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GLOBAL SOLUTIONS FOR VOLTERRA ORDINARY 
AND RETARDED INTEGRAL EQUATIONS 

Abstract. Using a generalization of Darbo's fixed point theorem, we obtain the exis-
tence of global solutions for nonlinear Volterra-type integral equations in Banach spaces. 
The involved functions are supposed to be continuous only with respect to some variables, 
integrability or essential boundedness conditions being also imposed. Our result improves 
the similar result given in [10] (where uniform continuity was required), as well as those 
referred by the authors of the cited paper. Finally, following the same ideas, the existence 
of continuous solutions is proved for a Volterra-type retarded integral equation, under less 
restrictive assumptions than in the others related results in literature. 

1. Introduction 
The importance of Volterra-type integral equations in solving various 

nonlinear problems in science determined many authors to study the ex-
istence of (continuous or better) solutions (see e.g. [5], [6], [9], [10], [11], 
[12], [13]). Different fixed point theorems were applied in order to obtain 
the existence results: Darbo's theorem (in [5]) and a generalization of it (in 
[10]), Monch's fixed point theorem (in [9]) and some Monch-type results (in 
[12] and [13]). In the present paper, applying a Darbo's fixed point theorem 
established in [10], we obtain the existence of global continuous solutions 
for the nonlinear Volterra integral equation 

i s l 
u(t) = \G(t,s)f(s, u(s), ^ k(s, T)U(T)<IT, ^ h(s, r ) u ( r ) c ? r \ d s . 

o o o 

The setting is that of a separable Banach space and the assumptions made 
on the operators are much weaker than those made by the previously cited 
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authors for similar results. Mainly, we require some partial continuity of / 
and G, along with some integrability and boundedness conditions. Essential 
is the use of Kuratowski measure of noncompactness. 

Applying the same method, retarded nonlinear equations are then stud-
ied and the existence of continuous solutions is obtained under similar as-
sumptions. The result is more general than the related results we know (see 
e.g. on the real line [7] and [3] and in the case of a general Banach space 
via Bochner integral [4]). 

2. Notat ions and preliminary facts 
Through this paper, X is a separable Banach space with the norm || • || 

and TR is its ball of radius R. The space C([0,1], X) of continuous functions 
is endowed with the usual (Banach space) norm | | / | | c = sup | | /(i) | | . By 

<e[o,i] 
(¿1([0,1],X), IHIn) we denote the space of Bochner integrable X-valued 
functions and by || • the essential supremum of a real function. For the 
Kuratowski measure of noncompactness a we refer the reader to [8]. 
In [10] the following generalization of Darbo's fixed point theorem was given: 
LEMMA 1. Let F be a closed convex subset of a Banach space and the 
operator A : F —> F be continuous with A(F) bounded. Suppose that for the 
sequence defined for any bounded B C F by 

Á1(B) = A(B) and An{B) = A (co ( i " " 1 ^ ) ) ) , V n > 2 

there exist a positive constant 0 < k < 1 and a number no such that for 
every bounded B C F, a(An°(B)) < ka(B). Then A has a fixed point. 

Let us make the following 

REMARK 2. If the Banach space is separable, then the previously considered 
operator A has a fixed point if it satisfies the inequality a(An° (B)) < ka(B) 
for every bounded countable B C F. 

Indeed, for every positive integer n, a(An(B)) = a(An(B)): 

a ( i 1 ( 5 ) ) = a (A(B)) < a = a{A{B)) = a ( i 1 ^ ) ) 

thanks to the continuity of A and, for every n > 2, it follows by induction 
that Án(B) = Án(B), since 

Á2(B) = A(cd ( A ( B ) ) ) c A (co ( ^CB) ) ) = A {cd(A(B))) = Á2(B). 

