowsky
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