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POLYNOMIALS IN ADDITIVE FUNCTIONS
AND GENERALIZED POLYNOMIALS

Abstract. We consider polynomials P in additive functions g1, ..., gm and present
two approaches for a characterization of those generalized polynomials p, which may be
represented as p = P o (g1,...,9m). Under rather general assumptions on the domains
of the g; and of P, one of the approaches is based on certain properties of subspaces
generated by translates of p. The other approach utilizes the fact, that every p is the
diagonalization of an associated multi-Jensen function.

1. Introduction

In [PS] the authors discussed the connections between generalized poly-
nomials p of degree < n defined on a vector space V over Q taking values
in a vector space W over Q and (symmetric) functions f: V* — W which
have the Jensen property in each variable. It has been shown that there
is a one-to-one correspondence between the space P,(V, W) of all general-
ized polynomials p: V — W of degree < n and the space of all symmetric
functions f: V™ — W which are Jensen in each variable.

There is a subclass P (V, W) of P, (V, W) which is of special importance
(see, for example [Sz]). This class, the space of all polynomials in additive
functions (of degree < n) is defined by

PV, W)
= EQ({Hgi-a|a€ W,n>meNy, 91,92, - gm: V= Q additive}).

i=1
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Thus (with J[_, g; = 1, as usual) P*(V, W) is the space of all functions

N m; ]
1
p=3 1o as
i=1j=1
where N e N, my,mq,...,my € Ng,m; <nforl <i<N,aj,as,...,an €

W and where all g](-z) : V — Q are additive. In general P:(V,W) C P,(V,W)
([RS]).

The starting point of our considerations has been a question asked by
Ludwig Reich [R] about a characterization of polynomials in additive func-
tions by their corresponding multi-Jensen functions. In the course of our
treatment it turned out, that it is helpful to direct one’s attention in the
first place to certain problems concerning general properties of polynomi-
als in additive functions. Assuming that G is an abelian group, K a field
with characteristic zero and V a vector space over K, we consider map-
pings p : G — V admitting a representation p = P o (g1,...,gm), Where
P : K™ — V is a polynomial in m variables and ¢1,...,9m : G — K are
additive functions.

Beginning with the equation P o (g1,...,9m) = 0, in Section 2 the re-
lationship between different representations p = P o (g1,...,9m) = Q o
(hi,...,hs) and the problem of minimality of m are investigated. Moreover,
a characterization of functions p being a polynomial in additive functions in
terms of the dimension of Lk (p(G)) and compositions ¢ o p with ¢ € V* is
given.

Section 3 contains a characterization of generalized polynomials both
p:G — K aswell as p: G — V, K not necessarily algebraically closed,
admitting a representation p = P o (g1,...,9m), by translation invariant
subspaces of the vector space of all generalized polynomials with values in
K or V, respectively. Characterizing in this way, the translation equation
is involved crucially. For that reason a former result on diagonalization of
homomorphisms G — Gl,(K) and on the form of their entries as exponential
polynomials has to be generalized to the considered case of arbitrary fields
K of characteristic zero.

In Section 4 we give characterizations of generalized polynomials p :
V — W, V,W being Q-vector spaces, admitting a representation p = P o
(91, - --,9m), by specifying the structure of their corresponding multi-Jensen
functions. Moreover, an example of a generalized polynomial which is not a
polynomial in additive functions is analyzed in detail.

In our approach generalized polynomials are considered as polynomial
functions. An algebraic view on generalized polynomials as elements of a
certain polynomial ring may be found in [H].
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2. Polynomials in additive functions defined on abelian groups

In [RS] mainly such polynomials in additive functions have been consid-
ered which are defined on C and which take values in C. Here we want to
generalize this concept. Moreover we will investigate the question to what
extent the representations of polynomials in additive functions are unique.

We start with a field K of characteristic 0 and an abelian group G. (In
some situations it would be enough to suppose that the number of elements
of K is not too small.) Homomorphisms g: G — K will be called additive.
If V is a vector space over K and m € N, a function P: K™ — V is called a
polynomial (function) if there is a family (a,),eng of elements a, € V' such
that all a, = 0 with at most finitely many exceptions and such that

P(z) = z z’a,

veNg?

for all z = (z1,22,...,2m) € K™. (As usual z¥ := [[;2, z}*.)

REMARK 1. Well-known arguments ([La, chap. V, p. 121]) show that the
family (a,) is uniquely determined by P:

If P(z1,22,...,2m) = 0 for all (z1,29,...,2m) € [[% Xi and if all X;
contain infinitely many elements, then a, = 0 for all v.

We denote the set of all these polynomial functions by Q(K™, V). Ob-
viously this set is a vector space over K. Moreover @ - P € Q(K™ V) if
Q € QK™ K) and P € Q(K™,V). One also can easily verify that for
given Q1,Q2,...,Qm € Q(KP, K) the function P* := P o (Q1,Q2,...,Qm)
defined by P*(y) = P*(y1,...,¥p) := EueN{," [T, Qi(y)" - a, is contained
in Q(KP,V).

We call p: G — V a polynomial in additive functions if there are some
additive functions g1, g2, ..., 9m: G — K and if there is some P € Q(K™,V)
such that p = Po(g1,92,...,9m) (p(z) = P (g1(x), g2(z), - . ., gm(z)) for all
z €G).

The following theorem generalizes Theorem 1 of [RS].

THEOREM 1. Let G be an abelian group, let K be a field of character-
istic 0. Suppose that V is a vector space over K, that P € Q(K™,V) and
that g1, ...,9m: G — K are m linearly independent additive functions. Then
Po(g1,...,9m) =0 implies P = 0.

Proof. Since ¢1,92,...,9m are linearly independent we may find zi,xs,
..., &m € G such that the vectors (g1(x;), g2(xi), ..., gm(zi)), 1 =1,2,...,m
are linearly independent in K™ ([AD, p. 229|). Let Q; € Q(K™, K) be
defined by Qi(t1,t2,...,tm) == >0, gi(zj)t;. Po(g1,...,9m) = 0 implies
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with z := Z;"Zl n;z; (and ni,ng,...,nym € Np) that

0=P(gi(x),...,9m(x)) = P(Q1(n1,...,nm), ..., Q@m(n1,...,nm))
for all (n1,...,nm) € N§*. Thus, by Remark 1, Q(K™,V) 3 P* := Po

(Q1,...,Qm) =0.
By construction the matrix (gi(x;)) is regular. Let A = (Ay;) be its

inverse, i.e., ngi(xj)Ajk = & Then, with [;(t) = [i(t1,...,tn) =
Zk Aspty, we get

Qi (1), () =D gi(z) > Ajrte = D Sty = ti.
J k k

So
0=P*(Li(t),...,lm(t)) = P(Q1(Li(t),.. ., lm(D)), ..., Qm(L(2), ..., ln(P)))
= P(ty,...,tm)
for all t1,t2,...,t;m € K. Thus P=0. =
Now we want to describe those polynomial functions P with
Po(g1,...,9m) =0

for not necessarily linearly independent additive functions ¢1,...,gm- To
this aim we first need some auxiliary results.

