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GLOBAL SOLUTIONS FOR VOLTERRA ORDINARY
AND RETARDED INTEGRAL EQUATIONS

Abstract. Using a generalization of Darbo’s fixed point theorem, we obtain the exis-
tence of global solutions for nonlinear Volterra-type integral equations in Banach spaces.
The involved functions are supposed to be continuous only with respect to some variables,
integrability or essential boundedness conditions being also imposed. Our result improves
the similar result given in [10] (where uniform continuity was required), as well as those
referred by the authors of the cited paper. Finally, following the same ideas, the existence
of continuous solutions is proved for a Volterra-type retarded integral equation, under less
restrictive assumptions than in the others related results in literature.

1. Introduction

The importance of Volterra-type integral equations in solving various
nonlinear problems in science determined many authors to study the ex-
istence of (continuous or better) solutions (see e.g. [5], [6], [9], [10], [11],
[12], [13]). Different fixed point theorems were applied in order to obtain
the existence results: Darbo’s theorem (in [5]) and a generalization of it (in
[10]), Monch’s fixed point theorem (in [9]) and some Moénch-type results (in
[12] and [13]). In the present paper, applying a Darbo’s fixed point theorem
established in [10], we obtain the existence of global continuous solutions
for the nonlinear Volterra integral equation

t s 1
u(t) = {G(t,s)f (s, u(s), | k(s, T)u(r)dr, | h(s, T)u(7‘)d7‘>ds.
0 0 0

The setting is that of a separable Banach space and the assumptions made
on the operators are much weaker than those made by the previously cited
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authors for similar results. Mainly, we require some partial continuity of f
and G, along with some integrability and boundedness conditions. Essential
is the use of Kuratowski measure of noncompactness.

Applying the same method, retarded nonlinear equations are then stud-
ied and the existence of continuous solutions is obtained under similar as-
sumptions. The result is more general than the related results we know (see
e.g. on the real line [7] and [3] and in the case of a general Banach space
via Bochner integral [4]).

2. Notations and preliminary facts
Through this paper, X is a separable Banach space with the norm || - ||
and Tg is its ball of radius R. The space C([0, 1], X) of continuous functions
is endowed with the usual (Banach space) norm ||f|lc = sup ||f(¢)|. By
t€(0,1]

L]

(L([0,1], X), Ill1) we denote the space of Bochner integrable X-valued
functions and by || - || the essential supremum of a real function. For the
Kuratowski measure of noncompactness a we refer the reader to [8].

In {10] the following generalization of Darbo’s fixed point theorem was given:

LEMMA 1. Let F be a closed conver subset of a Banach space and the
operator A : F — F be continuous with A(F') bounded. Suppose that for the
sequence defined for any bounded B C F by

AYB) = A(B) and A™B)=A (@ (A"—I(B))) Y > 2
there exist a positive constant 0 < k < 1 and a number ng such that for
every bounded B C F, a(A™(B)) < ka(B). Then A has a fized point.
Let us make the following

REMARK 2. If the Banach space is separable, then the previously considered
operator A has a fixed point if it satisfies the inequality a(A™(B)) < ka(B)
for every bounded countable B C F.

Indeed, for every positive integer n, a(A™(B)) = a(A*(B)):

a (Al (E)) =a (AB)) < a (M) — o(A(B)) = a (AI(B))
thanks to the continuity of A and, for every n > 2, it follows by induction
that A"(B) = A™(B), since

2(B) = A (5 (AB))) A (e (A(B)) ) = A@(A(B))) = A(B).
THEOREM 3. ([2], see also [1] for the Hausdorff measure of noncompact-

ness) Let K C C([0,1],X) be bounded and equi-continuous. Then o(K) =

sup a(K(t)).
t€{0,1]



Global solutions for Volterra equations 629

We will use a property of sequences of integrable functions which can be
found in [8] (see also [12]):

THEOREM 4. Assume that E is a Banach space and M C L'([0,1], E) is
countable with ||u(t)|| < h(t) for allu € M a.e. for some h € L*([0,1],R).
Then a(M(-)) € L*([0,1],R) and

a(§ M(s)ds) <2 § a(M(s))ds, Vtelo,1].
0 0

In the final part, an existence result will be given for retarded nonlinear
Volterra integral equations. In order to do this, we need some basic facts
on this type of equations. Let 7 be a positive number and, following [7], we
define, for each s € [0, 1], the function which ”contains” as information the
history of the system us : [—7,0] — X by us(0) = u(s + 6).

