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ON THE TORRICELLIAN POINT
IN INNER PRODUCT SPACES

Abstract. The concept of Torricellian point related to a set of n vectors in normed
linear spaces is introduced and the general properties obtained. The existence and unique-
ness of the Torricellian point in inner product spaces are established.

1. Introduction

The problem of minimizing the sum of the distances from a variable
point to three fixed points in the plane, posed and solved by Torricelli in
the 17th century, is well known. He found that the point for which the
minimum is realised is either a vertex of the fixed triangle, if the measure
of the corresponding angle is greater than %", or the unique point for which
each edge is seen under —2?"

In this paper, the concept of Torricellian point for the case of normed
linear spaces and related with a set of n distinct given vectors {a1,...,an} C
X (n>1) is introduced and some of its general properties obtained. The
existence and uniqueness of Torricellian point in inner product spaces and
characterisations with a geometrical interpretation are established as well.
The obtained results build on the case of three vectors in inner product
spaces that has been considered in [4].

2. Preliminary results
We start with the following definition:

DEFINITION 1. Let (X;|-||) be a real normed linear space, n > 1 a natural
number and {as,...,a,} C X a set of distinct vectors in X. We say that the
point zp € X is a Torricellian point for the set {a1,...,a,} if the following
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condition holds:

n
Zﬂwo—aiﬂ SZHx—aiH for all z € X,
i=1 i=1

i.e., the element xp minimizes the (nonlinear) functional T : X — [0, 00),
called the Torricelli functional, and given by: T (z) := > 1 |lz — ai| .

The set of Torricellian points associated with the set {ai,...,a,} will be
denoted by Tx {a1,...,an}.

REMARK 1. Naturally, the above concepts can be introduced in the more
general case of metric spaces. The Torricellian point is also known in the
literature as the median point of the finite set F' = {a1,...,an}, [1]-[3]
and [5]-[7], however we believe that, taking into account the history of the
problem, the name Torricellian point is perhaps more appropriate.

For the sake of completeness, we introduce some notations that will be
used in the sequel:

(i) dr(a,b) := {Aa+ (1 — A) b\ € R} where a,b € X and a # b will be

called the right line determined by the elements ¢ and b;

(ii) [a,b] := {Aa+ (1 — A) b|A € [0,1]} where a,b are as above, will be the
segment determined by a and b;

(iii) The points of the set M C H are said to be colinear iff there exists a
right line dr (a,b) such that M C dr (a,b).

(iv) The normed space (X, ||-||) will be called strictly convex iff for every
z,y € X with z # y and such that ||z + y|| = ||z|| + ||y|| , there exists
a real number ¢ such that z = ty.

(v) Splai,-..,ays] is the linear subspace generated by the set of vectors
{al,...,an}.

(vi) Let (X, ||-||) be a normed linear space and h: D C X — R (D is open in
X). Suppose that g € D. We will say that h is Gateaux differentiable
in g if there exists the limit:

h(xo+ty) —h(zg) Oh

Hm t = 5y (#0)

for all y € X.

Some of the fundamental properties of the Torricellian mapping 7T as-
sociated with the set of distinct points {ai,...,a,} are embodied in the
following proposition:

PROPOSITION 1. With the above assumptions,

(i) T is nonlinear;
(ii) T is continuous on X in the norm topology;
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(iii) T is nonnegative and lim|z) oo T (z) = 00;
(iv) T is convex on X.
Proof. (i) and (ii) are obvious.

(iii) We have:

n
=Y llz—a > Z Il = llasll]
=1
n
>3 (llall = llasll) = n Il - Z [las|
i=1

which shows that T (z) — oo as ||z|| — oo.
(iv) Utilising the triangle inequality we have:

T(az+By) =Y _llaz+ By —ail =) fa(z —a) + By — a)l

i=1 i=1
<a) lle—all+8) lly - aill = aT (z) + BT (y)
=1 =1

forall a, >0 witha+8=1and z,y € X. .
The next proposition also holds.