LEMMA 1. Letn € N, p = (p1,...,tn) € N§. Then there are polynomials
Q1,...,Qn contained in Q(K?", K) such that

n
H =a"+ZQl(m1,...,xn,al,...,an)-(ml—al)
=1

for allz = (zq,...,2,),a = (a1,...,a,) € K™.

Proof. The assertion obviously holds true when |u| := > p; = 0. If |u| =
m + 1 and if the assertion holds for x4’ with |y/| = m, we also may assume
that, say, pn > 0. Then z# = z#'z,,, where p’ := (1, 2, ..., im — 1) (and
|| = m). Accordingly

x”:x“/xn
n
!

= (a“ + ZQ;(CL‘I, ey Ty @1y Op) - (T — al))((ﬂ?n —an) + an)

I=1
n
!

:auan‘+‘ZQl(Il,”.,fL‘n,al,-u,an)'(xl_al),

I=1
where Qi(z1,...,%n,01,...,82) = Q(Z1,...,%n,01,...,an) - T for I < n

’
and where Qn(z1,...,%n,a1,...,0,) = a* +Q) (z1,...,Zn,a1,...,0p) Tpn. ®



Polynomials in additive functions 593

LEMMA 2. For every P € Q(K™, V) and every m < n there are polynomials
Qi€ QK™V), Qr € QK™ V), l=m+1,m+2,...,n, such that

(1) P(z1,...,zn) = Q3(z1,. .-y Tmy Gmt1, - -, Cn)
n
+ Y Qi@ Ty, 0n) - (21— @)
l=m+1
forallzy,...,zn,am+1,...,an € K.

Proof. Given P we may write

(2) P(zy,...,Tp) = Z IulPul(.’L'l,...,mm),

weM
where M is a finite subset of {0}™ x Nj™™, i.e., u, = 0 for all i« < m (and
o = m’;ﬂﬁl Ceee xﬁ;'), and where Py € Q(K™,V) for all 4/ € M. We may

assume that ug := (0,0,...,0) € M. According to Lemma 1 we have, with
certain Ql(“) € Q(K2»—m) K,

n
B =+ 3 Q" (@mitr- s T amits-- s an) - (71— @)
l=m+1

for all 4’ € M. Inserting (3) into (2) we get (1) if we use

!
Qo(Z1,- -, Tmy Gt 1, - -y 0n) = Py, ..., Zm) + Z a* -Py(z1,...,Zm)

peM
K #po
and, forl=m+1,...,n,
*
Qi (1, Tny Amt1, - - - An)
. (')
= Z Q" (Tmy1,- - Tny Oty - -5 n) - Pz, ..., Tm). =
weM
B #uo

COROLLARY 1. Gwen P and m,n as in Lemma 2 and gwen u;; € K,
1<j<m, m+1<1<n, there is some P; € Q(K™,V) and there are
Pr e Q(K™, V) such that

(4) P(z) = Bj(z1,oem) + D (&= ) wyz;) P (2)
l=m+1 j=1

forallz = (z1,...,Tm,...,2s) € K™
Proof. This immediately follows from Lemma 2 for a; := Z;"Zl U T;. W

THEOREM 2. Let g1,92,---,9n: G — V be additive, let g1, ..., gm be linearly
independent and let g = 3 7., wjg; for L > m. Then P € QK™ V)
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satisfies

(5) P(g1(¥),---,9n(y)) =0,y €G
if and only if there are P}, ,,...,P; € Q(K™, V) such that

(6) P)= Y (m- ) w;z;)P(z)
1 j=1

l=m+
for allz = (z1,...,2,) € K™

Proof. Put, for arbitrary y € G, z; := ¢i(y). Then (6) implies (5) since in
this case z; = 37 w;z; for all | > m.

If (5) is satisfied we use (4) and thus, with z; as before, we get 0 =
Py(g1(¥),-..,9m(y))+0+...4+0 for all y € G. So, by Theorem 1 and since
g1, ---,9m are linearly independent, Py = 0. This implies (6). =

REMARK 2. This theorem shows that a polynomial p in additive functions
may have different representations of the form p = P o (g1,...,9n) when
g1, .-, gn are linearly dependent. But this may even happen when g3, ..., 9,
are linearly independent. Take, for example, two linearly independent addi-
tive functions g1, g2, put P(x1,z2) := 21 +x2, Q(z1) := z1 and h := g; + go.
Then P o (g1,92) = Q o h.

We also note that any polynomial p = P o (g1,92,...,9s) in additive
functions g1, g9, .., gn may be written as a polynomial in m (< n) linearly
independent additive functions hy, he, ..., hy, (which may be chosen to be a
base of the space generated by the g;).

If the number n of additive functions in a representation p=Po(gs, ..., gn)
is minimal, we can describe all representations as a polynomial in n additive
functions.

THEOREM 3. Let p: G — V be a non constant polynomial in additive func-
tions and let n € N be minimal with respect to the property that there are
additive functions g1,...,9n: K — V such that p = Po(g1,...,gn) for some
P e QK™ V).

Then g1, ..., gn are linearly independent. Moreover p = Qo (hy,...,hy)
with additive functions hy, ..., hy, and suitable Q € Q(K™, V) if and only if
hi,...,hn constitute a basis for the space generated by g1, ..., gn.

Proof. Since p is not constant, the number n must be at least 1. Obviously
also g1 # 0 when n = 1. Suppose n > 1. If, say, g, were a linear combination
of g1,...,9n—1, gn = S pq WG, then p = Q* o (g1,...,gn—1) With Q* €
Q(K™1,V) defined by Q*(z1,-..,Tn-1) := Q(z1,%2, ..., Tn_1, Z?z_ll wxy).
This contradicts-the minimality of n.
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Let, now, p = Po(g1,...,9,) = Qo(hy,..., h,), where P,@Q € Q(K™,V)
and g1,...,9n, h1,--.,h, are additive functions from G to K (and n min-
imal). Hence, by the first part of the proof, both ¢1,...,g, and hy,..., h,
are linearly independent. Thus it is enough to show that {hj,...,h,} C
Lx ({g1,.-.,9n}), the vector space generated by ¢i,...,g,. Assume that
this is not true. Then the dimension of W := Lk ({91,.-.,9n,h1,---,hn})
must be greater than n. By standard arguments of Linear Algebra (and by
renumbering the h; if necessary) we may assume that the vectors g, ..., gn,
Rhi,...,hg form a basis for W for some 1 < k < n. Let h; = Y |/ ujg +
Ele vjih; for j = k+1,...,n. We also may assume that all v;; vanish.
This always can be achieved by using h;- =h; — Zle vjihi, k+1< 75 <mn,
and h} := hj, 1 < j <k, instead of h1,...,hy. (Of course Qo (hy,...,h,) =
Q* o (h],...,h}) for some Q* € Q(K™,V).)

