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OSCILLATION CRITERIA FOR SECOND-ORDER 
FUNCTIONAL DIFFERENCE EQUATION 

WITH NEUTRAL TERMS 

Abstract . In this manuscript, two type of new oscillation criteria are obtained respect 
to coefficient a/t in the following Eq. (1.1). In the subsection 2.1 considered as o,k > 0. In 
the subsection 2.2 allowed it to be an oscillating sequence. There are no results for the 
oscillation of second order difference equations with oscillating coefficients up to now. 

1. Introduction 
Recently, the oscillation and nonoscillation problems of second order 

difference equations have recieved a great amount of attention. This is 
probably due to the closeness of such phenomenon to those of the analogous 
differential equations. In addition, these equations have many applications 
in physics and in other fields (see [1-5]). Particularly, including neutral and 
delay terms equations find numerous applications in natural science and 
technology [29-34]. For instance, they are frequently used for the study of 
distributed networks containing lossless transmission lines. In this paper we 
consider a class of general second order nonlinear difference equation with 
general nonlinear neutral terms of the form 

(1 .1 ) A(pkF(A(yk + akyk_T))) + qkG(A{yk + akyk.T)) 

+ H(h,yk,yk-ri,... ,yk-Tn) = 0 

where k G N, and obtain two type new oscillaion criteria respect to sequence 
ak > 0 in the subsection 2.1 and it is even an oscillating sequence in the sub-
section 2.2. There are no results for the oscillation of second order difference 
equations with oscillating coefficients up to now. 

The following conditions are always assumed to hold: 
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i) Pk > 0 and q^ > 0 for every k G N(fco) where N(fco) = {fco, fco + 
1 , . . . , } and k0 e N, 

u ) F : R —> R is a continuous increasing function such that uF(u) > 0 
for i i / 0 , 

Hi) G : R —> R + is a continuous function such that 0 < m\ < G(u) < m2 
where mi and rri2 are constants, 

iv) H : N(/co) x R n + 1 —> R is a continuous increasing function with 
respect to VO, . . . , further H(k, VQ, V\, V2, • • •, ^n) has same sign with 
respect to VQ, VI,V2,.. •, vn, 

v) r , r i , r 2 , . . . ,rn G N(l) and (k — T) —• +oo , (fc — r^) —> +oo as 
k —> oo for every i = 1 , 2 , . . . , n. 

Choosing Eq. (1.1) for this study is motivated by the numerous research 
on the oscillatory properties of several particular cases of Eq. (1.1). For 
example, the linear difference equation 

A(rnAxn-i) + qnxn = 0 

has been studied by [9-11, 15, 26 and the references cited therein] which is 
a special case of Eq. (1.1). The discrete Emden-Fowler equation 

A 2 x n _ i + qn l ^ n T - 1 Xn = 0 , V > 1 

and its generalizations 

A ( r „ A x n _ i ) + qn(f>(xn) = 0, where (p has the same properties as H and F, 

A(rnAxn-i) + g(n, xn) = 0, where g has the same properties as H and F, 

have been investigated by [12, 13, 20-24 and the references cited therein]. 
Another very important special case of Eq. (1.1), which arises in the theory 
of radial solutions for p-Laplacian equation on an annular domain (see [8] 
and the references cited therein), is the half- linear equation 

A ( r n |Ax n _ i ] p _ 2 A x n _ i ) + qn \xn\p~2 xn = 0, p > 1, 

and its more genaral form 

A ( r n | A x n _ i | p " 2 Ax„_i ) + g(n, xn) = 0, p > 1, 

have been studied by [14, 16-19, 27 and the references cited therein) which 
are also special cases of Eq. (1.1). The delayed or advanced versions of the 
above equations have been study by [25 and the references cited therein]. 
Finally, the particular cases of Eq. (1.1), the equations 

A ( r n / ( A x n _ i ) ) +g(n,xn) = 0 

and 
A ( r n / ( A x n _ i ) ) +g(n,xTn) = 0 

have been investigated by [28 ]. 
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Recall that A is a forward difference operator which is defined by Ay(k) 
= y(k + 1) — y(k). Throughout this work we imply y(k) = yk. 

Let a = max{r, r^} , i = 1,2, ...,n, and No be a fixed nonnegative 
integer. By a solution of Eq. (1.1), we mean a real sequence {yk} which is 
defined for all k > No — <r and satisfies Eq. (1.1) for k > No- A solution {yk} 
of Eq. (1.1) is said to be nonoscillatory if all the terms yk are eventually of 
fixed sign. Otherwise, the solution {yk} is called oscillatory. In this paper, 
we shall be concerned only with the nontrivial solutions of Eq. (1.1). 

2. Main results 
2.1. Oscillation criteria for the case of 0 < ak < 1. We consider the 
coefficient ak as 0 < ak < 1 in the following Lemma 1, Theorem 1, Theorem 
2 and Theorem 3. 