PROPOSITION 2. Let (X, ||-||) be a strictly convexr normed linear space. If
{ai,...,an} (n > 1) is a set of non-colinear vectors in X, then T is strictly

conver on X.
Proof. Since T is convex, one has:
(2.1) TAz1+ (1 =N z2) < AT (z1) + (1 = N\) T (x2)

for all A€ [0,1] and z;,z2 € X.
Now, let A € (0,1) and 1,22 € X with x; # x2 and assume that the
inequality (2.1) becomes an equality, i.e.,

n
DI (e —ai) + (1= ) (22 — ;) ||—/\Z||w1—az||+ 1-A lewz—azll
i=1

i=1
which gives us (by the triangle inequality) that:

(2.2) X (21— ai) + (1 = A) (22 — @) || = [[A (21 — @) [ +][(1 = A) (z2 — ad]

forallie {1,...,n}.
Since (X, ||-||) is strictly convex, then there exists ¢; € R such that

AMzr—a))=t;(1=X)(z2—q;) forall i€ {l,...,n}.
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Suppose that z, # a;, 7 € {1,2} for all i € {1,...,n}. Then by the above
equality we get:

ai()\—ti(l——)\))Z—)\:El-}-ti(l-—/\).’lfz for all ie{l,...,n}.

Now, if ¢; = ﬁ, then we get ©1 = x5 which contradicts the previous
assumption, hence
A t; (1 — )\) .
a; = — T x forall i e {1,...,n},

A wry ayy L Wy R D ieiln}
which shows that a; € dr (z1,x2) for all i € {1,...,n}, ie., a contradiction
to the fact that {ai,...,a,} are non-colinear.

If there exists ig € {1,...,n} such that o = a;,, then the argument goes
likewise and we omit the details. .
COROLLARY 1. If (H;(-,-)) is an inner product space and {ai,...,an}

(n > 3) are non-colinear, then T is strictly convez on X.
We also have:

PROPOSITION 3. Let (H;{-,-)) be an inner product space and {ai,...,an}
a set of n distinct vectors in H. Then T is Gdteauz differentiable on H\
{a1,...,an} and

g—z(z)z(y,g(:c)) for all z € H\{a1,...,an} and y € H,

where

g: H\{ay,...,an} > H, g(x) ::Z”m;a%.

Proof. Let y € H and t € R. Then for all x € H\ {ay,...,a,} one has:
i LE+) =T (@) _ 3 (o +ty — asfl = [lo — ail])
t—0 t 150 ¢

i 12 lz +ty — aill® — ||z — as®
2 + ty — asll + |l — as|

lzn: 2t (y, 7 — a;) + 2 |ly|
|z + ty — as|| + llz — aill

:Zw = (y,g(z)),

I — asll

which proves the statement. .
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3. The existence and uniqueness of Torricellian point in inner
product spaces

We start this section with the following decomposition theorem which
holds in inner product spaces (not necessarily Hilbert spaces).

LEMMA 1. Let (H;{-,-)) be an inner product space and G a finite-dimen-
sional subspace in H. Then for all £ € H there exists a unique element
z1 € G and a unique element x5 € Gt (the orthogonal complement of G)
such that:

(3.1) T =1+ T2.
We denote this by H = G @ G*.

Proof. Let z € H. If z € G, then z = z + 0 with G € G' and the
decomposition (3.1) holds.

If x € X\G, then by the well known theorem of the best approximation
element from finite-dimensional linear subspaces, there exists r; € G such
that d(z,z1) = d(z,G). Put 2 := z — x;. Then for all y € G and A € K
one has

22 + Ayl = llz — 21 + Myl = [l = (21 = M)l 2 ||z — 1]} = [|22]l,

which is clearly equivalent with x5 1 y, i.e., zo € G and the representation
(3.1) holds.