Consider T € Q(K?",V) defined by

T(z1,. . Ty Y1, -+ Yn) = Plar, . 2n) — Qy1, - - -, ¥n)-

Then Po (g1,...,9n) = Qo (h1,...,hy) implies T o (g1,...,gn, h1,- .-, hn)
=0.

But g1,...,9n,h1,..., hi are linearly independent and h; = >, ujig
for k+1 < j < n. Theorem 2 then implies the existence of polynomials
Rii1,...,Ry € Q(K?,V) such that

() T(x1,. ., Ty Y1,--->Yn)
n n
= Z (yj - Zujlwl)Rj(l'lw--,a?n,ylw~7yn)
=1

j=k+1
for all 1,...,Zn,¥1,---,yn € K.
If welet xy,...,2n,Y1,...,yx be arbitrary and if we put y; := )" ; ujz
for j > k equation (7) implies that

n n
T(l.la o Ty Yy ooy Yk Zuk+1,lzl7 sy Zunlxl) =0
=1 =1
for all z3,...,2n,91,...,yx € K. The definition of T then gives
n n
(8) P(xl, A ,xn) = Q(yl, N Zuk+l,lmla ceey Zunlwl)
=1 =1
foralla:lA...,a:n,yl,...,ykEK. R

Let @ € QK™% V) be defined by Q(ykt1,-..,¥n) = Q(0,...,0,
Yk+1,---,Yn). Then (8) with y; =y2 = ... =y = 0 leads to

n n
P(a:la"-al‘n) = Q(Zuk+l,lwl7-"azun1xl>a Z1,...,Zn € K.
=1 =1
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Since h; = >, ujg; for k+1 < j < n we conclude

P(gl(t)’ ter ’gn(t)) = @(hk+1(t)’ ey hn(t))7 tegqG.

But then p = @ o(hk+1,---,hn). Since k > 0 this contradicts the minimality
of n. m

THEOREM 4. Assume that g1,...,gn are n linear independent additive func-
tions from G to K. Then there always exist polynomials from G to V' which
are polynomials in n additive functions and which are not polynomials in less
than n additive functions. For 0 # a € V the function p: G — V defined by
p(t) == g1(t)g2(t) . . . gn(t)a has the desired property.

Proof. Suppose p = Po (hy,...,hy) with m additive functions h;, P €
Q(K™,V) and suppose also that m is minimal. Assume m < n. m must
be greater than 0 since p cannot be constant (Theorem 1). hy,...,h, are
linearly independent by Theorem 3. Let hq,...,hmn,g1,...,95 be a basis
of W = Lx({h1,-.-,~m,91,---,9n}). Then k& > 0 since m < n. Let
g = Z;"zl uih; + ZLI vugi for Il = k+1,...,n. Theorem 1 applied to
hi,..-,hm, 91, -.,gr and to the polynomial @ defined by

Q(yl,"'aymaxla"'axk)

n

k m k
= H.’L‘l I (Zuljyj+Zvlimi)a—P(y1,...,ym)

I=1 I=k+1 j=1 =1
implies @ = 0. Since k£ > 1 we get for z; = 0 that 0 = Q(y1,--.,Ym,0,
Z2,...,Zn) =0— P(y1,...,Ym). But then P = 0 which implies the contra-
diction p =0. =

One may ask about a method to find, for a given polynomial p in ad-
ditive functions, a representation as a polynomial in a minimal number of
additive functions. A partial result related to this question is contained in
the following theorem.

THEOREM 5. Let p: G — V be a non constant polynomial in additive func-
tions, p = Po(g1,...,9,) with P € Q(K™ V) and g1,...,9n: G — K
additive. Assume that we also have p = Qo (h1,...,hp), @ € Q(K™, V)
and hy,..., hp: G — K additive, where m is the minimal number of addi-
tive functions necessary to represent p as a polynomial in additive functions.
Then all h; are linear combinations of g1,92,-. ., 9n.

Proof. Let g1,...,9n,h1,...,hi be abasis of Lx({g1,---,9n, A1, .-, hm}).
(Renumbering the h; might be necessary.) We must show that £ = 0. If k&
were greater than 0, we would be able to write h; = 2?:1 wihi + Y0 Vg,
I > k. As in the proof of Theorem 3 we may even assume that all u;; vanish.
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Then Po (g1,...,9n) = Qo (hi,...,hy) reads as

n n
Po(gla"'ag’n) _QO (h17""hkazvk+1,igi,'"7zvmigi) =0.
i=1 i=1

Theorem 1 implies

n n
P(:L.la' .. 11.71) - Q(yla' . vykvzvk-i—l,iziv' . 'azvmixi) =0
i=1 =1

for all z1,...,Zn,¥y1,..-,yx € K. Thus

n n
P(CL’l, e ,In) = Q*(Z’Uk+1’i.’ri, ey vazl‘z>
i=1 =1

for all z1,...,z, € K, where Q*(Yx+1,---,Um) == Q(0,...,0,Yk+1,-- -, Ym)-
With z; := g;(t), t € G, this results in Po(g1,...,9n) = Q@* 0 (hgt1,---,hm)
which contradicts the minimality of m. m

We may characterize polynomials in additive function in the following
way.

THEOREM 6. A mapping p: G — V is a polynomial in additive functions if
and only if the subspace Lx(p(G)) of V generated by the image of p is of
finite dimension and if pop: G — K is a polynomial in additive functions
for all p € V* := Homg (V, K).

Proof. Assume that p: G — V is a polynomial in additive functions: p =
Po(g1,...,91), 915 ---,9n: G — K additive, P € Q(K™, V), P(z1,...,Zpn) =
EueN(} xz¥a,. Then p(G) is contained in L ({al, | veNG, a, # 0}) Thus
Lk (p(G)) is of finite dimension. Moreover, for any p € V*, pop = (poP)o
(915---,9n), where po P € Q(K™ K).

On the other hand, let {b1,...,bn} be a basis of Lx(p(G)) and let B
be a basis of V' containing the m linearly independent vectors by, ..., bp,.
Then p = > 7%, pib; with p;: G — K. Let ¢; € V* be the projection from
V to K determined by b; € B, i.e., p; = ¢; o p. By assumption all p;
are polynomials in additive functions. This implies that p = >, p;b; is a
polynomial in additive functions, too. =

Given a polynomial in additive functions, the question of finding repre-
sentations as a polynomial in a minimal number of additive functions has
a purely algebraic component. It has been pointed out in [Le] that such
representations may be calculated explicitely as in the proof of the next
theorem.

THEOREM 7. Let K be a field with characteristic zero, Q € Klyi,...,yn] be
a polynomial of degree < d,
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Q W, - ,yn Z Z ailn-inyil e y???

k=01i1+--+ipn=k
and suppose that the equation

. oQ
(9) D Mg, =
= 9
has exactly n — m linear independent solutions ¢; = ()\gi), ... ,,\S) )T € K",
i =1,...,n —m. Then there are m linear forms ¢; € Kly1,...,yn), 1 =
1,...,m, and a polynomial P € K|[z1,...,zn] of degree < d, such that
(10) Po(1,---0m) = Q.