THEOREM 3. ([2], see also [1] for the Hausdorff measure of noncompact-
ness) Let JC C C([0,1],X) be bounded and equi-continuous. Then a(K) = 
sup a(K{t)). 

te[ o,i] 
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We will use a property of sequences of integrable functions which can be 
found in [8] (see also [12]): 

T H E O R E M 4 . Assume that E is a Banach space and M C -Z>^([0,1], -£/) is 
countable with ||u(t)|| < h(t) for all u G M a.e. for some h G X?1 ([0,1],M). 
Then a ( A f ( - ) ) G L1 ( [ 0 , 1 ] , K ) and 

t t 

a ( j M(s)ds) < 2 j a(M(s))ds, V i G [ 0 , 1 ] . 

o o 
In the final part, an existence result will be given for retarded nonlinear 

Volterra integral equations. In order to do this, we need some basic facts 
on this type of equations. Let f be a positive number and, following [7], we 
define, for each s G [0,1], the function which "contains" as information the 
history of the system us : [—r, 0] —> X by us(6) = u(s + 6). 

3. Main results 

T H E O R E M 5. Let X be a real separable Banach space, f : [0,1] x X3 —> X 
and h,k,G : [0, l]2 —> R satisfy the following conditions: 

i) for each t G [0,1], h(t,-), k(t,-) and G(t,-) are in L°°([0,1],R), the 
mapping t i—> G(t, •) is L°°-continuous and t i—> h(t, •), t i—> k(t, •) are 
L°° -bounded; 

ii) f is measurable with respect to the first variable and: 

iil) for each positive R, one can find 4>r G -^1([0,1],M+) such that 

\\f(t,x,y,z)\\<<f>R(t), Vt G [0, l],x,y,z G Tr; 

H2) there are three positive integrable functions satisfying 
3 

\\f(t,xi,x2,x3) — /(Í,2/1,2/2,2/3>|| < ^U(t)\\xi -yi\\, Vi G [0,l],x¿,y¿ G X ; 
i=l 

U3) denoting by M(R) = 
M{R) 1 

lim s u p — — < p r-; 
fl-oo ü sup ||G(í,-)||L-max 1, sup \\k(t, sup \\h(t, 

te[ 0,1] 1 te[0,i] te[o,i] } 

Hi) there exist three positive integrable functions Li(t) such that for any 
bounded Di C X and any t G [0,1], 

3 

a{f{t,DltD2,D3)) < ^Li(t)a(Di). 
i=1 
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Then the Volterra-type integral equation 
t s 1 

, u(s), J k(s, T)U(T)CIT, ^ h(s, T)u(T)dr)ds 
0 0 0 

has a continuous solution on [0,1]. 

P r o o f . We follow the ideas of proof of Theorem 3.1 in [10]. In order 
to simplify the calculation, denote by (Tu)(t) = f0k(t, s)u(s)ds and by 
(Su)(t) = l10h(t,s)u(s)ds. 

By hypothesis i), let a = sup ||fc(t, OIU00) b = SUP OIU00 a n d 
te[o,i] ie[o,i] 

c = sup IIhit, *) ||l°° • One can find 0 < r < r- and RQ > 0 such 
te[o,i] omaxj l , a, c} 

that for any R> RQ max{l , a, c}, 

M(R) < rR. 

Consider A : C([0,1], X) C([0,1], X) defined by 
t 

Au(t) = j G(t, s)f(s, u(s), (Tu)(s), (Su)(s))ds, Vu € C([0,1], X). 
o 

We claim that A is a continuous operator mapping the closed ball BRQ of 
C([0,1], X ) into itself. Indeed, for any u € C([0,1] ,X) with ||u||c < Ro, we 
have 

t 

\\Au\\c< sup ||G(£, -)||l°° \ \\f(s,u(s), (Tu)(s), (S'«)(a))||ds 
ie[o,i] o 

t 
<b\4>Ro y(s)ds 

0 
since llT^llc < ARO and H^uHc < CRQ. 