Now, suppose that there exists another representation x = y; + yo with
y1 € G and yo € GL. Then one gets:

G9$1—y1:y2—$26Gl.

Since GNG* = {0}, we deduce that 1 = y; and z2 = y» and the uniqueness

in decomposition (3.1) is proved. .
THEOREM 1. Let (H;(-,-)) be an inner product space. If {ai1,...,an} is a
set of n > 3 non-colinear distinct vectors in H, then Tx {a1,...,an} has a

unique element.

Proof. The existence. Consider Hy, := Sp|a,.. ., an] the finite-dimension-
al subspace generated by {ai,...,a,}. Then 2 < dim H,, < n. By the above

lemma we have:
H=H,PH,.

Now, let x € H\H,. Then there exists a unique z; € H, and a unique
T9 € H,f such that z = x; + 22 and z3 # 0.
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For all a € H,, one has:

lz — all = |1 + 22 — al| = [|z2 + (x1 — a)||

1
2 2\ 2
= (lla2l* +llo1 = all*)* > llo1 — al

because |z2|| > 0. Thus, for a = a;, ¢ € {1,...,n}, we get:

n n
T() =) llz—all > lle1 - aill =T (z1),
i=1 =1

which shows that the vectors which minimize the functional T on H are in
the finite-dimensional subspace H,.

Let o € Hpy. Since lim;o T’ (x) = oo, there exists 7 > 0 such that
T (y) > T (o) for all y € H, with |y|| > r.

Denote B, (0,7) = B(0,r) N H,. Then B, (0,r) is compact in H, and
since T is continuous on B, (0,r), it follows that there exists an element
zo € By, (0,7) such that:

T(zo)= inf T(z)<T(y) forall ye H,.
z€Bn(0,r)

Now, by the above considerations we can state that zq is a point which
minimizes the functional T on H.

The uniqueness. Suppose that there exist two vectors r1,z2 € H with
x1 # x9 such that:

T(xz1) =T (z2) = inf T (z).
z€EH

Consider z; := tz1 + (1 —t) z2 with ¢t € (0,1) (i.e., z; # x1,x2). Since T is
strictly convex (see Corollary 1) we have:
T(zy) =T (z1+ (1 —t)x2) <tT(z1)+ (1 —t)T (z2) =T (x1)

which contradicts the fact that 27 minimizes the functional T on H.
The proof of the theorem is thus completed. "

4. Sets which are Torricellian degenerate in inner product spaces
We start with the following definition.

DEFINITION 2. Let {a,...,a,} be a set of n non-colinear distinct vectors.
The set {ai,...,an} is said to be Torricellian degenerate if 7y {a1,...,an} €
{a1,...,an}, ie., there exists a; € {a1,...,an} so that Ty {a1,...,an} =

{aj}, (] € {1,...,77,}).
We have the following lemma which is of interest in itself.

LEMMA 2. Let F : X — R be a conver mapping in the normed linear space
(X, |Ill) and zo € X. The following statements are equivalent:
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(i) zo minimizes the functional F on X
(ii) One has the inequality:
— F —-F
41) lim F(zo+tz) — F(z0) 50> lim (zo + sz) (zo)
t—0+ t s—0-— ]
forallz € X.

Proof. Consider the mapping ¥,  : R — R given by
Vyoz(t)=F(zo+tz), ze€X.

A simple calculation shows that ¥, . is convex on R for all z € X, hence
there exists the limits:

Vio,z (t) — Yo,z (0) Voo (8) = Vuo o (0)

lim , lim
t—0+ t s—0— ]
and
‘I,.'EO,JJ (t) - \on,x (0) > lim \pr:x (t) - ‘111071: (0)
t  t—0+ t
> lim Voo (s) — Voo (0) > Voo (s) - Vro,x (0)
T s—0-— S - S

for all s < 0 < ¢, i.e., one has
F (zo+tz) — F (z0) > lim F(zo+tz) — F (z0)
t  t—0+ t
> li%l F (zg + sz) — F (z0) > F (zg + sz) — F (zo)
s—0— s s

(4.2)

forall t>0>s and z € X.