Moreover, m is the smallest number, such that a representation (10) of @ is
possible.

Proof. There are b;,. ;,; € K, such that

n
0= Z)‘Jg Z Z yil"'yfznzbil...inj)\j,
J=1 Yi k= 0i1++in=k j=1

and linear independence of the monomials yil -+-gyin imply that the linear
system

n

(11) Zbil...inj)\jzo, W+ +ip,=0,...,d—1,

has n — m linear independent solutions ¢;,i = 1,...,n—m. Let A = (a;;) €
K™*™ be a Gaussian row-eschelon form of the system matrix of (11), such
that (11) may be written as 7, aijA; = 0,4 =1,...,m. A is the matrix
of a vector ¢ € K™[y1,...,Yyn| of linear forms, ¢(y) = Ay, with component
functions @;i(y1,-..,yn) = 27— @i;y;, ¢ = 1,...,m. Since rank(4) =m, A
is equivalent to (E,, 0) € K™*", where E,, is the m x m-identity matrix.
Hence there is a regular matrix C € K™*" satisfying AC = (E,, 0) and whose
columns m + 1,...,n have to be linear independent solutions of (9), such
that it may be written as C = (by -+ by €1 -+ €n_m). Then B := (by;) :=
(by -+ bm) € K™ ™ is the matrix of a vector ¢ € K™[z1,...,Zn] of linear
forms, ¥(z) = Bz, with component functions ¥;(z1,...,Zm) = Z;"Zl bijz;,
i=1,...,n. Let P € K[x1,...,%,] be defined by

P:=Qo(¢Y1,...,%n).
Then P is a polynomial of degree < d and it remains to show that P is
satisfying (10). P = Q o ¢ implies P o ¢ = Q o % o ¢, such that we have to

show Qo1 o = Q. Using the notation Q:=Qovop, q = (3—£,-~-a372)
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and g := (3—3—, ey -g—yé:), the chain rule renders §' = ¢ BA which leads to

q' B = q' B. Moreover, by (9) we have ¢'¢; =0,i=1,...,n —m, as well
as q 4; = qTBAI,’ = 0. It follows qTC =¢q'C and therefore q = q, which

together with Q(0) = Q(0) implies Q = Q.

Suppose there are an m/, a polynomial P’ € K[z, ...,Z,] and m' linear
mappings ¢, : K™ — K, such that P'o(¢f,. .. ,gom,) Q. Using the notation
U, := LK({g—%H:l, ,n}), Up = Lx({EE ~li=1,. m’}), one obtains

’ ’ O
from g—% = Z;"Zl gfj a—il, i=1,...,n, that Uy € Up and therefore m’ >

dimg Up > dimg Uy =m. =
EXAMPLE 1. Let K = R and consider the polynomial
Q(w1, Y2, Y3, y2) = 2y7ys + 3y192 + 5 — dy1vE — 4¥3ys — v1v3 — Y3y;
+ dylye + dy1y0ys + 2yTya + 291y3ya — 4y1y2ys — 4Y2ysya — Y1 + 292 + Ya.
Then
4 8Q
> Aja—y = g (4X2 + 203 + 27g) + y132(8A1 — 8Ag + 4X3 — 4)y)
- J
+ y1y3(4A1 + 4he + 63 + 2X4) + y1ya(4h1 — 4o + 223 — 2)y)
+ y2(—4h1 — 403) + 1oy3(4A1 — 8hg — 4)q) + yoya(—4A; — 4)3)
+ 3(3X1 + 3X3) + y3pa(2h1 — 4h2 — 2)4)
+ya (=M = A3)+1- (=AM +2X+ X)) =0

renders system (11) for the \;, whose system matrix in a Gaussian row-

eschelon form is
B (1 01 0)
o1 ll)

Observing that the number of rows of A equals rank(A) we can take in this
case because of K =R

6 —2
1]-2 8

B=AT=AT(AAT)"1 = =
-1 4

to obtain

P(l‘l,xg) = Q(ﬁ(ﬁ.’l?l - 2:132), 11( 2.1‘1 +8.’L‘2) %(5.11 + 2.’1,‘2), 11( 1 +4.’172))

= 43:%:52 — 417127% — x1 + 229.
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Indeed, this polynomial is satisfying
P(y1 +y3,y2 + 53 + 3ya) = Q(y1,¥2, ¥3, Ya)
for all (y1,y2,3,y4) € R%.

3. Polynomials in additive functions and their characterization by
translation invariant subspaces

The aim of this section is to generalize and to sharpen the main result,
Theorem 12, of [RS, section 7]. Since there are many misprints in this paper
we allow ourselves also to repeat some arguments from there.

Given an abelian group G and a vector space V over K, K a field of
characteristic 0, a mapping p: G — V is called a generalized polynomial of
degree < n, if it may be written in the form p = > , p;, where p;(z) =
pi(z,z,...,z) with some p;: G* — V which is (symmetric and) additive in
each component for all i = 0,1,...,n. We write P,(G, V) for the space of all
these mappings. The space P(G,V) := U,en, Pn(G,V) is called the space
of (all) generalized polynomials defined on G with values in V. Since, for any
given additive functions g1,...,9m: G — K and any a € V, the mapping
G™ 3 (21,Z2, -, Zm) — g1(21) - . .. - gm(Tm)a € V is m-additive, the space

P*(Gv V) = {PO (gla s ,gn) |
neN Pe QK" V), g1,92,---,9n: G — K additive}

of polynomials in additive functions is a subspace of P(G,V).

If P(G,V)>p=po+p1+...+pn with pg,...,pn as above this homo-
geneous components p; of degree ¢ in p are uniquely determined by p. Thus
for 0 # p € P(G,V) the degree of p, Op := max{i |p¢ # 0}, is well-defined.

For functions p: G — V and y € G the translate Typ: G — V is defined
by translation in the argument: (Typ)(z) := p(z + y). As in [RS] it is seen
easily that P,(G,V) and P;(G,V) = P*(G,V) N Pp(G,V) are invariant
under Ty for all y. If 0 # p € P(G,V) we also have 0T,p = Op. More
exactly, given p = p, + ¢ € P(G,V) with 0 # p, homogeneous of degree
n and ¢ € Po_1(G, V) the translate T,p is of the form Typ = p, + ¢, with
some gy € Pr_1(G,V).

Theorem 12 of [RS] is the special case with an algebraically closed field
K of the following result.

THEOREM 8. Let K be a field of characteristic 0, not necessarily algebraically
closed. Let p € P(G,K). Then p € P*(G,K) if and only if the subspace
T(p):=Lxk ({Typ | yE€ G}) of P(G, K) generated by all translates Typ of p
s of finite dimension.

To prove this theorem we first provide certain preparatory results.