LEMMA 1. Assume that yk is nonoscillatory solution of Eq. (1-1)- If the 
condition 

0 0 /— \ 
(Ci) = ( c > 0 ) 

is satisfied, then there exists k\ G N(/co) such that 

{yk + afcyfe-r)A(yfc + a-kVk-r) > 0 

for all k G N(fci). 

Proof . Suppose that there exists a G N(fco) such that yk > 0 for all 
k G N(&i). Since (k — r) —> oo and (k — ri) oo as k —> oo for i = 
1 , 2 , . . . , n, one can find fo G N(&i) such that yk~T > 0 a n d yk-ri > 0 f° r 

every i = 1 , 2 , . . . , n and all k G N(/c2)- Define 

zk = yk + a-kyk-r-

Since 0 < a*; < 1, there exist a > fo and a constant A (0 < A < 1) such 
that 

Vk = zk~ akyk_T > Xzk > 0 for k G N ( k 3 ) . 

Therefore we can find a > k3 such that 

Vk-n > A z k - r i , yk-r2 > Az f c_ r 2 , . . . , yk-Tn > A z k - T n > 0 for all k G N(fc4). 

Then from Eq. (1.1) we have 

( 2 . 1 ) A(pkF(Azk)) 

< -qkG(Azk) - H(k, Az k , A z k _ r i , Azk - r 2 > • • • i ^zk-rn) < 0 

for all k G N(&4). From (2.1) it is clear that pkF(Azk) is decreasing. There-
fore there are two cases. Either Azk < 0 or Azk > 0. 
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Assume that Azk < 0 for all k G N(k4). Summing up (2.1) from k4 to 
k — 1 we get 

(2.2) pkF(Azk) < pk4F(Azk4) = - c < 0 (c > 0) for all k G N(fc4). 

Then from (2.2) we have 

(2.3) F(Azk) < — for a l l k G N(kA. 
Pk 

Then from (2.3) we obtain 

(2.4) Azk < F'1 ( ^ j for all k G N(Jfe4). 

Summing up (2.4) from to A; — 1, we obtain 
fc_1 \ 

(2.5) zk<zki+ J " 
j=fc4 V Pj J 

But, according to (Ci), inequality (2.5) implies that Zk < 0 as k —> 00, which 
contradicts to zk = yk + akUk-r > 0. Hence Az k = A (y k + akyk-T) > 0. 

If yk < 0 for all k G N(/ci), then similar reasoning implies a contradiction. 
We omit the details to avoid repetition. • 

THEOREM 1. Let (CI) hold and the condition 

is satisfied, where <f>j = PkiF{Azk6) — 'Y^sZ}-5 H(s, c,c,c,...,c) with a positive 
constant c. Then every solution of Eq. (1.1) is oscillatory. 

Proof . Suppose that there exists a k\ G N(fco) such that yk > 0 for all 
k G N(fci). Since (k — r) —> 00 and (A; — r )̂ —> 00 as k —> 00 for i = 
1 , 2 , . . . , n, one can find G N(fci) such that yk~T > 0 and yk~Ti > 0 for 
every i = 1 , 2 , . . . , n and all k G N(&2). Define 

zk = yk + akyk-T. 

Since 0 < ak < 1, there exist a £3 > and a constant A (0 < A < 1) such 
that 

yk = zk- akyk-T > > 0 for k G N (k 3 ) . 

Therefore we can find a.k^>kz such that 

yk-n > yk-r2 > >^zk-r2,. • •, yk-rn > ^k-rn > 0 for k G N(/c4). 

Then from Eq. (1.1) we have 

A(pkF(Azk)) < -qkG(Azk) - H(k, Azk, Xzk-ri, Xzk-r2,..., Xzh-rJ < 0 
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for all k E N(fc4). By Lemma 1 since Az k > 0, zk is increasing. Therefore 
there exists a constant c > 0 and a > such that Zk > c > 0, zk-ri > 
c > 0, Zk-r2 > c > 0 , . . . , Zk~rn > c > 0 for all k E N(ks). Hence we have 
from last inequality 

(2.6) A(pkF(Azk)) < —H(k, c,c,c,...,c) 

for all k E N(fcs). Summing up (2.6) from k§ to k — 1, we obtain 

fc-i 
(2.7) pkF(A(yk + akyk_T)) < pk5F(Azk5) - ^ H(s, c, c, c , . . . , c). 

