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OSCILLATION CRITERIA FOR SECOND-ORDER
FUNCTIONAL DIFFERENCE EQUATION
WITH NEUTRAL TERMS

Abstract. In this manuscript, two type of new oscillation criteria are obtained respect
to coefficient ak in the following Eq. (1.1). In the subsection 2.1 considered as ax > 0. In
the subsection 2.2 allowed it to be an oscillating sequence. There are no results for the
oscillation of second order difference equations with oscillating coefficients up to now.

1. Introduction

Recently, the oscillation and nonoscillation problems of second order
difference equations have recieved a great amount of attention. This is
probably due to the closeness of such phenomenon to those of the analogous
differential equations. In addition, these equations have many applications
in physics and in other fields (see [1-5]). Particularly, including neutral and
delay terms equations find numerous applications in natural science and
technology [29-34]. For instance, they are frequently used for the study of
distributed networks containing lossless transmission lines. In this paper we
consider a class of general second order nonlinear difference equation with
general nonlinear neutral terms of the form

(L.1)  A(peF(A(yk + akyk—r))) + xG(A(yx + axyr—r))

+ H(k, Yks Yk—ry> - - Y—r,) = 0
where k € N, and obtain two type new oscillaion criteria respect to sequence
ar > 0 in the subsection 2.1 and it is even an oscillating sequence in the sub-
section 2.2. There are no results for the oscillation of second order difference
equations with oscillating coefficients up to now.

The following conditions are always assumed to hold:
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i) pr > 0 and g > 0 for every k € N(kg) where N(ko) = {ko, ko +
1,...,} and kg € N,

i4) F :R — Ris a continuous increasing function such that vF(u) > 0
for u # 0,

i11) G :R — RT is a continuous function such that 0 < m; < G(u) < mg
where m; and mo are constants,

iv) H : N(ko) x R — R is a continuous increasing function with
respect to vg,v1, ..., U, further H(k,vo,v1,ve,...,v,) has same sign with
respect to vg,v1,v2, ..., Un,

v)  T,7T1,72...,7n € N(1) and (k —7) —» 400, (k—1m;) — +00 as
k— oo foreveryi=1,2,...,n.

Choosing Eq. (1.1) for this study is motivated by the numerous research
on the oscillatory properties of several particular cases of Eq. (1.1). For
example, the linear difference equation

A('rnAiL'n—l) + gnzn =0
has been studied by [9-11, 15, 26 and the references cited therein| which is
a special case of Eq. (1.1). The discrete Emden-Fowler equation
A%z, 4+ gnlza’ 2, =0, wv>1

and its generalizations
A(rpAzy_1) + gnd(xn) = 0, where ¢ has the same properties as H and F,
A(rpAzp_1) + g(n,z,) = 0, where g has the same properties as H and F,
have been investigated by [12, 13, 20-24 and the references cited therein].
Another very important special case of Eq. (1.1), which arises in the theory
of radial solutions for p-Laplacian equation on an annular domain (see [8]
and the references cited therein), is the half- linear equation

Ara |Azq_1 P2 Azp 1) + gnlzalP 22, =0, p>1,
and its more genaral form

A(rn |AZn 1P 2 Azy_1) + g(n,z,) = 0, p>1,

have been studied by [14, 16-19, 27 and the references cited therein) which
are also special cases of Eq. (1.1). The delayed or advanced versions of the
above equations have been study by [25 and the references cited therein].
Finally, the particular cases of Eq. (1.1), the equations

A(rnf(Azn-1)) + g(n,zn) =0
and

A(rnf(Azn-1)) + 9(n, 27,) = 0
have been investigated by [28 |].
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Recall that A is a forward difference operator which is defined by Ay(k)
= y(k+ 1) — y(k). Throughout this work we imply y(k) = yi.

Let 0 = max{r, r;} , ¢ = 1,2,...,n, and Ny be a fixed nonnegative
integer. By a solution of Eq. (1.1), we mean a real sequence {yx} which is
defined for all k > Ny — o and satisfies Eq. (1.1) for ¥ > Ny. A solution {y}
of Eq. (1.1) is said to be nonoscillatory if all the terms y; are eventually of
fixed sign. Otherwise, the solution {yx} is called oscillatory. In this paper,
we shall be concerned only with the nontrivial solutions of Eq. (1.1).

2. Main results

2.1. Oscillation criteria for the case of 0 < aq; < 1. We consider the
coeflicient a; as 0 < a; < 1 in the following Lemma 1, Theorem 1, Theorem
2 and Theorem 3.

