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STRONG MAXIMUM PRINCIPLES FOR INFINITE
SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL
INEQUALITIES WITH NONSTANDARD INITIAL
INEQUALITIES WITH INTEGRALS

Abstract. In this paper we consider infinite systems of parabolic differential-functio-
nal inequalities with nonstandard initial inequalities with integrals. For that systems we
give strong maximum principles in relatively arbitrary (n+ 1)-dimensional time-space sets
more general than the cylindrical domain.

1. Introduction

We shall consider an infinite system of parabolic type differential-functio-
nal inequalities of the following form

(1.1) ui(z,t) < Fi(z,t,u'(z, t), ul(x, 1), ul (x,t),u) (i€N),
where z = (z1,...,2Zy), (z,t) € D and D C R™ X (to,to + T).
The symbol u denotes the mapping
u:Nx D> (i,z,t) - vl(z,t) € R,
where D is an arbitrary set such that
D c D c R" x (—oo,tg+T).

The right-hand sides F; (¢ € N) of system (1.1) are functionals of u,
ut(z,t) = grad,u’(z,t) and ul,(z,t) denote the matrices of second order
derivatives with respect to = of u‘(z,t) (i € N).

In this paper we give theorems on strong maximum principles for prob-
lems with inequalities (1.1) and with the nonstandard inequalities

(W (z,t0) — K7) + Y _ hi(x) (v (z,T:) — K?) < 0 for z € Sy, (j € N),
i€l

where K* (i € N) are constant functions such that (K1, K2,...) € [,
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The results obtained in this paper are generalization of some thesis from
publications: L. Byszewski [3] and J. Chabrowski [8].

Comparison theorems for infinite systems of parabolic functional-diffe-
rential equations were considered by D. Jaruszewska-Walczak in [5]. The
results obtained in [5] are in the case when the solutions are defined on
bounded sets. In this paper, the situation is different. Consequently, the
assumptions on the right- hand sides of the equations and inequalities, in
this paper, are different than in [5].

Infinite and finite systems of hyperbolic functional differential inequal-
ities were considered by Z. Kamont in [6] and [7]. The monograf [6] is
a self-contained exposition of hyperbolic functional differential inequalities
and their applications, on which topic the present author initiated research.
It aims to give a systematic and unified presentation of recent developments
in the following problems: functional differential inequalities generated by
initial and mixed problems; existence theory of local and global solutions;
functional integral equations generated by hyperbolic equations; numerical
methods of lines for hyperbolic problems; and difference methods for ini-
tial and initial-boundary value problems. Besides classical solutions, some
classes of weak solutions are also treated, such as Carathéodory solutions for
quasilinear equations, entropy solutions and viscosity solutions for nonlinear
problems, and solutions in the Friedrichs sense for almost linear equations.
The theory of difference and differential difference equations generated by
original problems and its applications to the construction of numerical meth-
ods for functional differential problems is also discussed.

In paper (7], Z. Kamont presents general comparison theorems for hy-
perbolic functional-differential infinite systems. He gives an estimate of
functions of several variables satisfying an infinite system of functional dif-
ferential inequalities by means of solutions of suitable systems of ordinary
functional-differential equations. As a consequence he obtains a general the-
orem of the Perron type on the uniqueness of classical solutions of initial
value problems. Next he proves a comparison result for infinite systems
with initial-boundary value conditions. A general uniqueness result with
nonlinear estimates of the Perron type is also obtained.

2. Preliminaries
We shall use the following notations:

R = (—o00,400), R_ =(-00,0], N={1,2,...},
z=(x1,...,2,) € R*(n € N).

By {*° we denote the Banach space of real sequences § = (£ 1¢2..) such
that sup{|¢’| : 7 = 1,2,...} < oo and [[{|;j» =sup{|¢’|: 5 =1,2,...}. For
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£=(£4,€2,..),n=(n',n%...) € 1™ we write £ < 7 in the sense &' < 7
(i € N).

By M,xn(R) we denote the space of real square symmetric matrices
r= [Tjk]nxn-

We write r > 0 if

n
Z Tjk/\j)\k >0
k=1
for all (A1,...,An) € R™
Let tp be an arbitrary real finite number and let T' € (0, 00).
Aset D C{(z,t):z € R tog <t <tog+T} is called a set of type (P) if:
(a) the projection of the interior of set D on the t-axis is the interval
(to,to + 1),
(b) for every (%,t) € D there exists a positive number 6 = §(Z,t) such
that

{(x,t) : i(mi —E (-2 <6, t< Z} c D,
i=1

(c) all the boundary points (Z,t) of D for which there is a positive number

§ = 6(,t) such that

n
{(m,t) S @i - &) (-1 <6, ¢ g’t“} cD
i=1
belong to D.
For any t € [to,to + T] we define the following sets:

{int{x €R™: (z,tp) € D}  for t=ty,
t =

{z e R": (z,t) € D} for t # to,
_ [int[DN(R"™ x {to})] for t=to,
7t = {Dﬂ (R x {t}) for ¢ # to.