“(iy = (i1)”. If we assume that zo minimizes the functional F, then
F(zg+tx) — F(xg) > 0 for all t € R which implies, by (4.2), that the
inequality (4.1) holds.

“(ii) = (i)”. If (4.1) holds, then for all t > 0 > s, we have:

F (2o +tz) — F (x0) 50> F (zg + sz) — F (xz¢)
t - s

which gives :
F(zo+uy) > F(z9) forall ueRandyeX.
Choosing u = 1 and y = v — xg (v is arbitrary in X), we get
F(v) > F(x9), foreachveX

i.e., £o minimizes the functional F. =
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THEOREM 2. Let (H;{(,-)) be an inner product space over the real number
field and {a1,...,an} a set of n non-colinear distinct vectors. The following
statements are equivalent:

(l) TH{alv"-aan} = {aj},j € {1,...,77,};
(ii) One has the inequality:

(43) HZ o = aJ|| <

Proof. We have:
T (z) - T (a;) = llz = a;ll + Y _ (= — al| - lla; — as))
itj

n 2
Iz — a;|I” +2(z — aj, a5 — ai)
=|lz—a;ll + ) :
! lz — a:ll + llaj — asl

i#j
Let y € X and t € R. Then we have:

n 2 2
Elyll” + 2t {y, a5 — ai)
T (a; +ty) — T (a5) = [t] Iyl + .
’ )= ;Ilty+aj—az~ll+naj—aiu
i#j
A simple calculation shows that:
. T (a; +ty) — T (a;) —a
\ J 7 — _
1#]
and
. T (aj +sy) —T(a;)
1 J 3 _ _
1#1

“(i) = (ii)”. If a; minimizes the convex functional T, then by the impli-
cation “(i) = (ii)” of the above lemma, we have:

||y||_<y,2” )20+ “yu_<y,z” &)
ity i#j

for all y € X which yields that

(44 (03 e <l foran yex
i#j
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n
— ai—a; . —
Put u := 1=Z:1 m and fy, : X = R, fu (y) = (y,u). Then by (4.4) one has
i
| fu (w)| < ||u|| which gives that || f,|| < 1.
On the other hand, it is clear that || fu|| = ||u|| and the inequality (4.3)
is thus proved.
“(ii) = (i)”. Suppose that |lu|| < 1, then by Schwarz’s inequality, we have

[y, w)| < flull ly]| for all y e X,
which is clearly equivalent with (4.4), i.e.,

. - , T (a: —T(a;
lim T (a; +ty) — T (ay) >0> lim (a;j + sy) (a;)
t—0+ t s—0— S

and by the implication “(ii) = (i)” we conclude that a; minimizes the
functional T, i.e., Ty {a1,...,a.} = {a;} . ]

5. Characterisation of Torricellian points for non-degenerate sets

In this section we point out a characterisation result for the Torricellian
point associated with a non-degenerate set of n distinct non-colinear vectors
in an inner product space.

We can state and prove the following theorem:

THEOREM 3. Let (H;(-,-)) be an inner product space and {a1,...,a,} C H
a non-degenerate set of n > 3 non-colinear distinct vectors. If xg € H, the
following statements are equivalent:

(i) xg € Ty {al, . ,an}
(ii) xo is a solution of the equation:

(5.1) zhf_% 0, =zeH;

T — ai
(iii) zo is a solution of the system:
iy cos i (z) =0,
(5.2) z € H;
Y i1 cospin(z) =0
where

(x — as, x — aj)

cos pi; (z) = i, €{1,...,n},

Iz — aill |« — a ]|’

and in all cases xg is unique.
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Proof. “(i) = (ii)”. If 2o minimizes the functional T, then by the impli-
cation “(i) == (ii)” of Lemma 2, we deduce:

