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POLYNOMIALS IN ADDITIVE FUNCTIONS 
AND GENERALIZED POLYNOMIALS 

Abstract . We consider polynomials P in additive functions gi,... ,gm and present 
two approaches for a characterization of those generalized polynomials p, which may be 
represented as p = P o (gi,... ,gm). Under ra ther general assumptions on the domains 
of the gi and of P, one of the approaches is based on certain properties of subspaces 
generated by translates of p. The other approach utilizes the fact, t ha t every p is the 
diagonalization of an associated multi-Jensen function. 

1. Introduction 
In [PS] the authors discussed the connections between generalized poly-

nomials p of degree < n defined on a vector space V over Q taking values 
in a vector space W over Q and (symmetric) functions / : Vn W which 
have the Jensen property in each variable. It has been shown that there 
is a one-to-one correspondence between the space Vn(V,W) of all general-
ized polynomials p: V —> W of degree < n and the space of all symmetric 
functions / : Vn —> W which are Jensen in each variable. 

There is a subclass "P*(V, W) of Vn(V, W) which is of special importance 
(see, for example [Sz]). This class, the space of all polynomials in additive 
functions (of degree < n) is defined by 

K(v,w) 
m 

:= £q({IJî/î • a | a G W, n > m, € N0, 51,52, • • -9m- V Q additive j ) . 
¿=1 
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Thus (with n L = 1, as usual) V*(V, W) is the space of all functions 

N mi 

i=i j=i 
where N G N, m\,m2,..., tun € No, mi < n for 1 < i < N, ai, 0 2 , . . . , a^r € 
IT and where all gf : V -> Q are additive. In general V*(V, W) C 7>n(V, W) 
([RS]). 

The starting point of our considerations has been a question asked by 
Ludwig Reich [R] about a characterization of polynomials in additive func-
tions by their corresponding multi-Jensen functions. In the course of our 
treatment it turned out, that it is helpful to direct one's attention in the 
first place to certain problems concerning general properties of polynomi-
als in additive functions. Assuming that G is an abelian group, K a field 
with characteristic zero and V a vector space over K, we consider map-
pings p : G —> V admitting a representation p = P ° (gi, • • •, gm), where 
P : Km —> V is a polynomial in m variables and <71,... ,gm : G K are 
additive functions. 

Beginning with the equation P o ( j l r . . , gm) — 0, in Section 2 the re-
lationship between different representations p = P o ((/1,... , gm) = Q 0 

(hi,..., hn) and the problem of minimality of m are investigated. Moreover, 
a characterization of functions p being a polynomial in additive functions in 
terms of the dimension of CK(P(G)) and compositions p o p with <p € V* is 
given. 

Section 3 contains a characterization of generalized polynomials both 
p : G —> K as well as p : G V, K not necessarily algebraically closed, 
admitting a representation p = P o (gi,..., gm), by translation invariant 
subspaces of the vector space of all generalized polynomials with values in 
K or V, respectively. Characterizing in this way, the translation equation 
is involved crucially. For that reason a former result on diagonalization of 
homomorphisms G —> Gln(K) and on the form of their entries as exponential 
polynomials has to be generalized to the considered case of arbitrary fields 
K of characteristic zero. 

In Section 4 we give characterizations of generalized polynomials p : 
V —> W, V, W being Q-vector spaces, admitting a representation p = P o 
(gii • • • ,9m), by specifying the structure of their corresponding multi-Jensen 
functions. Moreover, an example of a generalized polynomial which is not a 
polynomial in additive functions is analyzed in detail. 

In our approach generalized polynomials are considered as polynomial 
functions. An algebraic view on generalized polynomials as elements of a 
certain polynomial ring may be found in [H], 
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2. Polynomials in addit ive funct ions defined on abel ian groups 
In [RS] mainly such polynomials in additive functions have been consid-

ered which are defined on C and which take values in C. Here we want to 
generalize this concept. Moreover we will investigate the question to what 
extent the representations of polynomials in additive functions are unique. 

We start with a field K of characteristic 0 and an abelian group G. (In 
some situations it would be enough to suppose that the number of elements 
of K is not too small.) Homomorphisms g: G —> K will be called additive. 
If V is a vector space over K and m G N, a function P: Km —• V is called a 
polynomial (function) if there is a family (a„);,gN™ of elements a„ G V such 
that all a„ = 0 with at most finitely many exceptions and such that 

p(x) = ^ 

for all x = (xi,x2, ...,xm)e Km. (As usual xv := n™ i 

R E M A R K 1. Well-known arguments ([La, chap. V, p. 121]) show that the 
family (a„) is uniquely determined by P: 
If P(x i , x 2 , x m ) = 0 for all ( x i , x 2 , x m ) £ ll^i xi and tf al1 xi 
contain infinitely many elements, then a„ = 0 for all v. 

We denote the set of all these polynomial functions by Q(Km,V). Ob-
viously this set is a vector space over K. Moreover Q • P G Q(Km,V) if 
Q £ Q(Km,K) and P G Q{Km,V). One also can easily verify that for 
given Qi , Q 2 ) . . . , Qm G Q(RP, K) the function P* := P o (Qi,Q2, ...,Qm) 
defined by P*(y) = P*{yi, ...,yp) := E ^ N - l l ^ i Qi(y)Vi ' au is contained 
in Q(KP, V). 

We call p : G V a polynomial in additive functions if there are some 
additive functions g\, g2,.. •, gm G —> K and if there is some P G Q(Km, V) 
such that p = P o (gi,g2,... ,gm) (p(x) = P (gi(x),g2(x),.. .,gm{x)) for all 
x G G). 

The following theorem generalizes Theorem 1 of [RS]. 

THEOREM 1. Let G be an abelian group, let K be a field of character-
istic 0. Suppose that V is a vector space over K, that P G Q(Km,V) and 
that gi,..., gm: G —> K are m linearly independent additive functions. Then 
P o (gly...,gm) = 0 implies P = 0. 

P r o o f . Since gi,g2, •.. ,gm are linearly independent we may find x\,x2, 

..., xm G G such that the vectors (gi{xi), g2(xi),..., gm{xi)), i = 1, 2 , . . . , m 
are linearly independent in Km ([AD, p. 229]). Let Q% G Q(Km,K) be 
defined by Qi(h,t2,... ,tm) := Y!j=i9i{xj)tj- P ° (9i,---,9m) = 0 implies 



592 J . Schwaiger, W. Prager 

with x : = X ^ j l i njxj (and n i , « 2 , . . . , n m G No) that 

0 = -P ( 5 i • • •, 9m(x)) = P (Qi(ni,..., n m ) , . . . , Qm(ny,..., nm)) 

for al l (n1,...,nm) G N ™ . T h u s , b y R e m a r k 1 , Q(Km,V) 3 P* := P o 

(Qi,...,Qm) = o. 

B y construct ion the m a t r i x ( g i ( x j ) ) is regular. L e t A = ( A ¿ j ) be its 

inverse, i .e . , ^2j9i(xj)Ajk = Sik. T h e n , w i t h k{t) = k(h,... ,tm) := 
A i k t k , we get 

Qi (h(t),... ,lm(t)) = Ajktk = = U-

j k k 

So 

0 = P*(h(t),..., lm(t)) = P(Qi(h(t),..., lm(t)),..., Q m ( h ( t ) , l m ( t ) ) ) 

= P ( h , . . . ,tm) 

for al l ¿ i , i 2 , . . . , t m € K . T h u s P = 0. • 

N o w we want to describe those p o l y n o m i a l functions P w i t h 

P°(gi,---,9m) = 0 

for not necessari ly l inearly independent addit ive functions gi,...,gm. T o 

this a i m we first need some a u x i l i a r y results. 