3. Main results

THEOREM 5. Let X be a real separable Banach space, f : [0,1] x X3 — X
and h,k,G : [0,1]2 — R satisfy the following conditions:

i) for each t € [0,1], h(t,-), k(t,-) and G(t,-) are in L*=([0,1],R), the
mapping t — G(t,) is L®-continuous and t — h(t,-), t — k(t,-) are
L -bounded;

1) f is measurable with respect to the first variable and:
iil) for each positive R, one can find ¢g € L1([0,1],R;) such that

”f(t7maya Z)” < ¢R(t)’ vt € [Oa l]am7y7z € TR;

i12) there are three positive integrable functions satisfying

3

1t 1,22, 78) — £t 1,03 € 3 Ta()llas — wall, Ve € [0, 1,4, 5 € X;
i=1

113) denoting by M(R) = ||¢r||11,
M(R 1
lim sup 1(% ) < :
oo sup [[G(t, ) o max{1, sup [(t, Yz, sup [h(t, )] o
te(0,1] te(0,1] te(0,1}

iit) there exist three positive integrable functions L;(t) such that for any
bounded D; C X and any t € [0,1],

3
a (f(t,Dy,Dq,D3)) < ZLi(t)a(Di).
i=1
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Then the Volterra-type integral equation

t s 1
u(t) = [ G(t, 5)f (5, u(s), [ K(s, T)u(r)dr, | (s, T)u(r)dr ) ds
0 0 0

has a continuous solution on [0,1].
Proof. We follow the ideas of proof of Theorem 3.1 in [10]. In order
to simplify the calculation, denote by (Tu)(t) = {;k(t,s)u(s)ds and by

(Su)(t) = o h(t, s)u(s)ds.
By hypothesis i), let a = sup ||k(¢,)||zw, b = sup ||G(¢, )|z~ and
te[0,1]

tE[O 1]
¢ = sup ||h(t,-)||pe. One can find 0 < r < 1 and Ry > 0 such
tef0,1] bma.x{l,a,c}
that for any R > Rymax{1,a,c},
M(R) < rR.

Consider A : C([0,1}, X) — C([0,1], X) defined by

Au(t) = SG(t,s)f(s,u(s), (Tu)(s), (Su)(s))ds, Yu e C([0,1], X).
0

We claim that A is a continuous operator mapping the closed ball Bg, of
C([0,1)], X) into itself. Indeed, for any u € C([0, 1], X) with |Jul|¢ < Ry, we
have

lAulic < sup IG(t, )z {11 (s, u(s), (Tu)(s), (Su)(s))llds
0

tel0,1}

<b S ¢R0 max{1l,a,c} (s)ds
0

since ||Tu|l¢c < aRy and ||Su|lc < cRp.
Therefore
|Aullc < bM(Romax{1,a,c}) < brRymax{1,a,c} < Rp.
Concerning the continuity, one can see that

[Aur — Auz|c = sup [|Aui(t) — Aua(t)]|
t€0,1]

— sup [t 5)(4 (s, us(o), (Tur)(5) (Su)()

tef0,1]'y

— f(s,u2(s), (Tuz)(s), (Suz)(s)))ds|
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IA

Y11 (s, ur(s), (Tur)(s), (Sur)(s)) — £ (s, ua(s), (Tuz)(s), (Suz)(s))ll ds

IA

[N A e

by L1(s)l|us(s) — ua(s)llds

+b{ La(s)lI(Su1)(s) — (Suz) ()]l + La(s)[(Tu1)(s) — (Tuz)(s)l|ds

[=]