(5.3) lim LE ) =T @0) 5 o5 iy
t—0+ t s—0— s

Since the mapping T is Gateaux differentiable, hence by Proposition 3 we
have:

T (zo)
Ox
By the relation (5.3) we get Qf"% =0 for all z € X, i.e., g(xo) = 0, which
shows that z¢ is a solution of the equation (5.1).
“(ii) = (iii)”. Suppose that zg is a solution of (5.1), then

Z e~
feo—aidl ~

= (z, g (z0)) for all z € X.

which yields that:

.] E { ) ? }

i.e.,

— a4, Tg — > .
=0 forall j€{1,...,n},
Z o E— {L.om)

which means that zg is a solution of the system (5.2).
“(iil) = (ii)”. If zy is a solution of the system (5.2), then

e{) b }’

ie.,

To — aj .
— ) = for all 1,... .
<g (1'.0)’ “-1'0 _aj”> 0 orall 7€ { ’ ,’fl}

Summing over j from 1 to n, we get
2
0 = (g (z0), 9 (z0)) = llg (o)l

which means that zg is a solution of the equation (5.1), then

L0 _ (2,9 =0,

which, by Lemma 2, shows that zo minimizes the functional T, i.e., ¢ €
Tu{a1,...,an}.
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The uniqueness of the solution for the equations (5.1) and (5.2) is obvious
by the uniqueness of the Torricellian point associated with a set of n > 3
non-colinear distinct vectors in H, and the proof is complete. =

6. The case of three vectors in inner product spaces

It is natural to consider the case of n = 3 vectors in inner product
spaces and show that the classical result due to Torricelli can be naturally
recaptured from the more general results stated above.

If {a1, a2, a3} are colinear and

a; =X a+ (1 —X\b) with = {1,2,3}, AM <A< A3 and a,be H

then one can easily show that Ty {a1,az,a3} = {az2}.
The case of Torricellian degenerated vectors is embodied in the following
proposition (see also [4]):

PROPOSITION 4. Let (H;{(-,-)) be an inner product space and {ai,az,a3} a
set of three non-colinear vectors in H. The following statements are equiva-
lent:

(i) Ty {a1,a2,a3} = {a2};
(ii) The angle 6 between a1 — az and a1 — ag is greater that %"

Proof. By Theorem 2 one has that ay € Ty {a1, a2, a3} if and only if
ay — a2 az — az
lar — a2l llas — az|

<1,

which is equivalent with

2 2
flar — a2l + <al az as a2> llas — azl| <1

a1 — a2|? la1 — a2l llas — a2l / * |lag —aof®
i.e.,
cosf = (a1 — a2, a3 — a2) < _1,
llar — azl| ||as — azf 2
which shows that @ € [%’T, 7r) . "

The case of non-degenerate sets is embodied in the following proposition
(see also [4]):

PROPOSITION 5. Let (H;(-,-)) be an inner product space and {a1,a2,a3} a
set of three non-colinear non-degenerate vectors in H. The following state-
ments are equivalent:
() Tu {a1,a2,a3} = {70} -
(ii) We have 012 = 023 = 631 = %’T, where 6;; is the angle between a; — xo,
a; — Xo, ('L?]) € {(172) ) (273) ) (3a 1)} .
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Proof. By Theorem 3, we have that Ty {a1,a2,a3} = {zo} iff ¢ is the
unique solution of the system:

cos 611 (z) + cos b12 (z) + cos 13 () =0
cos 91 (x) + cosbaz (x) + cosbaz (z) =0
cos 031 (z) + cos B3z (z) + cosbss () =0
where cos ¢;; () = ”SB__;—WZ;_‘I%
This system is equivalent with
cosB12 () + cosfs () = —1
cos B2 () + cosbag () = —1
cos B31 () + cosbas () = —1
which gives us cosf12 = cosflag3 = cosfy; = —% and the proposition is
proved. u
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