LEMMA 1. Assume that yi is nonoscillatory solution of Eq. (1.1). If the
condition

() S P (=) = (>0

is satisfied, then there exists ki € N(ko) such that

(Yk + akyr—r)A(Yk + akYk—r) > 0
for all k € N(k1).

Proof. Suppose that there exists a k; € N(ko) such that y, > 0 for all
k € N(k1). Since (k —7) — oo and (k —r;) — o0 as k — oo for i =
1,2,...,n, one can find k; € N(k;) such that yx_, > 0 and yx_,, > O for
every ¢ = 1,2,...,n and all k € N(k2). Define

2k = Yk + OkYk—r-

Since 0 < ai < 1, there exist a k3 > k2 and a constant A (0 < A < 1) such
that
Yk = 2k — QkYp—r > Az > 0 for k € N(k3)

Therefore we can find a ks > k3 such that
Yk—ry = AZk—rys Ykory = AZkergye -+ 3 Ykeory = A2k—r, > 0 for all k € N(k4).
Then from Eq. (1.1) we have
(2.1)  ApeF(Azk))
< —qu(Azk) — H(k, Azg, )‘Zk—rl , )‘Zk—'rz, ceey /\Zk—rn) <0

for all k € N(k4). From (2.1) it is clear that pp F'(Azx) is decreasing. There-
fore there are two cases. Either Az < 0 or Az, > 0.
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Assume that Az, < 0 for all £ € N(k4). Summing up (2.1) from k4 to
k —1 we get

(2.2) peF(Az;) < pr, F(Azg,) = —c <0 (c>0) for all k € N(ky).
Then from (2.2) we have
(2.3) F(Az) < ;—c for all k € N(ks).

k
Then from (2.3) we obtain
—c
Pk
Summing up (2.4) from k4 to k — 1, we obtain

(2.5) 2n < zZjy + ki F1 (__C>

j=ka Pj

(2.4) Az < F‘1< ) for all k € N(ky).

But, according to (C1), inequality (2.5) implies that z; < 0 as k — oo, which
contradicts to zx = yx + axyk—r > 0. Hence Azy = A(yg + akyr—r) > 0.

If yx < 0 for all k£ € N(k3), then similar reasoning implies a contradiction.
We omit the details to avoid repetition. ([

THEOREM 1. Let (C1) hold and the condition
(C2) S F! (—i) = —00
pj
is satisfied, where ¢; = pksF(Azks)—Zg;Jl-5 H(s,c,c,c,...,c) with a positive

constant c. Then every solution of Eq. (1.1) is oscillatory.

Proof. Suppose that there exists a k1 € N(ko) such that yx > 0 for all
k € N(k1). Since (k—7) —» oo and (k—r;)) —» oo as k — oo for i =
1,2,...,n, one can find k3 € N(k;) such that y,_, > 0 and yx_,, > 0 for
every 1 = 1,2,...,n and all k¥ € N(ky). Define

2k = Yk + QkYk—7-

Since 0 < a < 1, there exist a k3 > k2 and a constant A (0 < A < 1) such
that
Y = 2k — QplYk_r > A2z > 0 for k € N(k3).

Therefore we can find a k4 > k3 such that

Yk—r1 = AZk—ry> Yb—ry = AZk—ryse - oy Ykmry = AZk—p, > 0 for k € N(kyq).
Then from Eq. (1.1) we have

AlprF(Az)) < —qiG(Azg) — H(k, A2k, AZk—rys AZk—rys - - - s AZk—r,,) < O
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for all k € N(k4). By Lemma 1 since Azi > 0, 2 is increasing. Therefore
there exists a constant ¢ > 0 and a ks > k4 such that zp > ¢ > 0, 2k, >
¢>0, 2k—y, >¢>0,..., 25, >c>0for all k € N(ks). Hence we have
from last inequality

(26) A(ka(AZk)) < _H(k’ GGG .., C)
for all k € N(k5). Summing up (2.6) from ks to k — 1, we obtain

k-1
(27) ka(A(yk + akyk-—'r)) < pksF(Azk5) - Z H(37 GGG, C)-

s=ks

Let us take ¢ = p, F(Azk;) — Zk—l H(s,c,c,c,...,c). Then from (2.7)

s=ks
we have
(2.8) Az, < F71 <ﬁ>
Dk

Summing up (2.8) from ks to k — 1, we have

k—1 d’
(2.9) 2k < Zgs + Z F! (—J)

j=ks P

But, according to the condition (C2), inequality (2.9) implies that 2z, =
Vi +apyr_r = —00 as k — oo, which contradicts to the fact that yp, > 0 and
Yk + axyx—r > 0. If y,, < 0 for all kK € N(k;), then similar reasoning implies
a contradiction. This completes the proof. O

THEOREM 2. Let (C1) hold. Moreover, suppose that following conditions
are satisfied:

(03) prlAs, < —M,

where s, is a positive sequence with Asy < 0, and M is a nonnegative
number, and

(Cy) ip—l (&) = -0

SoPo

where @y, is any negative squence for all sufficiently large k. Then every
solutions of Eq. (1.1) is oscillatory.