L e m m a 1 . Let n G N , ^ = (fi 1 , . . . ,fin) G N q . Then there are polynomials 
Q i , . . . , Qn contained in Q(K2n, K) such that 

n 
x» = a» + ^2Qi(x 1,... ,xn,ai,...,an) • (xt - at) 

1=1 

for all x = (xi,..., xn),a = ( a i , . . . , an) G Kn. 

P r o o f . T h e assertion obviously holds true w h e n \fi\ : = Y h ^ i = 0' I f = 

m + 1 a n d if the assertion holds for ¡j ! w i t h = m, we also m a y assume 

that , say, fin > 0. T h e n x M = xM xn, where ¡j,' : = (fJ-i, [¿2, • • •, Mn — 1 ) (and 

l/x'l = m ) . A c c o r d i n g l y 

>*< ¡1 
n 

= (a' 1 ' + ^ 2 Q ' i ( x 1 , . . . , x n , a i , . . . , a „ ) • (x/ - a ; ) ) ( ( x n - o„) + a n ) 
;=i 

n 

= af1'an + ^2Qi(x 1 , . . . ,xn,a1,... , a n ) • ( x / - a / ) , 

1=1 

where Q j ( x i , . . . , x n , a i , . . , , a „ ) : = Q J ( x i , . . . , x „ , a i , . . . , a„) • xn for I < n 
a n d where Qn(x 1 , . . . , xn, a 1 , . . . , <2n) — a^1 , X n , d i , . . . , a n ) - x n . • 
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LEMMA 2. For every P G Q(Kn, V) and every m <n there are polynomials 
Q*0 G Q{Kn, V), Q\ G Q{K2n~m, V), I = m + 1, m + 2 , . . . , n, such that 

xmi am+1) • • • i an) 
n 

+ X ] Q1(x1T • • ixn,am+l,-• • ,an) ' ~ ai) 
l=m+1 

for all xi,.. .,xn,am+i, . . . , a n e K . 

P r o o f . Given P we may write 

(2) P(x i,...,xn)= P^{xi,... ,xm), 
h'gm 

where M is a finite subset of { 0 } m x NG~M, i. e., ^• = 0 for a l H < m (and 

x*' = x ^ Y • . . . • and where P^ G Q(Km, V) for all // G M. W e may 
assume t h a t ¡ iq : = ( 0 , 0 , . . . , 0 ) G M. According to L e m m a 1 we have, with 
certain Q^ G Q{K2(n~m\ K), 

n 

(3) ^ Qifl\xm+i,---,xn,am+i,...,an)-(xi-at) 
l=m+1 

for all // G M . Inserting (3) into (2) we get (1) if we use 

QoO^l > • • • > xrni 1) • • • > ®n) : = Pfio O l̂ > • • • > ^ ^ ' P^i' > • • • > ®m) 
ti'eM 
ii'/Mo 

and, for I = m + 1 , . . . , n , 

Ql (®1> • • • i Om+1) • • • i ^n) 

: = ^ ^ ^ ( x m _ ) _ i , . . . , a m - ( - x , . . . , • P^{xi, - - - , Xm)- • 
n'eM 
M'/MO 

COROLLARY 1. Given P and m,n as in Lemma 2 and given uij G -fi, 
l < j < m , m + l < Z < n , f/iere zs some Pq G Q(Km,V) and there are 
Pj* G V ) such that 

Tl 771 
(4) P(x) = P£(xi,...,xm)+ ^ ( x j - ^ u y X j O i T i ® ) 

i=m+l j = l 

for all x = (xi,... , x m , . . . , x n ) G Kn. 

P r o o f . T h i s immediately follows from L e m m a 2 for a/ : = uljxj- • 

THEOREM 2. Lei gi,g2, • • •,9n'- G V be additive, let g\,..., gm be linearly 
independent and let g\ = Y^jL\ulj9j f o r ' > m- Then P G Q(Km,V) 
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s a t i s f i e s 

( 5 ) P ( 9 i ( v ) , . . . , 9 n ( y ) ) = 0 , y e G 

i f a n d o n l y i f t h e r e a r e . . . , P * G Q ( K n , V ) such t h a t 

n 771 

( 6 ) P ( x ) = £ ( x i - ^ u ^ P i i x ) 

l=m+1 j = l 

f o r a l l x = ( x \ , . . . , x n ) G K n . 

P r o o f . Put, for arbitrary y G G , X{ := g i ( y ) . Then (6) implies (5) since in 
this case x i = u i j x j for all I > m . 

If (5) is satisfied we use (4) and thus, with Xi as before, we get 0 = 
P S { g i ( y ) , • • • , 9 m { y ) ) + 0 + . . . + 0 for all y G G . So, by Theorem 1 and since 
3i, • • • ,9m are linearly independent, PQ = 0. This implies (6). • 

R E M A R K 2 . This theorem shows that a polynomial p in additive functions 
may have different representations of the form p = P o ( < 7 1 , . . . , g n ) when 
g i , . . . , g n are linearly dependent. But this may even happen when g i , • • • , g n 

are linearly independent. Take, for example, two linearly independent addi-
tive functions 31,32, put P ( x 1, £2) := X 1 + X 2 , Q ( x 1) := x \ and h : = g i + g 2 -

Then P o (31,32) = Q o h. 
We also note that any polynomial p = P o ( g i , g 2 , . . . ,gn) in additive 

functions 31,32, • • • ,gn may be written as a polynomial in m (< n) linearly 
independent additive functions hi, /i2, • • •, h m (which may be chosen to be a 
base of the space generated by the gi). 

If the number n of additive functions in a representation p — P o ( g i , . . . , g n ) 

is m i n i m a l , we can describe all representations as a polynomial in n additive 
functions. 

THEOREM 3. L e t p : G —• V be a n o n c o n s t a n t p o l y n o m i a l i n a d d i t i v e f u n c -

t i o n s a n d let n E N be m i n i m a l w i t h respect to the p r o p e r t y t h a t t h e r e a r e 

a d d i t i v e f u n c t i o n s g i , . . . , g n : K —> V such t h a t p = P o ( g i , . . . , g n ) f o r some 

P G Q { K n , V ) . 

T h e n g i , . . . , g n a r e l i n e a r l y i n d e p e n d e n t . M o r e o v e r p = Q o ( h i , . . . , h n ) 

w i t h a d d i t i v e f u n c t i o n s h i , . . . , h n and s u i t a b l e Q G Q ( K n , V ) i f a n d o n l y i f 

h i , . . . , h n c o n s t i t u t e a basis f o r t h e space g e n e r a t e d by g i , . . . , g n . 

P r o o f . Since p is not constant, the number n must be at least 1. Obviously 
also 31 0 when n = 1. Suppose n > 1. If, say, gn were a linear combination 
of 31, . . . ,3n-i , 3n = E"=iX

 U l 9 u then p = Q * o (31,.. . , g n - i ) with Q * G 
Q ( K n ~ l , V ) defined by Q * ( x \ , . . . , x n _ x ) := Q ( x i , x 2 , . . • , x n - i , X ^ 1

 u t x i ) . 