Therefore 

P«||c < bM{Ro max{l , a ,c } ) < brRo max{l ,o , c} < RQ. 
Concerning the continuity, one can see that 

||Am - AU2\\C = sup ||Am(t) - Au2{t)|| 
<e[o,i] 

= sup 
te[o,i] 

SG(i ,5) ( / (5 ,ui( a ) , (T«i) (s) , (S , « 1 ) (s) ) 
o 

-f{s,u2(s), (TU2)(S), (Su2)(s)))ds 
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t 
< b\Wf(s,Ul(s), (T«i)(S) , (5m)( S ) ) - f(s,u2(s), (TU2)(S), (5«2)(s))H ds 

o 
t 

<b\L1{s)\\u1(s)-u2(s)\\ds 
0 

t 
+ b\L2(s)\\(Su1)(s) - (Su2)(s)\\+L3(s)\\(TUl)(s) - (Tu2)(s)\\ds 

o 

< 6$Li(s)ds||ui - u2\\c 
o 

+ b(\ L2{s)ds\\TUL - TU2\\C + \L3{s)ds\\SUl - 5«2||c) 
0 0 

t t 
< 65Ii(s)ds||iii - u2\\c + b\L2(s)ds t\\k(t,-^L^Wm -u2\\c 

0 0 
t 

+ b\L3(s)ds\\h(t, -^LooWm - u2\\c. 
0 

By hypothesis i), 

\\AUL - AU2\\c < b (||Li||li + a||I2||Li + C\\L3\\lI) ||ui - u2\\c 

whence the continuity of A follows. 
We prove now that F = COA(BR0) is equi-continuous. For this, it suffices 

to show by Lemma 2.1 in [10], that A(Bji0) is equi-continuous. But 
\\Aufr) - Au(t2)\\ 

ti 
\G(tus)f(s,u(s),(Tu)(s),(Su)(s))ds 
o 
i2 

- J G(t 2 ,s)f(s ,u(s) , (Tu)(s) , (Su)(s))ds 
0 

I h 
< 1 

5 (G(ti ,s) - G(t2, s))f(s,u(s), (Tu)(s), (Su)(s))di 
o 

t2 

+ S G(t2, s)f(s, u(s), (Tu)(s), (Su)(s))ds 
h 

< \\G(h, •) - G(t2, O I I l - M ^ q max{l, a, c}) 
t2 

+ B \ 0/iomax{l,a,c}(s)^)Vu G BRQ 
ti 
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and, by hypothesis i) and iil), this can be made less than some fixed £ 
for ti,t2 with an appropriately small distance between them. So, the equi-
continuity follows. 

Obviously, A : F —> F is bounded and continuous. 
Let us prove, by the method of mathematical induction, that for every 

B C F and any n G N, AN(B) c A(BR0), so it is bounded and equi-
continuous. For n = 1, this is valid, since A(B) c A(F) c A(BR0). Suppose 
now that this is true for n—1 and prove it for N: AN(B) = A(CO{AN~L (B))) C 
A^COWBRJ)) C A(CO(BTO)) = A(BTO). 

By Theorem 3, 

a = sup a ( i n ( £ ) ( i ) ) , Vn € N. 

Similarly to the second part of the proof of Theorem 3.1 in [10], one can 
show that there exist a constant 0 < k < 1 and a positive integer no such 
that for any B C F, a(An°(B)) < ka{B). 

Let (vn) be an arbitrary countable subset of Al(B) = A(B). There exists 
a sequence (un) C B such that vn = Aun. Hypothesis iil) allows us to use 
Theorem 4 and to obtain that 

a ( K ( f ) , n € N}) = a ({Aun(t),n € N}) 
t 

= G(t, s)f(s, n}, {(Tnn)(S) , n}, {(Sun)(s), n})ds) 

t 

< 2 b \ a (/(«, K ( s ) , n}, {(Tun)(s), n}, {(Sun)(s), n})) ds. 

o By hypothesis Hi), it follows that 

a ( K ( i ) , n e N } ) 
t 

< 2b\L1(s)a({un(s)}) + L 2(s)a({(Tun)(s)}) + L3(s)a({(Sun)(s)})ds. 

o 
Applying again Theorem 4 gives that 

t 

a({vn (t),n G N}) < 2b\(L1(s) + 2 aL2(s) + 2 cL3(s)) a({un(s)})ds 

o 
t 

< 2b\(L1(s) + 2 aL2{s) + 2cL3(s))) ds a(B). 

o 
Since the Banach space is separable and the Kuratowski measure of non-
compactness is preserved when the set under discussion is replaced by its 
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closure, then 
t 

a (Ax(B)(t)) < 2b \(Li(s) + 2aL2(s) + 2cL3(s))) ds a(B). 