Polynomials in additive functions 601

A function 7: G — K is called exponential function if n(z + y) = n(z) -
m(y) for all z,y € G. It is well-known ([AD, p. 28]) that then either 7 =0
or m(z) # 0 for all x € G. A function q: G — V, V a vector space over K, is
called ezponential polynomial if it is of the form ¢ = Y7 | myp; with n € N,
exponential functions m; (# 0) and generalized polynomials p; € P(G, V).

LEMMA 3. Let1 # n: G — K be an exponential function and let p €
P(G,V). Then w(y)Typ —p =0 for all y € G is possible only for p = 0.

Proof. Suppose p # 0 and let n := dp. Then p = p, + q where 0 # p, €
Prn(G,V) is homogeneous of degree n and where ¢ € Pr_1(G,V). Then
Typ = pn + gy with ¢y € Pr_1(G,V) for all y € G. Let y' be such that
a :=n(y’) # 1. Then the hypothesis applied for y = 3’ implies a(p, +q,) =
pn + q. Hence ap, = p, which is impossible when p, # 0 since a # 1. =

LEMMA 4. Let 7y, m,...,Tn: G — V be n distinct exponential functions, all
different from 0 and let p1,p2,...,pn € P(G,V). Then > omp; = 0 only
is possible if py =pa = ... =p, =0.

Proof. (Compare [RS, Theorem 9].) We proceed by induction. For n =1
the equation 71p; = 0 implies p; = 0 since 71 (x) # 0 for all z. Suppose, now,
that Lemma 4 holds true for n and consider a relation Z?;ll mp; = 0 with
n + 1 distinct exponential functions 7;, all # 0, and ps,...,pn+1 € P(G,V).
Dividing by m,41 we get

n
(12) g=Y 7ia,
=1

where ¢ = pp41, ¢s = —p; for 1 < i < n, and ) := m;/mp 1.

Note that 7},..., 7, are n distinct exponential functions, all # 0,1. To
apply the induction hypothesis it is enough to show that ¢ = 0. If ¢ #£ 0 we
may choose ¢ such that (12) holds and that m := dq is minimal. But (12)
implies

n
Tyq = Zﬂf(y)ﬂ;‘qui, y €G.
i=1

Thus Tyqg —q = > o7 - (7} (y)Tygi — ¢;). But Tyg —q = 0 if m = 0,
and Tyq — ¢ € Ppm—1(G,V) if m > 1. Since 7} (y)Tyq; — ¢ € P(G,V) the
minimality of m implies T,q — q¢ = 0 also for m > 1. But then, by induction
hypothesis, 7} (y)Tyq; — ¢; = 0 for all ¢ and all y. Hence by Lemma 3 all g
must vanish. But then ¢ = 0 contradicting our assumption that ¢ #0. =

The following lemma generalizes Theorem 10 of [RS].

LEMMA 5. Let A: G — Gl,(K), K a field of characteristic 0, Gl,(K) the
group of reqular n X n-matrices with entries in K, be a homomorphism,
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i.e., Az +y) = A(z)A(y) for all x € G. Assume that the characteristic
polynomial X 4(z) splits over K for all z € G.

Then there is some S € Glp(K) such that B: G — Gl,(K) defined by
B(z) := SA(z)S™! is a block diagonal matriz of the form B(z) =
diag(Bi(z), B2(x),...,Br(x)), Bi: G — Glp,(K), 1 <i <7, ny,...,n, > 1,
n1 + ... +n, = n. Moreover the B; are given by B;(z) = m;(z) exp(Ci(z))
where all m; are non zero exponential functions and where the C;: G —
M, (K), My, (K) the ring of all n; x n;-matrices with entries in K, are such
that all Ci(z) are nilpotent lower triangular matrices. All entries of all C;
are additive functions from G to K and C;(z) commutes with C;(y) for all i
and oll z,y € G.

Proof. Consider the family (A(z)), .o of matrices in M, (K). By
A(z)Ay) = Az +y) = A(y +z) = A(y)A(z)

any two members of this family commute.

Inspecting the proof of Theorem 7 in ([J, p. 134]) one observes that
the hypothesis made there, namely that K be algebraically closed, may be
replaced by the (weaker) assumption that all x 4(,) split over K without
violating the conclusion of this theorem.

Thus we may find some S € Gl,(K) such that B defined by B(z) :=
SA(z)S71 is of the form B(z) = diag(Bi(z), B2(x),..., By(z)) where all
B;: G — My, (K) are of the form

71’1(.'12) 0
Bi(z) = mi(e) ) , z€G.

* mi(x)

Since all A(z) are regular so are all B(z) and thus also all B;(z). A(z+y) =
A(z)A(y) obviously implies that B (and all B;) satisfy the same functional
equation. Since the B; are lower triangular this in particular means that all
m; are exponential functions. By the regularity of B; all m; # 0.

Thus B; = m; - (E; + B}) where E; is the identity matrix of My, (K).
Then B (x) has the form

Thus B}(z) = (1/mi(z)) - Bi(z) — E; is a lower triangular matrix which
is also nilpotent, B} (z)™ = 0. Let
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ey
Ci(x) :=In(E; + B} (z)) == ) —]-—B*( z).
j=1
The formal power series £(X) := In(1+X) = 3722, = IJ).j_lXj satisfies £((1+
X)1+Y)—1)=4X)+£(Y). Bf(x) and B}(y) commute since B;(x) and
B;(y) do. This implies

Ci(z) + Cily) = €(B; (z)) + (B (y)) = £ ((Ei + B;(z))(E:i + B; (y)) — Ei)

)
_,(Bi@)Bily) o\ _,(Blz+y) .
= (2w 5=t (eiy ®)
={¢(B](z+y)) =Ci(z +y), i=12,...,7, 7,y € G.

Since, for formal series, exp({(X)) = 1 + X and since all C;(z) are lower
triangular and nilpotent we infer that exp (Ci(z)) := Z"’_l Jl Ci(z)! = E; +
Bl (z) = (1/mi(z))Bi(z). Thus B;(z) = mi(z) exp(C( )) where C;: G —
My, (K) has the desired properties. (Cj(z) and C;(y) commute since B;(z)
and B} (y) commute.) =

COROLLARY 2. Let all assumptions of Lemma 5 be satisfied. Then all entries

of A are of the form a;; = Y |_ 7} - qg) where nf,...,m5: G — K are s
0]

distinct exponential functions, all # 0, and where all q;; are elements of

P*(G,K).

Proof. The entries of the matrices Cy are additive functions. Thus the
entries of  — exp(Ck(z)) are contained in P*(G, K). This implies that the
entries of By, and then also of B, are of the form ;; - r;; with non vanishing
exponential functions m;; and r;; € P*(G,K). From A(z) = S™'B(x)S
we infer that the entries of A are linear combinations of the m;; - r;;. The
assertion follows by defining 7], ..., 7} to be s different exponential functions
(# 0) such that {r},..., 73} ={m; |1 <4,j <n}.

Now we are ready to prove Theorem 8.