Proof. Whithout repeating the same assumption, let us consider in here
the part of the proof of Theorem 1 untill (2.6). Let sx be a positive sequence
which satisfies condition (C3). If we multiply the inequality (2.6) with si
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and later take its sum from k5 to k — 1, we obtain

(2.10)  skprF(Azk) — skyprs F(Dzyy)

k-1 k-1
- Z F(Azj)pjAs; < — Z s;H(j,c e c,. .. ).
j=ks J=ks

Applying the condition (C3) to (2.10) we have
(2.11)  sgppF(Azk) — SksPrs F'(Aziy)

k—1 k—1
<-M Z F(Azj) - Z sjH(j,¢c,c,c,...,c)
Jj=ks Jj=ks
k—1
<- Z s;H(j,c,crc, ... 0).
Jj=ks

Let us take ¢ = Sg prs F(Azig) — f;,i5 s;H(j,¢,¢c,c,...,c) in the inequal-

ity (2.11). Then from (2.11) we have

(2.12) Az < F~! (&)
SkPk
Summing up (2.12) from k5 to k — 1, we obtain
k-1
(2.13) Yk + OkVk—r < Uks + QhsUps—r + D F ! (%)
o=ks

By condition (Cy) inequality (2.13) implies that klim (yk + axyg—r) = —00 .
—00

This is a contradiction. If yx < 0 for all kK € N(k;), then similar reasoning
implies a contradiction. Hence the proof is complete. O

THEOREM 3. Let conditions (C1) and (C3) hold. In addition, assume that
following conditions are satisfied:

H(k,vo,v1,...,vp)

(Cs > P >0

) Hl(’l)o,’l)l,...,’vn) !

where the function Hi(vg,v1,...,v,) 18 a continuous function and has the
same sign with respect to vg,v1, ..., Vs, and

where Y, = SkyPis F'(Azkg ) — Z?;;a uB;s;, where s is a positive sequence
with Asg < 0 and p is a positive constant. Then every solution of Eq. (1.1)
is oscillatory.
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Proof. Suppose that there exists a k; € N(kg) such that y; > 0 for all
k € N(kp). Since (k —7) — oo and (k —71;) — o0 as k — oo for i =
1,2,...,n, one can find k2 € N(k;) such that yx_, > 0 and yx_,, > 0 for
every 1 = 1,2,...,n and all k € N(kp). Hence, we can find any function
H1(Yk, Yk—ry» Yk—rs» - - - » Yk—r,, ) SUCh that

(214) H(ka Yk Yk—r1y Yk—roy - - - ,yk—rn)

> ﬂkHl (yk’ Yk—r1) Yk—rgs - - - ayk—rn) >0

for all k € N(kz). Define z, = yr + aryg—r. Since 0 < a < 1, there exist a
k3 > ko and a constant A (0 < A < 1) such that

Yk = 2k — GxYk—r > A2k, > 0 for k € N(k3).
Therefore we can find a k4 > k3 such that
Ye—r1 = AZk—rys Yk—rg = AZk—rgse - s Ykorp = A2k—r, > 0 for k € N(ky).
Then we can rewrite (2.14) in the form
H(k, A2, \2g—ry s A2k—rgy - - s AZk—rp,)
> B H1(Azky AZk—ryy AZk—pyy - -« s AZk—r,, ) > 0.

Therefore considering continuity of Hj(vg,v1,...,v2) and since zp > 0 is
increasing, we have

limki_r}go Hi(Azg, AZk—ryy A2Zk—rgy + -y A2k—p, ) = H1(6,6, ..., 6).
Thus, we obtain 0 < Hj(4,6,...,8) < +0o. Choose p such that 0 < p <
Hy(4,9,...,0) < +00. Then there exists k5 > k4 such that
(2.15) Hy(Azgy A2k—pyy AZk—rpgy -+ oy AZk—p, ) > 4
for all k € N(ks). Therefore from Eq. (1.1), (2.14) and (2.15) we obtain
(2.16) A(peF(Azk) + pB < 0.