¢
< bel(s)dsHul —ug|lc

0
t t
+ b(s Lo(s)ds||Tur — Tuz|lc + ng(s)dsHSul - Su2||c>
0 0
t t
< b{Li(s)ds|lur — uzllc +b§ La(s)ds t|lk(t, )| oo |lur — uzllc
0 0

t
+b{Ls(s)ds||h(t, )|z lur — 2]l
0
By hypothesis ),

| Auy — Augllc < b (IIL1]lLr + al[ L2l + el Lsllze) flua — welle

whence the continuity of A follows.
We prove now that F' = ¢6A(Bg,) is equi-continuous. For this, it suffices
to show by Lemma 2.1 in [10], that A(Bg,) is equi-continuous. But

|| Au(ti) — Au(tz)]|

-] tgc:(tl, $)F (s, u(s), (Tu)(s), (Su)(s))ds
- § Gltz, )1 (5, u(s), (Tu)(s), (Su)(s))ds|

. tg(G(th 5) = Gltz, ) (s, u(s), (Tu)(s), (Su)(s)ds]
4§ 62,915, uts), ()61, (S5

< ||GE}1, ) = G(tz, )|l Lo M(Ro max{1,a,c})

+b S QSRO ma.x{l,a,c}(s)dsavu € BRO
t1
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and, by hypothesis ¢) and i1), this can be made less than some fixed e
for t,,¢ with an appropriately small distance between them. So, the equi-
continuity follows.

Obviously, A : F' — F is bounded and continuous.

Let us prove, by the method of mathematical induction, that for every
B C F and any n € N, A%(B) c A(Bg,), so it is bounded and equi-
continuous. For n = 1, this is valid, since A(B) C A(F) C A(Bg,). Suppose
now that this is true for n—1 and prove it for n: A%(B) = A(eo(A™ 1(B))) C
A(©3(A(Br,))) C A(e(Br,)) = A(Br,).

By Theorem 3,

a (A"(B)) — sup (A"(B)(t)), Vn € N.
t€(0,1}

Similarly to the second part of the proof of Theorem 3.1 in [10], one can
show that there exist a constant 0 < k < 1 and a positive integer ng such
that for any B C F, a(A™(B)) < ka(B).

Let (v,) be an arbitrary countable subset of A'(B) = A(B). There exists
a sequence (u,) C B such that v, = Au,. Hypothesis ii1) allows us to use
Theorem 4 and to obtain that

a({wn(t),n € N}) = a ({Aua(t),n € N})

(S (5, {un(),m}, {(Tun)(5), m}, {(Sun)(5), m) ds)
0

Sa 8, {un(s), n}, {(Tun)(s), n}, {(Sun)(s),n})) ds

By hypothesis zu), it follows that

a({vn(t),n € N})
t

2b§ L1(s)e({un(s)}) + La(s)({(Tun)(s)}) + La(s)a({(Sun)(s)})ds.

0
Applying again Theorem 4 gives that

a({vp(t),n e N}) <2 S )+ 2aLa(s) + 2¢L3(s)) a({un(s)})ds

0
t
5 ) 4 2aLy(s) + 2cL3(s))) ds a(B).

Since the Banach space is separable and the Kuratowski measure of non-
compactness is preserved when the set under discussion is replaced by its
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closure, then

t
a (AI(B)(t)) < 26\ (L1(s) + 2aLa(s) + 2cLa(s))) ds a(B).
0
As L1(s) + 2aLs(s) + 2¢cLs(s)) € L*([0,1],R) and continuous functions are
dense in L'([0, 1], R) with respect to the usual norm, one can make an eval-
uation of the form a(A'(B)(t)) < (¢ + Mt)a(B). It can be shown, by
mathematical induction, that

a (Am(B)(t)) < (em FOLemIME+ (Ait!)m) a(B), Vtelo1].

Suppose the inequality is valid for m and prove it for m + 1. For any
countable subset (v,) of Amt1(B) = A (@ (fim(B))), there exist (up) C

co (flm(B)) such that v, = Au,. Then, as before,

a({va(t),n € N}) < g(Ll( ) + 2aLa(s) + 2cLs(s)) ds o (Am(B)) ,
0
whence
t
a (Am+1(3)(t)) < 26§ (L1(s) + 2aLa(s) + 2cLa(s)) ds o (Am(B))
’ 0
and so the assertion follows. The rest of the calculus goes as in [10]: for
some integer ng the evaluation term €™ + C}loano_lM t+---+ (A{l?,no can
be made less than 1 and so, by Lemma 1, A has a fixed pomt, which is a
global solution to our equation. m

As a particular case, when G(t,s) = 1 for every t,s € [0,1], one can
deduce an existence result for integral equations already studied in literature
(see [10] and the references therein).