This contradicts the minimality of n. 
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Let, now, p = P o ( g i , ...,gn) = Qo(hx,.. .,hn), where P, Q E Q(Kn,V) 
and gi,...,gn, h i , . . . , hn are additive functions from G to K (and n min-
imal) . Hence, by the first part of the proof, both gi,... ,gn and hi,... ,hn 

are linearly independent. Thus it is enough to show that { h i , . . . ,hn} C 
Ck ({51,.. . ,gn}), the vector space generated by gi,... ,gn. Assume that 
this is not true. Then the dimension of W :— Ck ({gi, • • •, h i , . . . , hn}) 
must be greater than n. By standard arguments of Linear Algebra (and by 
renumbering the hi if necessary) we may assume that the vectors g i , . . . ,gn, 
h i , . . . , hk form a basis for W for some 1 < k < n. Let hj = uji9i + 

Vjihi for j = k + 1 , . . . , n. We also may assume that all Vji vanish. 
This always can be achieved by using hj := hj — Yli=i vjihii k + 1 < j < n, 
and hj := hj, 1 < j < k, instead of h i , . . . , hn. (Of course Qo ( / i l 5 . . . , hn) = 
Q* o (h\, ...,h*n) for some Q* € Q(Kn, V).) 

Consider T <E Q{K2n, V) defined by 

T ( x i , . . . , xn, y i , . . . , yn) •= P(x i , . . . , x n ) - Q ( y i , . . . , y n ) . 

Then P o (gi, ...,gn) = Q o (hi, ...,hn) implies T o (gx, . . . , g n , h i , . . . , hn) 
= 0. 

But <71,..., gn, hi,..., hk are linearly independent and hj = XlILi ujl9l 
for k + 1 < j < n. Theorem 2 then implies the existence of polynomials 
Rk+1,... ,Rn E Q(K2n, V) such that 

(7 ) T ( x i , . . . , x n , y i , . . . , y n ) 
n n 

= ( y j ~'52ujlxl)Rj(xl'---ixn,yi,---,yn) 
j=k+1 1=1 

for all £ 1 , . . . , xn, y i , . . . , yn G K. 
If we let x i , . . . , xn, y i , . . . , y^ be arbitrary and if we put yj := J2?=i ujixl 

for j > k equation (7) implies that 
n n 

T(x 1, . . . , x n , y i , . . . , y k , ^ 2 Uk+i,m,..., ^ unixi) = 0 

1=1 1=1 

for all x i , . . . , xn, y i , . . . , yk E K. The definition of T then gives 
n 71 

(8) P(x 1, . . . , x n ) = Q ( y i , . . . , yk, ^ uk+itixt,..., ^ unixi) 
1=1 1=1 

for all x i , . . . , xn, y i , . . . , yk E K. 
Let Q E Q(Kn~k,V) be defined by Q(yk+1,..., yn) := Q(0,...,0, 

yk+i, yn)- Then (8) with yi = y2 = . . . = yk = 0 leads to 
n n 

P(x 1,... ,xn) = QQPufc+1^,... ,^2unix^J, Xi,... ,xn E K. 
1=1 1=1 
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Since hj = Yl?=i ujlSl for A; + 1 < j < n we conclude 

P(<7i(£), • • .,9n(t)) = Q(hk+i{t),hn(t)), t € G. 

But then p = Q o ( ^ + 1 ) . . . , hn). Since k > 0 this contradicts the minimality 
of n. • 

T H E O R E M 4. Assume that gi, • •. ,gn are n linear independent additive func-
tions from G to K. Then there always exist polynomials from G to V which 
are polynomials in n additive functions and which are not polynomials in less 
than n additive functions. For 0 ^ a EV the function p: G —> V defined by 
p(t) := gi(t)g2(t).. .gn(t)a has the desired property. 

P r o o f . Suppose p = P o (hi,..., hm) with m additive functions hi, P E 
Q(Km, V) and suppose also that m is minimal. Assume m < n. m must 
be greater than 0 since p cannot be constant (Theorem 1). hi,..., hm are 
linearly independent by Theorem 3. Let hi,..., hm,gi,... ,gk be a basis 
of W := Cx({hi,..., hm, gi,..., gn}). Then k > 0 since m < n. Let 
9l = E ^ i uijhj + Ya=I vli9i FOR I = k + 1,... ,n. Theorem 1 applied to 
hi,..., hm, gi, ••• ,gk and to the polynomial Q defined by 

Q(yi,---,ym,xi,...,xk) 
k n m k :=IlXi II + ̂ 2vnxi)a-•• • >ym) 

1=1 l=k+1 j=1 i=1 
implies Q = 0. Since k > 1 we get for xi = 0 that 0 = Q(yi,..., ym, 0, 
X2, • • •, xn) = 0 — P(yi, • • •, ym)- But then P = 0 which implies the contra-
diction p — 0. • 

One may ask about a method to find, for a given polynomial p in ad-
ditive functions, a representation as a polynomial in a minimal number of 
additive functions. A partial result related to this question is contained in 
the following theorem. 

T H E O R E M 5. Let p: G —> V be a non constant polynomial in additive func-
tions, p = P o (gi,... ,gn) with P G Q(Kn, F ) and gi,... ,gn: G —> K 
additive. Assume that we also have p = Q o (hi,..., hm), Q € Q(Km, V) 
and hi,... ,hm: G —> K additive, where m is the minimal number of addi-
tive functions necessary to represent p as a polynomial in additive functions. 
Then all hi are linear combinations of gi,gi,... ,gn-

P r o o f . Let gi,..., gn, hi,..., hk be a basis of CK({gi,... ,gn,hi,.. .,hm}). 
(Renumbering the hi might be necessary.) We must show that k = 0. If A: 
were greater than 0, we would be able to write hi = u l j h j + vn9n 
I > k. As in the proof of Theorem 3 we may even assume that all uij vanish. 



Polynomials in additive functions 597 

Then P o (gx,..., gn) = Q o (hi,..., hm) reads as 
n n 

i=1 ¿=1 
Theorem 1 implies 

n n 

i=1 
for all xi,..., xn, yi,...,yk€K. Thus 

i=i 

i=l 

n n 

• > ^ ^ V-miXi 
i= 1 

for all xx ,...,xnE K, where Q*(yk+• • ,ym) •= Q(0, • • • ,0,2/fc+i. • • • ,2/m)-
With Xi := gi(t), t G G, this results in Po(g1, ...,gn) = Q*o (hk+1,..., /IM) 
which contradicts the minimality of m. n 

We may characterize polynomials in additive function in the following 
way. 

T H E O R E M 6 . A mapping p: G —• V is a polynomial in additive functions if 
and only if the subspace CK{P{G)) of V generated by the image of p is of 
finite dimension and if </? o p: G —> K is a polynomial in additive functions 
for all if € F* := UomK(V, K). 

P r o o f . Assume that p: G —* V is a polynomial in additive functions: p = 
Po(g1,...,gn),g1,...,gn-. G K additive, P e Q(Kn, V), P{xu ..., xn) = 
Si/gNJ x V ( l v Then p(G) is contained in Ck ({a^ | v G Nq, a v 0}). Thus 
£K(P(G)) is of finite dimension. Moreover, for any ip G V*, (pop = (ipo P) o 
(gi,...,gn), where <p o P G Q(Kn, K). 

On the other hand, let {&i,... ,bm} be a basis of CK{P{G)) and let B 
be a basis of V containing the m linearly independent vectors b\,... ,bm. 
Then p = YLILIPFII with p,: G —> K. Let tpi G V* be the projection from 
V to K determined by bi G B, i.e., p% = pi o p. By assumption all pi 
are polynomials in additive functions. This implies that p = ^ p f i i is a 
polynomial in additive functions, too. • 

Given a polynomial in additive functions, the question of finding repre-
sentations as a polynomial in a minimal number of additive functions has 
a purely algebraic component. It has been pointed out in [Le] that such 
representations may be calculated explicitely as in the proof of the next 
theorem. 