As L\(s) + 2aL2(s) + 2cL^{s)) G L1([0,1],R) and continuous functions are 
dense in L1 ([0,1],M) with respect to the usual norm, one can make an eval-
uation of the form a(A1(B)(t)) < (e + Mt)a(B). It can be shown, by 
mathematical induction, that 

a ( i m ( B ) ( t ) ) < (V" + C}nem~1Mt + • • • + ^ p ) «(B), Vt G [0,1]. 

Suppose the inequality is valid for m and prove it for m + 1. For any 
countable subset (vn) of Am+1(B) = A (cd there exist (un) C 

(^Am(B)j such that vn = Aun. Then, as before, c o 

t 
a({vn(t),n G N } ) < 2b\(L1(s) + 2 aL2(s) + 2 cL3(s)) ds a ( i m ( 5 ) ) , 

whence 
t 

a ( i m + 1 ( £ ) ( i ) ) < 2b\(L1(s) + 2aL2(s) + 2cL3(s))ds a ( i m ( £ ) ) 

and so the assertion follows. The rest of the calculus goes as in [10]: for 
some integer no the evaluation term + C}l(j£n°~lMt + • • • + ^ ^ ° can 
be made less than 1 and so, by Lemma 1, A has a fixed point, which is a 
global solution to our equation. • 

As a particular case, when G(t,s) = 1 for every t, s G [0,1], one can 
deduce an existence result for integral equations already studied in literature 
(see [10] and the references therein). 

THEOREM 6. Let X be a real separable Banach space, / : [ 0 , l ] x I 3 - » I 
and h, k : [0, l ] 2 —> R satisfy the assumptions i i l ) , U2) and in) of Theorem 
5, together with: 

i') for each t G [0,1], h(t, •), k(t, •) are in L°°([0,1],R) and the applica-
tions 11—> h(t, •), 11—> k(t, •) are L°°-bounded; 

ii'3) denoting by M(R) = 'äIIL1 

M(R) 1 
lim sup —-— < 

oo R max{l, sup \\k(t, sup ||/i(i, Olli00} ' 
te[o,i] te[o,i] 
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Then the integral equation 
t 8 1 

u{t) = j /( s, u(s), J k(s, r)«(r)dr, J h(s, T)u{T)dr\ds 
o o o 

has a continuous solution on [0,1]. 

Following the same method, with some minor modifications, the exis-
tence of global solutions for nonlinear Volterra retarded integral equations 
can be obtained. 

THEOREM 7. Let X be a real separable Banach space, f : [0,1] x X x 
C([—f, 0 ] ,X) x X —> X and k,G : [0, l]2 —» R satisfy the following condi-
tions: 

i) for each t G [0 ,1 ] , k(t, •) and G(t, •) are in L ° ° ( [ 0 , 1 ] , R ) , the mapping 
11—i G(t, •) is L°°-continuous and 1i—> k(t, •) is L°°-bounded; 

ii) f is measurable with respect to the first variable and: 
ii\) for each positive R, one can find <f>R G Zv1 ( [ 0 ,1 ] , R + ) such that 

\\f(t,x,y,z)\\ < <f>R(t), Vf G [0, l]tx,zeTR,ye Br; 

U2) there are three positive integrable functions satisfying, for all 
t G [0 ,1 ] , x i , Z 3 , y i , y 3 G X, x2,2/2 G C ( [ - r , 0], X ) , 

||/(t, xi,x2, x3) - f{t, 2/i,2/2) 2/3)|| < X I ^ W l k i - ytll + L2(t)\\x2 - 2/2IICS 
¿ = 1 , 3 

U3) denoting by M(R) = H^RIILI, 
M(R) 1 

lim s u p — — < — p T ; 
R->oo R sup ||G(t,.)||L~maxh, sup ||A;(i, 

<e[o,i] L te[o,i] J 

Hi) there exist three positive integrable functions such that for any 
bounded D i , D 3 C X , D 2 C C ( [ - f , 0 ] , X ) and any t G [0 ,1 ] , 

3 

¿=1 
Then the retarded integral equation 

t s 
u(t) = J G(t, s)f(s, u(s), us, J k(s, T)u(r)dTjds 

0 0 
has a continuous solution on [0,1]. 