THEOREM 6. Let X be a real separable Banach space, f : [0,1] x X3 — X
and h,k : [0,1]? — R satisfy the assumptions iil), 4i2) and iii) of Theorem
5, together with:

i') for each t € [0,1}, h(t,-), k(t,-) are in L*=([0,1],R) and the applica-
tions t — h(t,-), t — k(t,-) are L°° bounded;

)
44'3) denoting by M(R) = ||¢r| L1 ,

lim sup M(R) 1

< ;
Rooo R max{1, sup ||k(t,)||L, sup ||h(¢, )|lLo}
te0,1] t€[0,1)
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Then the integral equation

s 1
u(t) = S f(s, u(s), S k(s, T)u(r)dr, S h(s, T)u(T)d’T) ds
0 0

has a continuous solution on [0,1].

Following the same method, with some minor modifications, the exis-
tence of global solutions for nonlinear Volterra retarded integral equations
can be obtained.

THEOREM 7. Let X be a real separable Banach space, f : [0,1] x X X
C([-7,0,X) x X — X and k,G : [0,1]2 — R satisfy the following condi-
tions:

i) for each t € [0,1], k(t,-) and G(t,-) are in L>=([0,1],R), the mapping
t— G(t,-) is L*-continuous and t — k(t,-) is L°°-bounded;

it) f is measurable with respect to the first variable and:
iil) for each positive R, one can find ¢r € L'([0,1],R,) such that

”f(ta z,Y, Z)” < ¢R(t)7 Vt € [07 1])1',2 S TR,Z/ € BR;

i12) there are three positive integrable functions satisfying, for all
te [Oa 1]7 x1,T3,Y1,Y3 GX z2,Y2 GC([—F 0] )’

”f(t,.’l,‘l,.’l,'z,.’lf;;) - f(t y1’y2ay3)” < Z L ”‘rl yl“ +22(t)“$2 - y2”C7

i=1,3
13) denoting by M(R) = ||¢r||L1,
. M(R) 1
lim sup R < :
R—o00 sup ||G(t,)|lLe max{l, sup ||k(t, )”Loo}

te(0,1] te[0,1]

1i1) there exist three positive integrable functions such that for any
bounded Dy, D3 C X, Dy C C([-7,0],X) and any t € [0,1],
3

a(f(t,D1,Dy,D3)) < > Li(t)a(Dy).
i=1

Then the retarded integral equation

s

t) = S G(t, s)f(s, u(s), us, S k(s, T)u(T)dT) ds
0 0

has a continuous solution on [0, 1].

Proof. Denote by (Tu)(t) = {;k(t, s)u(s)ds. Thereis 0 < r < m
and Ry > 0 such that for any R > Ro max{l,a}, M(R) < rR.
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Let £ be an arbitrarily chosen constant function on [—7, 0] with ||€]|| < Rp
and make the convention that whenever for a continuous function on [0, 1]
the function us will intervene, u will be considered cintinued to [—7, 0] by &.

Consider A : C([0,1], X) — C([0,1], X) defined by

t
Au(t) = SG(t, s)f(s,u(s),us, (Tuw)(s))ds, Yue C([0,1],X).
0
The operator A maps the closed ball Bg, of C([0,1], X) into itself since, for
any u € C([0,1], X) with |Ju|lc < Ry, ||u.||c < Ro and ||Tu|l¢ < aRp and so,
¢
“Au”C <b S d)Ro max{1,a} (s)ds
0
< bM(Romax{1,a}) < brRymax{1l,a} < Ry.