T H E O R E M 7 . Let K be a field with characteristic zero, Q G K[y\,..., yn] be 
a polynomial of degree < d, 
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d 

k=0 ¿iH 1- in=k 

and suppose that the equation 

(9) fyir0 

has exactly n — m linear independent solutions ¿i = ( A ^ , . . . , An^)T G K n , 

i = 1 , . . . , n — m. Then there are m linear forms ipi G K [ y i , . . . , yn], i = 

1,... ,m, and a polynomial P G K [ x i , . . . , x m ] of degree < d, such that 

( 1 0 ) P°(<Pl,...,<Pm) = Q-

Moreover, m is the smallest number, such that a representation ( 1 0 ) of Q is 

possible. 

P r o o f . There are ¿^...¿„j G K, such that 

j=1 y j k=Q i i H Hn=k j=1 

and linear independence of the monomials y\x • • • yl™ imply that the linear 
system 

n 

(11) = 0, h + H „ = 0 , . . . , d - 1 , 
3 = 1 

has n — m linear independent solutions ii, i = 1 , . . . , n — m. Let A = (an) € 

K m x n be a Gaussian row-eschelon form of the system matrix of (11), such 
that (11) may be written as = 0, z = 1 , . . . , m. yl is the matrix 
of a vector </? G K m [ y \ , . . . ,yn] of linear forms, <p(y) = Ay, with component 
functions <Pi(yi, • • •, yn) = a i j y j i i = 1, • • • Since rank(A) = m, A 

is equivalent to ( E m 0) G K m x n , where Em is the m x m-identity matrix. 
Hence there is a regular matrix C G K n x n satisfying AC = (Ern 0) and whose 
columns m + 1 , . . . ,n have to be linear independent solutions of (9), such 
that it may be written as C = (&i • • • bm t \ • • • i n - m ) . Then B := (bij) := 

• • • bm) G K n x m is the matrix of a vector ip G K n [ x i , . . . , xm] of linear 
forms, 4>(x) = Bx, with component functions i p i ( x \ , . . . , xm) = b i j X j , 

i = 1 , . . . , n. Let P G K [ x i , . . . , xm} be defined by 

P := Q o ( i p i , . . . , ipn). 

Then P is a polynomial of degree < d and it remains to show that P is 
satisfying (10). P — Q o ip implies Potp = Qoipoip, such that we have to 
show Qoipoip = Q. Using the notation Q := Q o ip o ip, q1 := . . . , 
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and qT :— (fj^, • • •, the chain rule renders qT = qTBA which leads to 
qTB = qTB. Moreover, by (9) we have qTii — 0, i = 1 , . . . , n — m, as well 
as qTli = qTBA£i = 0. It follows qJC = qTC and therefore q = q, which 
together with Q(0) = Q(0) implies Q = Q. 

Suppose there are anm',a polynomial P' G K[xi,..., xm>] and m! linear 
mappings ¡p^ : Kn —> K, such that P'o(<^'1,..., <p'm,) = Q. Using the notation 
Uq := \i = 1,... ,n}), Up := ( { fg | j = 1,... ,m'}), one obtains 

from = fj"^2"' « = 1,... ,n, that Uq C Up and therefore m! > 
dim/c Up > dinift- Uq = m. m 

EXAMPLE 1. Let if = M and consider the polynomial 

Q(yi> 2/2,2/3, Va) = 2y?y3 + 3yiyf + y3 - 4yiy| - 4y|y3 - yxyf - y3yj 

+ 4yiJ/2 + j/22/3 + 2yjy4 + 2yiy3y4 - 4yiy2y4 - 4y22/32/4 - 2/i + 2y2 + J/4-

Then 

= y\{4A2 + 2A3 + 2A4) + yiy2(8Ai - 8A2 + 4A3 - 4A4) 
j=i ^ 

+ yiys(4Ai + 4A2 + 6A3 + 2A4) + yiy4(4Ai - 4A2 + 2A3 - 2A4) 
+ y|(-4Ai - 4A3) + y2y3(4Ai - 8A2 - 4A4) + y2y4(-4Ai - 4A3) 
+ y3(3Ai + 3A3) + y3y4(2Ai - 4A2 - 2A4) 
+ yl(-Ai - A3) + 1 • (-Ax + 2A2 + A4) = 0 

renders system (11) for the A¿, whose system matrix in a Gaussian row-
eschelon form is 

10 1 0 ' 
A = O l H u 1 2 2 

Observing that the number of rows of A equals rank(A) we can take in this 
case because of K = M 

B = A+ = AT(AATy1 = ~ 

( 6 -2 A 
- 2 8 

5 2 
y - 1 4 / 

to obtain 

P(xi,x2) = Q(¿(6X1 - 2X2), n ( - 2 x i + 8x2), n(5xi + 2X2), n(-®i + 

= Ax\X2 — 4X1X2 — Xi + 2X2. 
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Indeed, this polynomial is satisfying 

P(yi + 2/3, 2/2 + \yz + \VA) = Q(yi,y2, 2/3, 2/4) 
for all (1/1,2/2,1/3,2/4) G K4-

3. Polynomials in additive functions and their characterization by 
translation invariant subspaces 
The aim of this section is to generalize and to sharpen the main result, 

Theorem 12, of [RS, section 7]. Since there are many misprints in this paper 
we allow ourselves also to repeat some arguments from there. 

Given an abelian group G and a vector space V over K, K a field of 
characteristic 0, a mapping p: G —> V is called a generalized polynomial of 
degree < n, if it may be written in the form p = Yl?=oPii where Pi(x) = 
Pi(x, x,..., x) with some pi\ Gl —> V which is (symmetric and) additive in 
each component for alii = 0 , 1 , . . . , n. We write Vn(G, V) for the space of all 
these mappings. The space V{G,V) := UneN0 Pn{G, V) is called the space 
of (all) generalized polynomials defined on G with values in V. Since, for any 
given additive functions g\,... ,gm: G —> K and any a 6 V, the mapping 
Gm 3 (x\,x2, • • •, xm) 1—» g\(xi) • ... • 3 m (x m )a S V is m-additive, the space 

V*(G,V) := {Po(gi,...,gn) | 
n € N, P e Q(Kn, V),9l,g2,...,gn:G^K additive} 

of polynomials in additive functions is a subspace of V(G, V). 
If V(G, V) 3 p — po + Pi + • • • + pn with po,... ,pn as above this homo-

geneous components p, of degree i in p are uniquely determined by p. Thus 
for 0 ^ p E V(G, V) the degree of p, dp : = max{i | pi ^ 0}, is well-defined. 

For functions p: G V and y E G the translate Typ: G —> V is defined 
by translation in the argument: (Typ)(x) := p(x + y). As in [RS] it is seen 
easily that Vn{G,V) and V*(G,V) = V*(G, V) D Vn[G,V) are invariant 
under Ty for all y. If 0 ^ p E V(G, V) we also have dTyp = dp. More 
exactly, given p = pn + q G V{G, V) with 0 / pn homogeneous of degree 
n and q E Vn-i (G, V) the translate Typ is of the form Typ = pn + qy with 
some qy E Vn-i (G, V). 

Theorem 12 of [RS] is the special case with an algebraically closed field 
K of the following result. 

THEOREM 8. Let K be a field of characteristic 0 , not necessarily algebraically 
closed. Let p E V(G,K). Then p E V*(G,K) if and only if the subspace 
T(p) := Ck {{Typ | y E G}) ofV{G, K) generated by all translates Typ of p 
is of finite dimension. 