If we treat (2.16) as we treat (2.6) in the proof of Theorem 3,
k-1 k-1

(2.17) Skka(AZk) - SkspksF(Azks) < Z F(AZj)ijSj — Z ,U,,Bij.
J=ks J=ks

Applying the condition (C3) to (2.17) we have
(2.18)  skpeF(Azk) — SksPrs F(Azy)

k-1 k—1 k—1
<S-MY F(Az) =Y pBs;<— Y ubs;
J=ks J=ks Jj=ks

Let us take ¥y = S prs F(Azkg) — Z?;,is pBjs; in (2.18). Then summing
up (2.18) from ks to kK — 1 and considering condition (Cs) from (2.18) we
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have

k-1
af ¥
Yr + apYk—7 < Yks + QksYks—r + E F! (—S ; — —00
u—ks utu

as k — oo. This is a contradiction. If y, < 0 for all k¥ € N(k;), then similar
reasoning implies a contradiction. Hence the proof is complete. O

2.2. Oscillation criteria for the case of oscillating coefficient a;
We consider coeflicient a; as an oscillating sequence in the following
Lemma 2, Theorem 4, Theorem 5 and Theorem 6.

LEMMA 2. Assume that yy is nonoscillatory bounded solution of Eq. (1.1)
and it does not tend to zero as k — oo. If the condition (Cy) and

(Cr) lim inf a; =0

k—o0

is satisfied, then there exists a k. € N(kg) such that

(yk + aryr—r) Ay + axye-r) > 0
for all k € N(k.).
Proof. Suppose that y, is nonoscillatory bounded solution of Eq. (1.1) and
without generality it is positive. Then Since (k—7) — oo and (k—17;) — oo
ask — oofori=1,2,...,n, one can find k1 € N(kp) such that yy_, >c>0
and yx_,, > ¢ >0 for every : =1,2,...,n and all k¥ € N(k;). Define
2k = Yk + QkYk—r-
Since y;, does not tend to zero as k — oo and it is bounded, lim infy_, aryr—-
= 0. Therefore 2z | ¢ > 0 as k — oo. Hence we find a sufficiently large
ke > k1 and a constant A (0 < A < 1) such that
Yk = 2k — OkYk—r > A2k > 0 for k € N(ko).
Therefore we can find a k3 > ko such that
Yk—ry 2 /\Zk-—n, Yk—r, > /\Zk—’r‘za' - Ye—ry > )‘Zk—’l‘n >0
for k € N(k3). Rest of the proof is similar to the proof of Lemma 1 in the
section 2.1. O

THEOREM 4. Assume that conditions (C1), (C2) and (C7) are satisfied.
Then every bounded solution of Eq. (1.1) is either oscillatory or tends to
zero as k — oo.

Proof. Suppose that y; is nonoscillatory bounded solutions of Eq. (1.1)
and without generality it is positive. Furthermore assume that y; does not
tend to zero if k — oo. Then, since (k — 7) — oo and (k — ;) — 00 as
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k — oo for i =1,2,...,n, one can find k; € N(kp) such that yx_ > ¢ >0
and yx_,, > ¢ > 0 for every ¢ =1,2,...,n and all k € N(k;). Define

Zk = Yk + CkYk—r-
By Lemma 2 z;, = yx + aryr—r > 0 and Az, > 0. Since gy does not tend to

zero as k — oo and it is bounded, liminfy_, o, axyr—_» = 0. Therefore there
exist a ko > k; and a constant A (0 < A < 1) such that

Yk = 2k — OkYr—r > A2z > 0 for sufficiently large all k& € N(k9).
Therefore we can find a k3 > k9 such that
Yk—ry = AZk—rys Ykory = AZk—rgs- - - » Ykerp = A2k—p, > 0 for all k € N(k3).

Rest of the proof is all similar to the proof of Theorem 1 in the section 2.1.
[

THEOREM 5. Assume that conditions (C1), (C3), (Cs) and (C7) are satisfied.
Then every bounded solution of Eq. (1.1) is either oscillatory or tends to
zero as k — 00.

Proof. The proof is similar to proofs of Theorem 2 in Section 2.1, so we
omit it. O

THEOREM 6. Assume that conditions (C1), (Cs), (Cs), (Cs)and (C7) are
satisfied. Then every bounded solution of Eq. (1.1) is either oscillatory or
tends to zero as k — oc.

Proof. The proof is all similar to the proofs of Theorem 3 in the section
2.1. Therefore we omit the details to avoid repetition. O
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