Proof. (Theorem 8) Let, first, p € P*(G, K). Thus p = ZueN3,|u|§N gt

- gira,, for certain additive functions g;: G — K and certain a, € K,
lv| < N, where n,N € N. It is easily verified that T,g]* - ...  gir €
Lx ({g#=g{*-...-gh"| Iul < |v|}). Thus Typ is contained in the space
generated by the functions g*a,, |u|, |v] < N. This space is of finite dimen-
sion. So 7 (p) as a subspace of this space is also of finite dimension.

Now, let p € P(G, K) and assume that 7 (p) has finite dimension. Of
course we may assume p # 0. Let p1 = p,pa, ..., p, be a basis of 7 (p). Since
Tzq € T(p) for all ¢ € T(p) and all z € G the T,p; are linear combinations
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of the pj,

(13) Typ; = ZG’J a:)pj,xEG 1<1<n.

j=1
This together with T, = T} o T, implies that A: G — My, (K) defined
by A(z) = (aij(2)),<; j<, satisfies A(z +y) = A(y)A(z) for all z,y € G.
To = id implies A(0) = E = E, showing (since A(0) = A(x)A(—z)) that
A: G - Gl (K).

Let K be any extension of K such that all x A(z) SPlit over K. By
Lemma 5 we may find some S € Gl,(K) such that B: G — Gl,(K) de-
fined by B(z) := SA(z)S™! has the properties described in Lemma 5 (with
K instead of K). By this lemma and its corollary, Corollary 2, we see that

=374 wqujl) with distinct exponential functions 0 # 7}: G — K and

polynomlals q() € P*(G,K).

(13) lmphes p(z) = p1(z) = Tep1(0) = 3°7_; a1(x)p;(0). Inserting
here the specific form of the a;; shows that p = Y -1 7/ q with certain
q € P*(G,K).

In this representation one of the m} has to be identical 1. Otherwise we

would write
p-1+ Zﬂ'l (—q)

with s + 1 distinct exponential functlons 1,73,...,m;, all # 0, and polyno-
mials p, —q1,...,—¢s € P(G,K). This, by Lemma 4, implies 0 = p = —q; =
= —¢s. Thus in particular p = 0, a contradiction.
So, say, 77 = 1. Then p = >, , 7/q may be written as

S
-p)+ Y mq=0.
=2

Applying Lemma, 4 once more now gives p = q;. Thus p € P*(G, K).
We still have to show that p € P*(G,K) C P*(G,K). Let u; =
Y k1 SikPx Where s € K are the entries of the matrix S := (Sik)1<i,k<n-
Then all u; are contained in 7 (p) := L ({sz’m € G}). Equality S -
A(z) = B(z) - S and (13) imply Tpu; = Y p_; bi(z)ug. Since B(z) =
diag(Bi(z),..., Br(z)) and since the Bj(x) are lower triangular matrices
with m(x) as entries along the main diagonal we recognize that Tpu; =
m(z)u;, for 1 =1,2,...,s, where j1 :=1,jo :=n1+1,...,5p =1 +... +
ny—1+ 1.
All u; are different from 0. In fact, all vectors a; := (8;1, 8i2, - - - , Sin) are
different from the zero vector in K. They even are linearly independent
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over K since S is regular. Moreover py,pa, ..., pn are linearly independent
over K. Let D be a basis of K over K. Then s;; = ZdeD sgg)d, where all

51(':) € K and where for any fixed ¢ and k the number of those d € D such
that sz(.z) # 0 is finite. Suppose u; = 0, then

n

0= Z(Z sgg)d)pk(x) = Z (i sgz)pk(:v))d, zeG.

k=1 deD deD k=1

But pk(m),sgz) € K. Thus ) ;_, sgz)pk(m) =0forallz € Gandall de D,
e, >py SEZ)Pk = 0. This is a linear relation for the p;y over K. Thus
sgz) = 0 for all k£ and all d € D. But then o; = 0, a contradiction.

In particular all uj # 0. Evaluating Tyuj; = m - uj; at some y € G
with uj,(y) # O then shows m; = (1/u;(y))Tyuy,, i.e, m € T(p) for all
i=1,...,r. But T(p) C P(G,K). This implies m; = mp = ... = m, = 1,

since by Lemma 4 only the exponential functions 0 and 1 are polyn(lnials.
But then all x 4(,) already split over K. Thus we may choose K = K
which finally gives the desired result. m

We can even prove more.

THEOREM 9. Let K be an arbitrary field of characteristic 0 and V any
vector space over K. Then for any abelian group G a generalized polynomial
p € P(G,V) is a polynomial in additive functions, p € P*(G,V), if and
only if the subspace T (p) := Lk ({szlx € G}) of P(G,V), generated by
all translates Typ of p, is of finite dimension.

Proof. If p € P*(G,V) the space T (p) must be of finite dimension. This
can be seen in (almost) exactly the same way as the corresponding part in
Theorem 8.

Now assume 0 # p € P(G, V) and that 7 (p) is of finite dimension. Again
we may proceed first as in the proof of the preceding theorem. T,p = Typ; =
E;’:l a1;(x)pj, where py = p,pa,...,pn constitute a basis of 7(p), implies
p(z) = 377, a1;(2)p;(0), which shows that Lk (p(G)) is of finite dimension.
Obviously pop € P(G, K) for any given ¢ € V*. Since Ty (pop) = po(Typ)
for all x € G we obtain 7 (pop) = Lx {¢op1,-..,90Dpy}) showing that
T (p o p) is of finite dimension for all ¢ € V*. Thus p op € P*(G, K) for all
¢ € V* by Theorem 8. Then Theorem 6 implies p € P*(G,V). =

4. Polynomials in additive functions and multi-Jensen functions

Assuming that V' and W are Q-vecor spaces, this section deals with
another characterization of the elements of P*(V, W) C P(V,W). Forn € N
let 4, : V — V™ be the diagonalization mapping, which assigns to z € V the
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vector (z,...,z) € V™ with z in each component. In [PS] it has been shown
that for every symmetric n-Jensen function f : V™ — W the diagonalization
p := fody, is an element of P, (V, W) and that for every p € Pp(V, W) there
exists a uniquely determined symmetric n-Jensen function f : V* — W,
such that p = f o é,. This one-to-one correspondence will be utilized now
for that characterization.