P r o o f . Denote by (Tu)(t) = ¡t0k{t,s)u(s)ds. There is 0 < r < femax1{1|Q} 

and Rq > 0 such that for any R> R® max{l, a}, M(R) < rR. 
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Let £ be an arbitrarily chosen constant function on [—r, 0] with ||£|| < Ro 
and make the convention that whenever for a continuous function on [0,1] 
the function us will intervene, u will be considered cintinued to [—f, 0] by 

Consider A : C ( [ 0 , 1 ] , X ) -> C( [0 ,1 ] ,X) defined by 
t 

Au(t) = \G(t,s)f(s,u(s),us,(Tu)(s))ds, Vu e C( [0 ,1 ] ,X) . 
o 

The operator A maps the closed ball Bj^ of C([0,1], X) into itself since, for 
any u <E C ( [0 ,1 ] ,X) with ||u||c < .Ro, ||u.||c < Ro and \\Tu\\c < aRo and so, 

t 

\\Au\\c < b\(f>Romax{ha}(s)ds 
o 

< 6M( i?omax{ l ,a } ) < ò r i ? 0 m a x { l , a } < Ro. 

The continuity of A follows from 
t 

\\Aui - Au2\\c < 6jLi(s)ds||«i - u2||c 
o 

t 

+ i ' 

'0 
t 

•b(\ L2(s)ds||(«i)5 - (U2)s\\c + i L3{s)ds\\TUl - Tu2\\c) 
0 0 

t t t 
< b I i ( s ) d s + J L2(s)ds + a J L3(s)dsj ||ui — 1*21|c-

o o o 
The proof of the equi-continuity of F = côA{Bn0) does not necessitate mod-
ifications, neither the proof of the equality 

a ( i n ( 5 ) ) = sup a , Vn G N. 

One can show that there exist a constant 0 < k < 1 and a positive integer 
n 0 such that for any B C F, a(Ân°(B)) < ka(B). 

Let vn = Aun be an arbitrary countable subset of A1 (B) = A(B). From 
Theorem 4, 

a ( K ( < ) , n e N } ) = 
t 

<2 b\a (f(s, {un(s),n}, {(un)s, n}, {{Tun)(s),n})) ds 
o 
t 

<2b\L1(s)a{{un(s)}) + L2(s)a{{{un)s}) + L3(s)a({(Tun)(s)})ds 
o 

t 
< 2b J (Li(s) + L2(S) + 2aL 3(s))) ds A{B) 



636 B. S a t c o 

since a({(i in) s}) = sup a ({(un)s(6), n}) = sup a ({it„(s + 0), n}) < 
fle[-r,0] fl€[-r,0] 

A(B). This implies that 
t 

a (A1(B)(T)) < 2b \ (HIS) + L2(S) + 2AL3(s))) ds a{B) 

and, similarly, 
t 

a ( l m + 1 ( 5 ) ( i ) ) < 2 6 j ( L i ( s ) + L2{s) + 2ah{s)) ds a ( i m ( £ ) ) 

By mathematical induction, 

A (AM(B)(T)) < + CLNEM~1MT + • • • + A(B), VT G [0,1] . 

The rest of the calculus goes as in [10]: for some integer no the evaluation 
term en° + C^0£n°~1 Mt + • • • + ^ ^ ° can be made less than 1 and so, by 
Lemma 1, A has a fixed point. • 

R E M A R K 8 . Our Theorems 5 and 6 improve the related results given in [10] , 

as well as those cited therein: [5], [6], [9] and [11]. On the other hand, in 
the theory of retarded equations in Banach spaces, Theorem 7 is, as far as 
we know, more general than all results in literature (see e.g. [7], [3] and [4]). 
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