To prove this theorem we first provide certain preparatory results. 
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A function 7r: G —> K is called exponential function if n(x + y) = 7r(x) • 

7r(y) for all x,y G G. It is well-known ([AD, p. 28]) that then either 7r = 0 
or 7r(x) / 0 for all x E G. A function q: G ^ V, V & vector space over K, is 
called exponential polynomial if it is of the form q = Titpl with n G N, 
exponential functions 7Tj (7^ 0) and generalized polynomials pt G V(G, V). 

L e m m a 3. Let 1 7^ 7v: G K be an exponential function and let p G 

^ ( G , V ) . Then ir(y)Typ — p = 0 for all y G G i s possible only for p = 0 . 

P r o o f . Suppose p ^ 0 and let n := <9p. Then p = pn + Q where 0 7̂  pn G 
V n { G , V ) is homogeneous of degree n and where q G V n - i ( G , V ) . Then 
Typ = pn + qy with qy G V n - i ( G , V ) for all y G G. Let y' be such that 
a := 7r(y') 7̂  1. Then the hypothesis applied for y = y' implies a(pn + <jy) = 
pn + q- Hence apn = pn which is impossible when pn ^ 0 since a ^ 1. 1 

L e m m a 4 . L e i 7ri, 7Ti, . . . , 7rn: G —>• V ben distinct exponential functions, all 

different from 0 and let pi,p2, • • • ,Pn £ V(G, V). Then 0  niPi  = 0  onty 

is possible if pi = P2 = . • • = pn = 0. 

P r o o f . (Compare [RS, Theorem 9].) We proceed by induction. For n = 1 
the equation it\p\ = 0 implies p\ = 0 since (x) ^ 0 for all x. Suppose, now, 
that Lemma 4 holds true for n and consider a relation X^™^1

 itiPi = 0 with 
n + 1 distinct exponential functions 7Tj, all 0, and p\,... ,pn+1 G V(G, V). 

Dividing by irn+i we get 
n 

(12) q = 52**9» 
i=i 

where q = pn+1, qi = ~Pi for 1 < i < n, and n* := iTi/nn+i. 

Note that , . . . , 7r* are n distinct exponential functions, all 0,1. To 
apply the induction hypothesis it is enough to show that q = 0. If q 7̂  0 we 
may choose q such that (12) holds and that m := dq is minimal. But (12) 
implies 

n 

Tyq = Y , < { y ) < T y q i , y e G . 

i=1 

Thus T y q - q = ' « ( i / ) ^ - ?i). But Tyq - q = 0 if m = 0, 
and T y q - q G Vm-i(G, V ) if m > 1. Since ir*(y)Tyqi - qi G V(G, V ) the 
minimality of m implies Tyq — q = 0 also for m > 1. But then, by induction 
hypothesis, 7 r * { y ) T y q i — qi = 0 for all i and all y. Hence by Lemma 3 all q-L 

must vanish. But then q = 0 contradicting our assumption that q 7̂  0. • 

The following lemma generalizes Theorem 10 of [RS]. 

L e m m a 5 . Let A: G —> G l n ( K ) , K a field of characteristic 0 , G 1 n ( K ) the 

group of regular n x n-matrices with entries in K , be a homomorphism, 
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i. e., A{x + y) = A(x)A(y) for all x € G. Assume that the characteristic 

polynomial XA(x) splits over K for all x € G. 

Then there is some S G Gln(K) such that B: G —> Gln(/iT) defined by 

B(x) := SA(x)S~1 is a block diagonal matrix of the form B(x) = 

dmg(B1(x),B2{x),...,Br(x)), B{ : G -> G\ni{K), 1 < i < r, m,..., nr > 1, 

n\ + ... + nr = n. Moreover the Bi are given by Bi(x) = iti{x) exp(Ci (x) ) 
where all tt1 are non zero exponential functions and where the Ci~. G —» 

Mni(K), M m ( K ) the ring of all ni x rii-matrices with entries in K, are such 

that all Ci(x) are nilpotent lower triangular matrices. All entries of all Ci 

are additive functions from G to K and Ci(x) commutes with C{(y) for all i 

and all x,y G G. 

P r o o f . Consider the family (A(x))xeG of matrices in Mn(K). By 

A(x)A(y) - A(x + y) = A(y + x) = A(y)A(x) 

any two members of this family commute. 
Inspecting the proof of Theorem 7 in ([J, p. 134]) one observes that 

the hypothesis made there, namely that K be algebraically closed, may be 
replaced by the (weaker) assumption that all XA(X) split over K without 
violating the conclusion of this theorem. 

Thus we may find some S G Gln(K) such that B defined by B(x) := 

5v4(x)5 _ 1 is of the form B(x) = diag(£?i(x), ^ ( x ) , . . . , Br(x)) where all 
Bi : G —> M m ( K ) are of the form 

/ Ki{x) 

Bi(x) = 
7Ti(x) 

\ * 

0 \ 

VTi(x) / 

xeG. 

Since all A(x) are regular so are all B(x) and thus also all Bi{x). A(x + y) = 

A(x)A{y) obviously implies that B (and all Bi) satisfy the same functional 
equation. Since the Bi are lower triangular this in particular means that all 
7Tj are exponential functions. By the regularity of B{ all 7Tj ̂  0. 

Thus Bi = iTi • (Ei + B*) where E{ is the identity matrix of M n i (K). 

Then B* (x) has the form 

B*{x) = 

( 0 o \ 

0/ 
Thus B*(x) = (\/iTi(x)) • Bi(x) — Ei is a lower triangular matrix which 

is also nilpotent, B*(x)ni — 0. Let 
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3=1 

The formal power series i{X) := l n ( l + X ) = Y.?=i ' X J satisfies £{(1 + 
X ) ( l + Y) - 1) = £(X) + £(Y). B*(x) and B*(y) commute since B{(x) and 
Bi(y) do. This implies 

Q(x) + Ci(y) = £(B*(x)) + £(B*(y)) = I ((^ + B*{x)){Ei + B*(y)) - EJ 

Since, for formal series, exp(£(X)) = 1 + X and since all C\(x) are lower 
triangular and nilpotent we infer that exp (Ci{x)) := X^mj1 j [ = Et + 
B*(x) = (1/7Ti{x))Bi(x). Thus Bi(x) = TT^X) exp(Ci(x)) where Q: G 
Mrei(iir) has the desired properties. (Cj(x) and Ci(y) commute since B*(x) 
and B?(y) commute.) • 

COROLLARY 2. Let all assumptions of Lemma 5 be satisfied. Then all entries 
of A are of the form atJ = l ' i f j where 7rJ , . . . , 7r* : G —> K are s 
distinct exponential functions, all ^ 0, and where all q f j are elements of 

Proof . The entries of the matrices Ck are additive functions. Thus the 
entries of x i—> exp(Cfc(x)) are contained in V*(G, K). This implies that the 
entries of Bk, and then also of B , are of the form n^ • rl3 with non vanishing 
exponential functions 7Tjj and rij G V*(G,K). From A(x) = S~1B(x)S 
we infer that the entries of A are linear combinations of the tt^ • rij. The 
assertion follows by defining 7rJ , . . . , 7r* to be s different exponential functions 
(t^ 0) such that {7r j , . . . , 7r*} = { 7 | 1 < i,j < n}. • 

Now we are ready to prove Theorem 8. 