LEMMA 6. Let P € Q(K™,W) be the polynomial

n
Py, ym) =D, D Ul ¥ ag g,

k=0 j1++jm=k
Ajy.jm €W, let g;: V — K, i=1,...,m, be additive functions and let the
function f: V™ — W be defined by

(14) f@n,hza) =Y Y. Mz, .,5),

=0 1<j1<-<gi<n
where

-1 m kj
n
(15) Mi(l}l, c. ,CL'i) = (’L) Z H Hg] (ZZ;;% kq+[)ak1-~-km7

kit k=i j=1 £=1
i=0,...,n. Then f is n-Jensen and for every generalized polynomial p €
P (V,W) the following holds: p= Po(g1,...,9m) if and only if p= f 0 6y,.
Proof. At first we show, that the functions M; defined by (15) are i-additive.
Givenr € {1,...,i}, for any partition k;+- - -+kn, = ¢ of 4 there are uniquely
determined numbers p € {1,...,m} with k, > 1 and ¢, € {1,...,k,}, such
that r = 25;11 kg + ¢ Fory= (y1,...,4) € Viand g, € V, let § € V* be
the vector with the components ¢, = y, + ¥, and ; = y; for all j # r. By
additivity of g, one obtains

kg
11 9u Ty, 0)
=1 '
k, £ -1
_Hg#yZ“_lkH +Hg;¢yzu lk—i—é g,uyT : H gﬂyzi‘ 1k+[>
/=1 {=£,+1

Multiplying this sum with the remaining products H?’: 1 gj(yzg;i y o)
j # p, then taking the weighted sum over all partitions k; + --- + kp, of
7 and multiplying with (?)_1, it follows
Mi(y1, - Yr—1,Yr + Ty Ur st -+ - i)
= M;(y1,- -5 4i) + Mi(y1, - Yr—15 Ors Yrt1s - - - Yi),s
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showing i-additivity of M;, i = 1,...,n. Since f is the sum of i-additive

mappings, ¢ = 1,...,n, plus a constant, it is n-Jensen by Theorem 2 of [PS].
The diagonalization of M;, ¢ =1,...,n, renders
m kj

M;(8:i(z)) = (7;) B > 11 9®eak. kn

k1t tkm =i j=1 £=1

-1

n

N (l) Z gl(x)k1 ot 'gm(m)kmaku-km’ TE V’
kit-+km=i

that is, a homogeneous polynomial of degree ¢ in the variables g;(z), j =

1,...,m. Furthermore,

f(8n(x)) = Mo + i Z M;(8i(x)) = Mo + i (T;) M; (6:(z))

i=1 1<j1 <<ji<n

=3 Y a@ - gm@) ek k= Plo1(z),- - -, gm(2)).

i=0 ky+-tkm=i

Since by Corollary 1 of [PS| the diagonalization of an n-Jensen function is
a generalized polynomial of degree < n (or, as shown in Section 6 of [RS],
an ordinary polynomial in additive functions is a generalized polynomial), it
follows for an arbitrary generalized polynomial p € P,(V, W), that p = fod,
ifand only if p=Po(g1,...,9m) =

REMARK 3. A representation of the uniquely determined symmetric n-
Jensen function f, whose diagonalization is rendering a generalized poly-
nomial p of degree < n satisfying p = P o (g1,...,9m) with P and g; as in
the lemma, is easily obtained by substituting M; in (14) by

1 .
5 ZMi(yﬂ'(l)""7y7r(i))7 1=1,...,n,
) WES,‘

where the M; in these expressions are given by (15) and S; denotes the
symmetric group of order i.

THEOREM 10. Let be p € Pp(V,W). Then there exist an m € N, additive
functions g1,...,9m : V — K and a polynomial P € Q(K™, W) such that
p=Po(g1,...,9m) if and only if there exist an L € N, Jensen functions
hge),...,h,(f) Vo Kandag e W for £ =1,...,L, such that p = f oy,
with f: V" > W,

L
(16) flzy,...,zp) = Z H hy)(wj)ag.
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Proof. Suppose that the generalized polynomial has a representation p =
Po(gi,...,9m) with additive functions g; and let f : V™* — W be the n-
Jensen function defined by (14) and (15), satisfying p = f 0 4,, by Lemma 6.
We are going to transform the products of the additive functions appearing
n (15), where, in dependence upon k;, a specific g; may appear repeatedly
or even not at all, into a product of n Jensen functions, where each of them
appears exactly once. For that let S =0 or S = {j1,...,7} C{1,...,n} =
n, let k; + -+ + k;, = ¢ be a partition of ¢ = |S| and take a j € n. In case
j € S there is an £ € i, such that j = j, and we define

S, ky...km
W (@) i g, (@), eV,
where pp = max{v| Z;;ll kg+1 < /¢}. In case j ¢ S we define
S, kyokm (o
Ry Mt (z)=1€ K, z€V.

S, k1..km
hj

All functions are Jensen and

Hhs ki.. km x] Hhs Ei... Hh{Jl, wJits kiekm (Zje)

JjES
k1+"'+km
= I 9ul=s0) HHgs Tiget )
=1 s=1t=1

since py = s is equivalent to 22;1 kg+1<£€< 3, kg Therefore we can
rewrite (15) as

-1 n
n S, k1..km
Mi(Ijn'--y-Tji) = (’L) Z th 1 (xj)aklu_km,

K1+ thm=i j=1

where S = {j1,...,Ji} as before. Observing h?’ 0.0 = 1 forj=1,...,n, we
get

foresmn) = ) (,Z,) DR | E i CH L.

SCn k14 +km=|S| j=1
With a suitable renaming of the indices of summation and of the W-valued
factors (|g|)_1ak1...km weobtainan L € N, g, e W,¢=1,...,L,and n- L
Jensen functions hge), ey hg ), £=1,...,L, such that f may be represented
by (16).
Conversely, suppose that p = f o §, for the generalized polynomial p of
degree < n, where f is given by (16) with an L € N, ay € W and Jensen

functions h( ) . h(e), £=1,..., L. For each of these Jensen functions there
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is an additive function b;e) :V — K and a constant cg.g) € K, such that

W) =t0@) +P, j=1,...,n, €=1,...., z€V.

f as a sum of products of n Jensen functions is an n-Jensen function and
may be written as

15=1

XY

H Cg‘Z) H by)(zj)ag, Zly...,Zp € V.
£=1 SCnjen\S jES

L n
flx1,...,2p) = Z H(b_g‘z)(xj) + C§~£))al
=
L

Diagonalization of this function renders

L
p(@)=fz,....2) =3 [[ L T[t¥@a zeV,

£=1SCnjen\S  jeS

hence there is a natural number m := n-L and a polynomial P € Q(K™, W),
such that, after a suitable renaming like bg-l) = Gnee-1)+5 J = 1,01,
¢ =1,...,L, the generalized polynomial may be represented as p = P o
(91,---79m)- =

For an example below we need the following lemma, which sharpens the
result quoted from [AD] at the begin of the proof of Theorem 1.

LEMMA 7. Let V be a vector space of arbitrary dimension and let B be
a Hamel basis of V. If g1,...,9m : V — Q are m linearly independent
additive functions, then there are by,...,b,, € B such that the vectors
(g1(bi), ..., gm(b;)) € Q™, i =1,...,m, are linearly independent.

Proof. The proof is by induction on m. Observing g; # 0, thereisa by € B
such that g1(b1) # 0, hence the assertion is true in case m = 1. Suppose
that there are b1, ..., b,,—1 € B, such that

g1(b1) -+ gm-1(b1)
det | : #0.
gl(bm—l) e gm—l(bm—l)

The functions g1, . .., gm are linearly independent, so there is an x € V such
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that
gi(b1) - gm-1(b1)  gm(b1)
det at) e amsor ) oo §:gz di(by, ..., bm_1) # 0,
a(@) - gma(z)  gm()
where the determinant was expanded in the last row with d;(bq,...,bn_1),
i = 1,...,m, being the corresponding (m — 1) x (m — 1) subdeterminants.