The continuity of A follows from

t
| Auy — Augllc < b{Li(s)ds|lus — uzflc

0
t t
+5(§ Za(s)dsl(u1)s — (ua)sllo + | Ta(s)ds||Tur - Tusllc)
0 0
t t t
< bS(fl(s)ds + | Ta(s)ds + agf3(s)ds) llur — usllc.
0 0 0

The proof of the equi-continuity of F' = €6 A(Bp,) does not necessitate mod-
ifications, neither the proof of the equality
a (A"(B)) = sup a (A”(B)(t)), Yn € N.
te[0,1]

One can show that there exist a constant 0 < k < 1 and a positive integer
no such that for any B C F, a(A™(B)) < ka(B). 5

Let vp, = Au, be an arbitrary countable subset of A'(B) = A(B). From
Theorem 4,

a({vn(t),n e N}) =

< 2b{a(f(s, {un(s),n}, {(un)s, n}, {(Tun)(s),n})) ds
0

< 2b§ Li(s)e({un(s)}) + La(s)a({(un)s}) + La(s)a({(Tun)(s)})ds
0

< 2bS (L1(s) + La(s) + 2aL3(s))) ds a(B)
0
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since a({(un)s}) = sup o ({(un)s(0),n}) = sup a({un(s+09),n}) <
6e[-7,0] oe[-7,0]

aB). This implies that
a (AI(B)(t)) < 26\ (L1(s) + La(s) + 2aLs(s))) ds a(B)
0

and, similarly,
t
a (AmH(B)(t)) < 26\ (L1(s) + La(s) + 2aLs(s)) ds a (Am(B))
1]
By mathematical induction,

a (Am(B)(t)) < <em +OLem M+ (Afrf,)m) a(B), Vte[o,1].

The rest of the calculus goes as in [10]: for some integer ng the evaluation
term ™ + Cp e™ 1Mt + ... + (&nto& can be made less than 1 and so, by
Lemma 1, A has a fixed point. =

REMARK 8. Our Theorems 5 and 6 improve the related results given in [10],
as well as those cited therein: [5], [6], [9] and [11]. On the other hand, in
the theory of retarded equations in Banach spaces, Theorem 7 is, as far as
we know, more general than all results in literature (see e.g. [7], [3] and [4]).

References

[1] A. Ambrosetti, Un teorema di existenza per le equazioni differenziali negli spazi di
Banach, Rend. Sem. Univ. Padova 39 (1967), 349-360.

[2] J. Bana$, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel
Dekker, New York, 1980.

[3] M. C. Delfour, S. K. Mitter, Hereditary differential systems with constant delays,
I General case, J. Differential Equations 9 (1972), 213-235.

[4] C. Gori, V. Obukhovskii, M. Ragni, P. Rubbioni, Ezistence and continuous
dependence results for semilinear functional differential inclusions with infinite delay,
Nonlinear Anal. 51 (2002), 765-782.

[5] D. J. Guo, Solutions of nonlinear integro-differential equations of mized type in Ba-
nach spaces, J. Appl. Math. Simulation 2 (1989), 1-11.

6] D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear Integral Equations in Ab-
stract Spaces, Kluwer Academic, Dordrecht, 1996.

[7] J. Hale, Theory of Functional Differential Equations, Springer, Berlin, 1977.

[8] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differ-
entiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351—
1371.

[9] L. S. Liu, Exzistence of global solutions of initial value problem for nonlinear integro-
differential equations of mized type in Banach spaces, J. Systems Sci. Math. Sci. 20
(2000), 112-116 (in Chinese).



Global solutions for Volterra equations 637

[10] L. Liu, F. Guo, C. Wu, Y. Wu, Exzistence theorems of global solutions for nonlinear
Volterra type integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005),
638-649.

[11] L. S. Liu, C. X. Wu, F. Guo, Ezistence theorems of global solutions of initial value
problem for nonlinear integro-differential equations of mized type in Banach spaces
and applications, Comput. Math. Appl. 47 (2004), 13-22.

[12] D. O’Regan and R. Precup, Fized Point Theorems for Set-Valued Maps and Exis-
tence Principles for Integral Inclusions, J. Math. Anal. Appl. 245 (2000), 594-612.

[13] D. O’'Regan and R. Precup, Ezistence Criteria for Integral Equations in Banach
Spaces, J. Inequal. Appl. 6 (2001), 77-97.

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE,
“STEFAN CEL MARE” UNIVERSITY OF SUCEAVA,
UNIVERSITATII 13 - SUCEAVA - ROMANIA

e-mail: bisatco@eed.usv.ro

Recetved September 20, 2007; revised version January 30, 2008.