Proof . (Theorem 8) Let, first, p G V*(G,K). Thus p = ' 
. . . • g^na„ for certain additive functions gt: G —> K and certain av G K, 
\u\ < N, where n,N G N. It is easily verified that Tyg^ • . . . • g„n G 
Ck ({gM 911 • • • • • g%n \ \fi\ < M}) - Thus Typ is contained in the space 
generated by the functions \p\, \v\ < N. This space is of finite dimen-
sion. So T(p) as a subspace of this space is also of finite dimension. 

Now, let p G V(G, K) and assume that T(p) has finite dimension. Of 
course we may assume p ^ 0. Let p\ = p,p2, • • • ,pn be a basis of T{p). Since 
Txq G T(p) for all q G T(p) and all x G G the Txpl are linear combinations 

= e(B*(x + y)) = Ci{x + y), z = l , 2 , . . . , r , x ,y G G. 

V*{G, K). 



604 J. Schwaiger, W. Prager 

of the pj, 
n 

( 1 3 ) Txpi = ^ ciij ( x ) p j , x G G , 1 < i < n. 

j=l 

This together with T x + y = T x o T y implies that A : G —• M n ( i f ) defined 
b y = satisfies A(x + y) = A(y)A(x) for all x,y G G. 

To = id implies vl(0) = E = En showing (since A(0) = A(x)A(—x)) that 
A : G - + G \ n ( K ) . _ 

Let K be any extension of K such that all XA(X) split over K. By 
Lemma 5 we may find some S G Gln(A') such that B : G G\n(K) de-
fined by B(x) := SA(x)S~1 has the properties described in Lemma 5 (with 
K instead of K). By this lemma and its corollary, Corollary 2, we see that 
ciij = Yli=i with distinct exponential functions 0 ^ n f : G —> K and 
polynomials q f ) G V*(G,K). 

(13) implies p(x) = p\{x) = Txpi(0) = Yl1 j=i a i j(x)Pj(0)- Inserting 
here the specific form of the a\j shows that p = E i= i n*qi with certain 
qi G V*(G,K). 

In this representation one of the nf has to be identical 1. Otherwise we 
would write 

s 

P - 1 + J 2 * ! • ( - « ) = 0 
i=i 

with s + 1 distinct exponential functions 1, tt\, . . . , 7r*, all ^ 0, and polyno-
mials p, —qi,. •., —qs G V(G, K). This, by Lemma 4, implies 0 = p = —q\ = 
... = — qs. Thus in particular p = 0, a contradiction. 

So, say, -k\ = 1. Then p = Xw=i niQi
 m a y t>e written as 

s 

1=2 Applying Lemma 4 once more now gives p = q\. Thus p G V*(G, K). 
We still have to show that p G V*{G,K) C V*(G,K). Let m := 

E L i sikPk where sik G K are the entries of the matrix S := (sik) 

Then all Ui are contained in T(p) := £ ^ ( { T x p |x G G}). Equality S • 
A(x) = B(x) • S and (13) imply TxUi = Efc=i hk(x)uk- Since B(x) = 

diag(Bi(x) , . . . , B r ( x ) ) and since the Bi(x) are lower triangular matrices 
with 777(2) as entries along the main diagonal we recognize that TxuJ l = 
7 r i ( x ) u j l for I = 1, 2 , . . . ,s, where j 1 := 1, j2 := n\ + 1 , . . , , j r := m + ... + 

nr-1 + 1. 
All 

Hi are different from 0. In fact, all vectors o% i— • • • •> $in) 
different from the zero vector in K . They even are linearly independent 
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over K since S is regular. Moreover pi,p2, • • • ,Pn are linearly independent 
over K. Let D be a basis of K over K. Then s^ = YldeD where all 
sik e ^ and where for any fixed i and k the number of those d G D such 
that s ^ 0 is finite. Suppose U{ = 0, then 

0 = E ( £ = E ( E ' ! ? p * ( * ) ) < t . * e G. 
k=1 d&D deD k= 1 

But pk(x),s\f G K. Thus sikPk(x) = 0 for all x G G and all deD, 
i. e., sikPk = 0- This is a linear relation for the pk over K . Thus 
sik ~ ^ all ^ and all d G D. But then al = 0, & contradiction. 

In particular all Ujt 0. Evaluating TxUjt = 7r/ • Uj[ at some y G G 
with Ujt{y) 0 then shows tt1 = (1 /ujl(y))TyUjl, i.e., Hi G T(p) for all 
i = 1 , . . . ,r. But T{p) C V(G,K). This implies = tt2 = . . . = 7i> = 1, 
since by Lemma 4 only the exponential functions 0 and 1 are polynomials. 

But then all XA(X) already split over K. Thus we may choose K = K 
which finally gives the desired result. • 

We can even prove more. 

T H E O R E M 9. Let K be an arbitrary field of characteristic 0 and V any 
vector space over K. Then for any abelian group G a generalized polynomial 
p G V(G,V) is a polynomial in additive functions, p G V*(G,V), if and 
only if the subspace Tip) := CK ({Txp\x G G } ) o/"P(G, V), generated by 
all translates Txp of p, is of finite dimension. 

Proof . If p G V*iG,V) the space Tip) must be of finite dimension. This 
can be seen in (almost) exactly the same way as the corresponding part in 
Theorem 8. 

Now assume 0 p G V(G, V) and that T(p) is of finite dimension. Again 
we may proceed first as in the proof of the preceding theorem. Txp = Txp\ = 

aij(x)Pj> where p\ = p,p2,... ,pn constitute a basis of Tip), implies 
P(x) ~ 1 a i j ( x ) P j ( f y i which shows that CK (P(G)) is of finite dimension. 
Obviously <f op g K) for any given ip G V*. Since Txi<pop) = ipo (Txp) 
for all x G G we obtain T if op) = CK i{f 0Pi, • • •, f 0Pn}) showing that 
T i<p op) is of finite dimension for all <p G V*. Thus f> op e V*iG, K) for all 
f G V* by Theorem 8. Then Theorem 6 implies p G V* (G, V). • 

4. Polynomials in additive functions and multi-Jensen functions 
Assuming that V and W are Q-vecor spaces, this section deals with 

another characterization of the elements of V*iy, W) C V{V, W). For n G N 
let $n '• V —> Vn be the diagonalization mapping, which assigns to x G V the 
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vector (x,..., x) G Vn with x in each component. In [PS] it has been shown 
that for every symmetric n-Jensen function / : Vn —> W the diagonalization 
p := / o 6n is an element of Vn{V, W) and that for every p G Vn(V, W) there 
exists a uniquely determined symmetric n-Jensen function / : Vn —> W, 
such that p = / o Sn. This one-to-one correspondence will be utilized now 
for that characterization. 