S=fc5 

Let us take 4>k = pksF(Azks) — Y^Zk5 H(s, c,c,c,... ,c). Then from (2.7) 
we have 

Summing up (2.8) from to k — 1, we have 

(2.9) + 
j=k5 W J 

But, according to the condition (C2), inequality (2.9) implies that zk = 
Uk + akUk—T = — 0 0 as fc —> 00, which contradicts to the fact that yk > 0 and 
Vk + CLkUk-T > 0 - If Vk < 0 for all k E N(k\), then similar reasoning implies 
a contradiction. This completes the proof. • 

T H E O R E M 2. Let ( C I ) hold. Moreover, suppose that following conditions 
are satisfied: 

(C3) PfcAsfc < -M, 

where sk is a positive sequence with Ask < 0, and M is a nonnegative 
number, and 

where <pk is any negative squence for all sufficiently large k. Then every 
solutions of Eq. (1.1) is oscillatory. 

P r o o f . Whithout repeating the same assumption, let us consider in here 
the part of the proof of Theorem 1 untill (2.6). Let sk be a positive sequence 
which satisfies condition (C3). If we multiply the inequality (2.6) with sk 
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and later take its sum from ks to k — 1, we obtain 

(2.10) skPkF(Azk) - sk5pk5F(Azk5) 
fc-l fc-1 

- F(Azi)PjAsi ^ ~ X c,c,c,...,c). 
j=k 5 j=k5 

Applying the condition (C3) to (2.10) we have 

(2.11) skPkF(Azk) - sk5pk5F(Azk5) 
k-1 fc-l 

<~MJ2 F ( A z j ) - Y^ sJH(j>c,c,c,...,c) 
j=k$ j=fc5 

fc-l 
< - X SjH(j,c,c,c,...,c). 

j=k 5 

Let us take = sk6pksF(Azk5) - X]j=fc5
 sjH(j, c,c,c,...,c) in the inequal-

ity (2.11). Then from (2.11) we have 

(2.12) A z k < F ~ 1 ' ^ 
JkPk, 

Summing up (2.12) from to k — 1, we obtain 
fc-l , , 

(2.13) yk + akyk-T < ykh + aksyk5-T + ^ F~l ( —— ). 
, \ SOPT7 J 

By condition (C4) inequality (2.13) implies that lim (yk + akyk-T) = —00 . 
fc—»00 

This is a contradiction. If yk < 0 for all k G N(k\), then similar reasoning 
implies a contradiction. Hence the proof is complete. • 
THEOREM 3. Let conditions (CI) and (C3) hold. In addition, assume that 
following conditions are satisfied: 

} H{k v0,vi,...,vn) > 0 k > o 

Hi{v0,vi, ...,vn) 
where the function H\(VQ,V\,... ,vn) is a continuous function and has the 
same sign with respect to VQ, V\, . . . , vn, and 

(Ce) ¿ W - ^ U - o o , 
^ \SuPu) 

where tpk — sk5pk5F(Azk5) — Yl^Z^ flPjsj> where sk is a positive sequence 
with Ask < 0 and n is a positive constant. Then every solution of Eq. (1.1) 
is oscillatory. 
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P r o o f . Suppose that there exists a K\ G N(fco) such that yk > 0 for all 
K G N(fci). Since (K — r) —> oo and (K — r )̂ —»• oo as K —> oo for I = 
1 , 2 , . . . , n, one can find € N(fci) such that YK-T > 0 and VK-N > 0 for 
every I = 1 , 2 , . . . , n and all K G N(A;2). Hence, we can find any function 
HI(YK, VK—RI, VK-R2, 2/fc-r J such that 

( 2 . 1 4 ) H(K, YK, YK-N, VK~R2, • • • , VK-RN) 

> PKHI{YK > YK—R\ > VK—R21 • • • 1 VK—TN ) ^ 0 

for all K € N(&2). Define Zk = yk + akVk-T- Since 0 < a^ < 1, there exist a 
> and a constant A (0 < A < 1) such that 

VK = ZK~ AKYK-R > XZK > 0 for K G N(fc3). 
Therefore we can find a K^ > KZ such that 

YK-N > a Z K - N , YK-R2 > A2fc -r 2 , - • • , YK—RN > XZK-RN > 0 f o r K G N ( f c 4 ) . 

Then we can rewrite (2.14) in the form 

H(K, A ZK, \ZK-N > ^ZK-R2 > • • • > ^ZK-RN) 

> 0KHI(XZK, XZK-N, XZK-R2, XZK-M) > 

Therefore considering continuity of H\(VQ, V\, ..., V2) and since ZK > 0 is 
increasing, we have 

lim inf Hi{Xzk,Xzk- r i ,Xzk-r 2 , - - - ,Xz k -r n ) = HI(S,S,... ,S) . 
K—»00 

Thus, we obtain 0 < H\(S,Ô,... ,S) < +00. Choose /J, such that 0 < P, < 
HI(S, 5,... ,5) < +00. Then there exists > K^ such that 

(2.15) ti\(Xzk,Xzk-ri,Xzk-r2,...,Xzk-rn) > n 

for all K G N(fc5). Therefore from Eq. (1.1), (2.14) and (2.15) we obtain 

( 2 . 1 6 ) A(PKF(AZK) + FIF3K < 0 . 