Writing z € V' as

m—1
T = Z a;b; + Z opb,
j=1

beB\{b1,....bm~—1}

additivity of the g; renders

> gi(@)dilba, .., bmr) = Za] Zgz di(b1, ..., bm-1)
i=1
+ Z abzgz(b bl, . m 1)

beB\{b1,....bm_1}  i=1

Since >, gi(b )d (b1,-..,bm—1) =0 for all j = 1,...,m — 1, there is a
be B\ {b1,...,bm-1} suchthat Yo 9i(0)di(bi, ... bmo1) #0.

The following example may serve as an illustration for several results in
this paper. It is a generalization of an example, originally presented in [RS,
Section 7], of a generalized polynomial, which is not a polynomial in additive
functions.

EXAMPLE 2. Let V be a Q-vector space of infinite dimension with a Hamel
Basis B and let W be a Q-vector space with dim W > 1. For a fixed nonzero
w € W and a natural number n > 2 let the mapping f : V* — W be defined
by

(17) F@1,- e mn) = FO Bipb-- Y Baph) i= Znﬂzb

beB beB beBi=1

Since f is n-linear and symmetric, its diagonalization p : V — W, p(z) =
f(z,...,x), is a generalized polynomial of degree < n.

(A) Assume that there are an m € N, a polynomial P € Q(Q™, W) and
additive functions gi,...,gm : V — Q such that

(18) p=Po(g,...,9m)
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We will derive a contradiction to (A) in two ways, firstly by a result of
Section 3 and secondly using results of Section 2 and of the present section.

1. By Theorem 9 it follows dim7(p) = N < oo, hence there are b; €
Band A\; € Q, i =1,...,N + 1, ()\1,...,/\1\[+1) #+ (0,...,0), such that
Ef_’__‘tl AiTy,p = 0. Evaluating this sum at b € B\ {b1,...,bn4+1} we obtain,
by definition of f,

N+1 N+1 N+1
0= Ap(b; +b) =D Nf(bi+b,....b;+b) =2 Mw.
i=1 i=1 i=1
Hence, replacing b by b; and evaluating as before, we get
N+1 N+1
0= Nip(bi +b;) = \if(2bj,...,2b;) + > Xif(bi+bj,... b +b;)
i=1 i=1,i#j
N+1
= 2”)\]'11) + 2 Z )\iw = (2”’ — 2))\]'11)
i=1,i#j
for j=1,...,N + 1. Consequently, \; =--- = Ay41 = 0, a contradiction.

2. By Remark 2 we may assume that m is the minimal number such that
p has a representation of the form (18). By Theorem 2 of [PS] the n-Jensen
function f admits a representation (14) with My = f(0,...,0) and

Mi(wjl" "1'7:ji) = Z (_1)I{j1"“’ji}\T|f(xT)’ i=1,...,m,
TC{j1,,4s}

where 1 < j1 < j2a < -+ < j; < n, and 7 € V™ being the vector with
components (z7); = 0,if j ¢ T, and (z7); = 25, if je€T,j=1,...,n
By definition of f we have in the present case M; =0 fori =0,...,n—1
and therefore My, (x1,...,2n) = f(z1,...,2,). Because of p(rz) = rp(x)
for all r € Q, we also have P(g1(rz),...,gm(rz)) = r"P(g1(z),. .., gm(x)),
therefore the degree of P has to be n. So Lemma 6 renders under the
assumption (18)

m k;
(19) f(:rla vy "Bn) = % Z Z H H gj(wﬂ-(zg;l kq+g))ak1...km

kit tkm=n €S, j=1¢=1
with ag,. k,, € W, and we will derive a contradiction to (18), showing that
the uniquely determined symmetric n-Jensen function f associated with p
cannot have a representation (19).
Diagonalization of (19) yields

20) p(z) = f(z,...,&)= > a@" - gm@) ek, TEV,
ki++km=n
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and minimality of m implies by Theorem 3 linear independence of {g1, . . ., gm },
hence, by Lemma 7, there are by,...,b,, € B such that 91|U’ ey gm| y are
linearly 1ndependent where U := EQ ({b1,...,bm}). Moreover the m x m-
matrlx A := (gi(b;)) is regular and with A 12 = C = (c4) the functions

'V - K, gi(z) = Z;" 16i595(x), 1 = 1,...,m, are additive and satisfy
gl(b ) = di; for 4,5 =1,...,m. Therefore (20) may be written as

(21) @)= > a@" - gm@) ik, TEV,
kit +km=n
with ag, ., € W. On the other hand, by definition of f, we also have
m
(22) pl@) =) Gi(z)"w, zeU.
i=1

Inserting z = Y ;*, Aib; € U in (21) and (22), we obtain because of g;(z) =
Ai,i=1,...,m, that

Yo ANk k. = () = ) Aw,
i=1

ki+--+km=n
implying that ag.ono..0 = w, n being at the i-th position in the multiindex,
i=1,...,m, and @y, ., = 0 otherwise. Hence the representation of p(z)
given by (22) is valid for all z € V.
Taking now an arbitrary b € B\ {b1,...,bn} and 57 € {1,...,m}, it
follows for all r € Q

(r" + Dw =p(rb+b;) = (Y Gird +b;)"w =D (rgi(b) + 6;5)"w
i=1 i=1

m n—1
n ~ n ~ n n n -
=" 3 GO+ 0+ D = 074 Dk 3 ()00,
i=1,i%j =1
hence Z?:_]l (’g)rfgj(b)‘ is a polynomial in 7 which vanishes identically. It
follows g;(b) = O for all b € B\ {b1,...,by} and for j = 1,...,m, in
contradiction to Y ., gF(b)w = p(b) = w for all b € B.

THEOREM 11. Let V,W be Q-vector spaces, W # {0}. Then dimV < oo if
and only if P(V,W) =P*(V,W).

Proof. Suppose dimV = m < oo and denote by B = {b1,...,b,} a basis
of V. Let be p € P(V, W), then there is an n € Ny such that p € P,(V, W)
and there are symmetric, i-additive mappings p; : V? — W, i =0,...,n
such that p = 3" (P 0 d;. For j = 1,...,m we define the projections
hi: V= Q, hi(zk) = b0 Aabl) = /\k] The h; are Jensen-functions
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and

m
Pz, )= Y Aujy oo Aigbilbis -, 5,)
J1yeennji=1

m
= Z hjy (1) -~ - Ry (23)Di(bjys - -, b5.), 1=0,...,m,
F1remgi=1
hence, by Theorem 10, p; 0 6; € P}(V,W) C P*(V,W) for i =0,...,n, and
therefore p € P*(V, W). The inclusion P*(V,W) C P(V, W) is obvious.
If dim V' = oo, then p := f o4, with f defined by (17) is in P(V, W), but
not in P*(V, W), as was shown in Example 1. =
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