LEMMA 6. Let P G Q(Km, W) be the polynomial 
n 

P(yi, • • •, ym) = Y1 yi1"' y™ah-imy 
k=0 J'H h jm=k 

aji-jm ^ W, let gi : V —> K, i = 1 , . . . ,m, be additive functions and let the 
function f : Vn —> W be defined by 

n 

(14) f(xu...,xn) = J2 Y1 Mi (Xj 1 , . . . i Xji), 
»=0 l<i'i<-<ji<n 

where 

(\ —1 rn fcj 

' kl+-+km=i j=ie=i 9 

i = 0 , . . . , n. Then f is n-Jensen and for every generalized polynomial p G 
Vn{V, W) the following holds: p = P o ( g l 5 . . . , gm) if and only if p = f o Sn. 
P r o o f . At first we show, that the functions Mi defined by (15) are ¿-additive. 
Given r G {1 , . . . , for any partition k\ + • • •+km = i of i there are uniquely 
determined numbers /z G {1 , . . . , m) with k^ > 1 and tT G {1 , . . . , A;̂ }, such 
that r = X ^ i 1 kq + lT. For y = (yu . . . , Vi) G Vi and yr G V, let y G Vi be 
the vector with the components yr = yr + yr and y3 = yj for all j ^ r. By 
additivity of g^ one obtains 

I ] ' M y ^ i ^ + e ) 
i=\ 

= n k q + e ) + n ^ ( y ^ z i kq+e) • 9»{vr) • n 
1= 1 i= 1 i=lr + l 

k 
Multiplying this sum with the remaining products n^Li d j i y ^ ^ 1 k 
j / /i, then taking the weighted sum over all partitions k\ + • • • + km of 
i and multiplying with \ it follows 

Mi{yi,.. .,yr-i,yr + yr,yr+i,-- -,Vi) 
= Mi (yi, • • • ,Vi) + Mj(yi,..., yr_i, yr, yr+i,.. .,yi), 
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showing i-additivity of Mi, i = 1 , . . . ,n. Since / is the sum of ¿-additive 
mappings, i = 1 , . . . , n, plus a constant, it is n-Jensen by Theorem 2 of [PS]. 
The diagonalization of Mj , i = 1,..., n, renders 

- l m kj 

j YI 
' fel+-+fcm=jj = l^=l 

= (") X 5l(x)fel "" •9m{x)kmaki...km, xeV, 
that is, a homogeneous polynomial of degree i in the variables gj{x), j = 
1,..., m. Furthermore, 

n n / \ 

f { 6 n ( x ) ) = M 0 + Y , E M i ( 5 i ( x ) ) = M o + 5 ^ i " j M i ( i i ( x ) ) »=1 l<n<-<ji<n i= 1 ^ ' 
n 

= Y1 9i(x)kl •••gm(x)kmakl...kjn= P(gi(x),...,gm
¿=0 fciH 1-km=i 

Since by Corollary 1 of [PS] the diagonalization of an n-Jensen function is 
a generalized polynomial of degree < n (or, as shown in Section 6 of [RS], 
an ordinary polynomial in additive functions is a generalized polynomial), it 
follows for an arbitrary generalized polynomial p G Vn(y, W), that p = foSn 
if and only if p = P o (gu ..., gm). • 

REMARK 3. A representation of the uniquely determined symmetric n-
Jensen function /, whose diagonalization is rendering a generalized poly-
nomial p of degree < n satisfying p = P o (gi,... , gm) with P and gi as in 
the lemma, is easily obtained by substituting Mi in (14) by 

7T eSi 

where the Mi in these expressions are given by (15) and Si denotes the 
symmetric group of order i. 

THEOREM 10. Let be p € Vn(V,W). Then there exist an m £ additive 
functions g\,..., gm : V —• K and a polynomial P G, W) such that 
p = P o (gi,... ,gm) if and only if there exist an L G N,((•) (i) 

h\ ,..., hn : V —> K and a^ G W for i — 1,... ,L, such that p = f, 
with f :Vn^W, 

L n 

(16) f { x 1 , . . . , x n ) = J 2 H h ( f ) ( x j ) a e . 
i=i j=i 
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P r o o f . Suppose that the generalized polynomial has a representation p — 
P o (51,. . . ,gm) with additive functions gi and let / : Vn —> W be the n-
Jensen function defined by (14) and (15), satisfying p = / o 5n by Lemma 6. 
We are going to transform the products of the additive functions appearing 
in (15), where, in dependence upon kj, a specific gj may appear repeatedly 
or even not at all, into a product of n Jensen functions, where each of them 
appears exactly once. For that let S = 0 or S = { j i , . . . , j ,} C {1 , . . . , n} =: 
n, let k\ + • • • + km = i be a partition of % = l^l and take a j G n. In case 
j G S there is an £ G i, such that j = je and we define 

hfkl-km{x):=gM(x), xeV, 

where — max{f | kq + I < £}. In case j ^ S we define 

hfkl-km(x):=lGK, xeF. 

All functions hS-' kl"-krn are Jensen and 

3=1 jes e=1 
fciH b km m ks 

= n 
£=1 s=11=1 

since /j,£ = s is equivalent to kq + 1 < i < ^q- Therefore we can 
rewrite (15) as 

(\ -1 n 

j E ' ki+-+km=ij=l 

where S = {ji,... ,ji} as before. Observing h®' = 1 for j = 1 , . . . , n, we 
get 

/ ( * ! , . . . , * „ ) = £ ( l a ) " ' E flhfkl-km(^)akl...km. 
SCn Vl l/

 kl+...+km=\s\j=l 

With a suitable renaming of the indices of summation and of the W-valued 
factors (|£|) 1afe1...fcm we obtain an L € N, ai € W, I = 1 , . . . , L, and n • L 

Jensen functions h\ ,..., hn , £ = 1 , . . . , L, such that / may be represented 
by (16). 

Conversely, suppose that p = / o 8n for the generalized polynomial p of 
degree < n, where / is given by (16) with an L G N, ag G W and Jensen 
functions h\ ,..., hn , £ = 1 , . . . ,L. For each of these Jensen functions there 
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is an additive function bj : V —> K and a constant c - € K, such that 

h f { x ) = bf{x) + c f , j = l,...,n, e = l ,...,L, xEV. 

f as a sum of products of n Jensen functions is an n-Jensen function and 
may be written as 

L n 

f(x1,...,xn) = y £ H ( b f \ x j ) + cf)ae 

l=i j=i 

= E E I I c f I I ^ ( X j ) a t , xi,... ,xn E V. 
£= 1 SC n j<En\S j e S 

Diagonalization of this function renders 

L 

p(x) = f(x,..., X) = E E I I c5 I I bf(x)at, xev, 
e=i sen jen \s j e s 

hence there is a natural number m := n-L and a polynomial P E Q(Km, W), 
such that, after a suitable renaming like b- =: j = 1 , . . . , n , 
t = 1 , . . . the generalized polynomial may be represented as p = P o 
(gi, • • • ,3m)- • 

For an example below we need the following lemma, which sharpens the 
result quoted from [AD] at the begin of the proof of Theorem 1. 

Lemma 7. Let V be a vector space of arbitrary dimension and let B be 
a Hamel basis of V. If gi, ••• ,gm V • Q are m linearly independent 
additive functions, then there are b\,... ,bm € B such that the vectors 
(gi(h), • • • ,gm{bi)) E <Qm, i = 1 , . . . ,m, are linearly independent. 

P r o o f . The proof is by induction on m. Observing gi ^ 0, there is a b\ E B 
such that gi(bi) ^ 0, hence the assertion is true in case m — 1. Suppose 
that there are b\,..., 6m_i E B, such that 

( 3 iOi) ••• 3 m - l 0 l ) ^ 
det / 0 . 