If we treat (2.16) as we treat (2.6) in the proof of Theorem 3, 
fc-i fc-i 

( 2 . 1 7 ) SKPKF(AZK) - SK5PK5F(AZK5) < ^ FIAZ^PJASJ - P(3JSJ. 

J=K5 J=K 5 

Applying the condition (C3) to (2.17) we have 

( 2 . 1 8 ) SKPKF(AZK) - SK5PK5F(AZK5) 

K-1 K-1 FC-1 

J=K5 J=K6 J=K5 

Let us take TPK = SK5PK5F(AZK5) - YL'JZKS
 i n (2.18). Then summing 

up (2.18) from K$ to K — 1 and considering condition (Cg) from (2.18) we 
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have 

as k —> oo. This is a contradiction. If yk < 0 for all k G N(&i), then similar 
reasoning implies a contradiction. Hence the proof is complete. • 

2.2. Oscillation criteria for the case of oscillating coefficient ak 

We consider coefficient ak as an oscillating sequence in the following 
Lemma 2, Theorem 4, Theorem 5 and Theorem 6. 

L E M M A 2 . Assume that yk is nonoscillatory bounded solution of Eq. (1-1) 
and it does not tend to zero as k —> oo. If the condition (Ci) and 

( C 7 ) lim inf ak = 0 
k—>oo 

is satisfied, then there exists a k* G N(fco) such that 

(Vk + akyk_T)A(yk + a f e y f c _ T ) > 0 

for all k G N(fc»). 

P r o o f . Suppose that yk is nonoscillatory bounded solution of Eq. (1.1) and 
without generality it is positive. Then Since (k — r ) —> 00 and (k — rj) —> 00 
as A; —> 00 for i = 1, 2 , . . . , n, one can find k\ G N(fco) such that yk-T > c > 0 
and yk-n > c > 0 for every i = 1 , 2 , . . . , n and all k G N(&i). Define 

¿fc = Vk + 0-kVk-T-

Since yk does not tend to zero as k —>00 and it is bounded, lim i n f a k y k - r 
= 0. Therefore zk[c>0ask—>00. Hence we find a sufficiently large 

> k\ and a constant A (0 < A < 1) such that 

Vk = zk - dkUk-r > A2fc > 0 for k G N(k2). 

Therefore we can find a > such that 

Vk—ri ^ Azfc_ri, yk-T2 — ^Zk-T2T • • 1 Vk—Tn ^ ^ z k - r n > 0 
for A; G N ^ ) . Rest of the proof is similar to the proof of Lemma 1 in the 
section 2.1. • 

T H E O R E M 4 . Assume that conditions (C\), (C2) and ( C 7 ) are satisfied. 
Then every bounded solution of Eq. (1.1) is either oscillatory or tends to 
zero as k —> 00. 

P r o o f . Suppose that yk is nonoscillatory bounded solutions of Eq. (1.1) 
and without generality it is positive. Furthermore assume that yk does not 
tend to zero if k —> 00. Then, since (k — T) —> 00 and (k — RI) —> 00 as 
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k —> oo for i = 1,2,. . . , n, one can find k\ G N(ko) such that yk-T > c > 0 
and yk-n > c > 0 for every i = 1,2,. . . , n and all k € N(fci). Define 

Zk = Vk + akVk-T-

By Lemma 2 Zk = yk + akVk-r > 0 and A Zk > 0. Since yk does not tend to 
zero as k —> oo and it is bounded, lim inf*.^^ akyk-r = 0. Therefore there 
exist & k2> k\ and a constant A (0 < A < 1) such that 

yk = zk ~ o-kyk-T > Azfc > 0 for sufficiently large all k G N(&2). 

Therefore we can find a £3 > such that 

2/fc-ri > Az fe_r i, > \Zk-r2T • • , yk-rn > AZfc-rn > 0 for all k 6 N(/c3 ) . 

Rest of the proof is all similar to the proof of Theorem 1 in the section 2.1. 
• 

THEOREM 5. Assume that conditions {C\)t (C3), (Ce) and (C7) are satisfied. 

Then every bounded solution of Eq. (1.1) is either oscillatory or tends to 

zero as k —> 00. 

P r o o f . The proof is similar to proofs of Theorem 2 in Section 2.1, so we 
omit it. • 

THEOREM 6. Assume that conditions (Ci ) , (C3), (Cs), (C&)and (C7) are 
satisfied. Then every bounded solution of Eq. (1.1) is either oscillatory or 

tends to zero as k —> 00. 

P r o o f . The proof is all similar to the proofs of Theorem 3 in the section 
2.1. Therefore we omit the details to avoid repetition. • 
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