\gi(bm-i) ••• gm-i(bm-i) J 

The functions gi,... ,gm are linearly independent, so there is an x E V such 
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that 

( 9 i ( b i ) ••• 9m-\(p\) gm(b 1) ^ 

det = ^ 2 9 i ( x ) d i ( h , . . . , b m - i ) ^ 0 , 
9 l ( b m - l ) ••• 9 m - l ( b m - l ) 9 m ( b m - l ) i=1 

V 9 l ( x ) ••• 9 m - l ( x ) 9m{x) 

where the determinant was expanded in the last row with <¿¿(61,..., bm-1), 

i = 1 , . . . , m, being the corresponding (m — 1) x (m — 1) subdeterminants. 
Writing x G V as 

m—1 

x = Y l  a i b i + H a t > b > 
3=1 6 e B \ { 6 i , . . . , 6 m _ i } 

additivity of the gi renders 
m m— 1 m 

^ ~ ^ g i ( x ) d i { b i , . . . , b m - i ) = ^ a t j ^ 2 g i ( b j ) d i ( b i , . . . , 6 m _ 1) 
i = l j = l ¿=1 

m 

"m—1J • 
&eB\{&1,...,6m_i} ¿=1 

Since Y l i L 1 9 i ( b j ) d i ( b i , . . . , &m-i) = 0 for all j = 1 , . . . , m — 1, there is a 
6 G {&i,... ,& m - i} such that Y l l L i 9 i ( b ) d i ( h , . . . , b m - i ) / 0. • 

The following example may serve as an illustration for several results in 
this paper. It is a generalization of an example, originally presented in [RS, 
Section 7], of a generalized polynomial, which is not a polynomial in additive 
functions. 

E X A M P L E 2 . Let V be a Q-vector space of infinite dimension with a Hamel 
Basis B and let W be a Q-vector space with dim W > 1. For a fixed nonzero 
w G W and a natural number N > 2 let the mapping / : V n —> W be defined 
by 

n 
( 1 7 ) / ( X ! , . . . , x n ) = f ( J 2 P i f i b , • • • , E M : = E I I 

b&B beB beB 1=1 

Since / is n-linear and symmetric, its diagonalization p : V —> W, p(x) := 
f ( x , . . . , x ) , is a generalized polynomial of degree < n. 

(A) Assume that there are an m G N, a polynomial P G Q ( Q m , W) and 
additive functions g \ , . . . , g m : V —> Q such that 

( 1 8 ) P = P ° { g i , . . . , 9 m ) . 
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We will derive a contradiction to (A) in two ways, firstly by a result of 
Section 3 and secondly using results of Section 2 and of the present section. 

1. By Theorem 9 it follows dimT(p) = N < oo, hence there are bt 6 
B and A* € Q, i = 1,...,N + 1, (A i , . . . , Ajv+i) ( 0 , . . . , 0), such that 
X^jH1 A^T^p = 0. Evaluating this sum at b G B \ {61, . . . , b^+i} we obtain, 
by definition of / , 

N+l N+l N+l 

0 = Xip(bi + b">=Yl X i f ( b i + b,...,bi + b) = 2^2 xiw• 

i= 1 i=1 1=1 

Hence, replacing b by bj and evaluating as before, we get 
N+l N+l 

0 = J 2 \ i P ( b i + bj) = \ j f { 2 b j , . . . , 2 b j ) + J 2 Xifibi + bj^.^bi + bj) 
»=1 i=l,ij=j 

N+l 

= 2n\jW + 2 Xiw = ( 2 " ~ 2 ) X i w 

i = l , i^j 

for j = 1 , . . . , N + 1. Consequently, Ai = • • • = Aat+i = 0, a contradiction. 

2. By Remark 2 we may assume that m is the minimal number such that 
p has a representation of the form (18). By Theorem 2 of [PS] the n-Jensen 
function / admits a representation (14) with Mq = / ( 0 , . . . , 0) and 

M i ( x h , . . . , X j i ) = Y1 ( - l ) l { j l ' " J i n T | / ( z r ) , i = l , . . . , n , 

where 1 < j\ < ]2 < • • • < ji < n, and xt £ Vn being the vector with 
components ( x t ) j = 0, if j £ T, and ( x x ) j = Xj, if j £ T, j = 1 , . . . ,n . 
By definition of / we have in the present case Mi = 0 for i = 0 , . . . , n — 1 
and therefore Mn(x 1,..., xn) = f ( x 1,..., xn). Because of p(rx) = rnp(x) 
for all r € Q, we also have P(gi(rx),... ,gm(rx)) = rnP(gi(x), ...,gm(x)), 
therefore the degree of P has to be n. So Lemma 6 renders under the 
assumption (18) 

^ m kj 
( 1 9 ) f ( x i , . . . , x n ) = - J 2 E 

fci+..+fem=n 7reSn j=1 i= 1 

with a^.^km G W, and we will derive a contradiction to (18), showing that 
the uniquely determined symmetric n-Jensen function / associated with p 
cannot have a representation (19). 

Diagonalization of (19) yields 

( 2 0 ) p(x) = f ( x , . . . , x) = Y^ 9i(x)kl •••9m(x)kmakl...km, x<EV, 
fciH b km=n 
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and minimality of m implies by Theorem 3 linear independence of {g\,..., gm }, 
hence, by Lemma 7, there are &i, . . . , bm G B such that g\ . . . , gm\v are 
linearly independent, where U := £Q({6I, . . . , bm}). Moreover the m x m-
matrix A := (gi(bj)) is regular and with A~l = C = (c^) the functions 
gi : V —» K, gi(x) := cij9j(x)i i = 1, • • •, m, are additive and satisfy 
gi(bj) = Sij for i, j = 1 , . . . , m. Therefore (20) may be written as 

(21) p(x)= 9i{x)kl •••9m(x)kmakl...km, xeV, 
fciH \-km=n 

with aia...km £ W. On the other hand, by definition of /, we also have 
TO 

(22) p(x) = J29i(x)nw, xeU. 
i=1 

Inserting x = G U in (21) and (22), we obtain because of gi(x) = 
Aj, i = 1 , . . . , m, that 

TO 

fclH h fcm=n ¿=1 
implying that a0. . .0n0. . .0 = w, n being at the i-th position in the multiindex, 
i = 1 , . . . ,m, and akl ^km = 0 otherwise. Hence the representation of p(x) 
given by (22) is valid for all x E V. 

Taking now an arbitrary b G B \ {&i , . . . , bm} and j G { 1 , . . . , m}, it 
follows for all r G Q 

m m 
(rn + l)w = p(rb + bj) = (J>(r& + bj)n)w = + S^w 

i=1 i=1 
TO 71—1 • \ 

= (rn £ 5iWn + (^(6) + ir)^ = (r" + l)^ + Er)r%(6)V 
1= \ \ ' 

hence X^C/ {j^r^gjibf is a polynomial in r which vanishes identically. It 
follows gj{b) = 0 for all b G B \ {h,..., 

bm} and for j — 1 , . . . , m, in 
contradiction to YLILi ~ P(b) = w for all b G B. 
T H E O R E M 11. Let V,W be Q-vector spaces, W ± {0} . Then d imF < oo if 
and only ifV(V, W) = V*(V, W). 
Proof . Suppose dim V = m < oo and denote by B = { fei , . . . , bm} a basis 
of V. Let be p G V(V, W), then there is an n G N0 such that p G Vn(V, W) 
and there are symmetric, ¿-additive mappings pi : V1 —> W, i = 0 , . . . , n, 
such that p = ° For j = 1 , . . . ,m we define the projections 
hj : V —y Q, hj(xk) = ^klh) = ^kj• The hj are Jensen-functions 
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and 
m 

Pi(xi,...,Xi) = A i j ! •••Xijipi(bjl,...,bji) 

i l , ->i i=l 
m 

= XI hh(xi)---hji(xi)Pi(bhT--ibji)i i = 0,...,n, 

hence, by Theorem 10, pi o Sie V*(V, W) C V*(V, W) for i = 0, . . . , n, and 
therefore p € V*{V, W). The inclusion V*(V, W) C V(V, W) is obvious. 

If dim V = oo, then p := / o 6n with / defined by (17) is in V(V, W), but 
not in V*(V, W), as was shown in Example 1. • 
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