Let D be an arbitrary set such that
D c D CR™x (—oo,tg + 7.
We introduce the following sets:
8,D:=D\D and I :=8,D\cy.

For an arbitrary fixed point (Z,t) € D, we denote by S~ (Z,t) the set of
points (z,t) € D, that can be joined to (Z,t) by a polygonal line contained

in D along which the ¢-coordinate is weakly increasing from (z,t) to (z, t).

Let Zoo(D) denote the linear space of mappings
w:Nx D> (i,z,t) — wi(z,t) €R,
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where functions o '
w': D> (z,t) - w'(z,t) €R
are continuous in D and
sup{|wi(z, t)| : (z,t) € D, i € N} < oo.

In the set of mappings w belonging to Zoo(ﬁ) we define the functional
[']t,00 by the formula

[W]t,00 = sup{0, w'(z,t) : (x,%) € D, t < t, i € N},
where t < g+ T.

By Zgol(D) we denote the linear subspace of Zoo(D). A mapping w
belongs to Z2' (D) if wi, wt = = (wh,,...,w} ), wh, [wzﬂk]nxn (¢ € N) are
continuous in D.

For each i € N by F; we denote the mapping

Fi:D xR XR"X Mpxn(R) X Zoo(D) 3 (z,t,2,q,7, w)
— Fi(z,t,2,q,r,w) € R (i € N),
where ¢ = (q1,...,¢n) and r = [rj].
By P; (i € N) we denote an operator given by the formula
(Pw)(z,t) := wj(z,t) — Fi(z, 1, w'(z, 1), wi (2, 1), wi,(2,8),w) (i €N),

for w € Z%(D) and (z, t) € D.
A function u € Z{i}( D) is called a solution of the system of the functio-
nal-differential inequalities

(Pa)e) S0 (N

in D, if they satisfy the system for all (z,t) € D.

For a given subset E C D, and a given mapping w € Zgol(ﬁ) and a fixed
index 7 € N the function F; is called uniformly parabolic with respect to w
in E, if there is a constant 3 > 0 (depending on E ) such that for any two
matrices 7 = [Tjx] € Mpxn(R), T = [Tjk] € Mpxn(R) and for (z,t) € E we
have

(2.1) r<r= F,'(a:,t,wi(a:,t),w;(a:,t),F,'w)

n
— Fi(z,t,w'(z,t), wi(z, t),r,w) > 2 Y _(F5 — 45)-
j=1
If (2.1) is satisfied for » = 0 and r = w},(z,t), where (z,t) € E, and
for ¥ = wl (x,t) + 7, where (z,t) € E and 7 > 0, then F; is called parabolic
with respect to w in F.
Let J =N or J is a finite set of mutually different natural numbers.
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Let us define the following set:
S = U(UT2¢—1 U UTZi)’

ieJ
where, in case if J = N, the following conditions are satisfied:

(i) to<Th1 <To; <tg+TforieJand Ty 1 # Toj_1, Ty #* ng for
i,j € J, i #

(ii) Ty := inf{Tzi_l 11 € J} > to;

(iii) S D Sto for every t € U[T%——l; TQZ'];

ieJ

(iv) St D S, for every t € [Ty, to + T,
and in case if J is a finite set of mutually different natural numbers, the
conditions (i), (iii) are satisfied.

An unbounded set D of type (P) is called a set of type (Psr), if:

(a) S #0,
(b) I'N Ty, # 0.

Let S, denote a non-empty subset of S. We define the following set:
Je={ieJ:(om,_,Uomn,) C S}

A bounded set D of type (P) satisfying condition (a) of the definition of
a set of type (Pgr) is called a set of type (Psp).

Observe,that if D is a set of type (Psg), then D satisfies condition (b)
of definition of a set of type (Psr). Observe also, that if Dy is an arbitrary
bounded subset of R™, then D = Dy X (to,to + T is a set of type (Psg).
In the case, if Dy is an arbitrary unbounded proper subset of R”, then
D = Dy x (to,to + T is a set of type (Psr).

For every set A C D and for each function w € Zoo(ﬁ) we apply the
notation:

t) ;= Y. t 2(x.t),...).
(ggAw(w, ) ((;gggAw (z, ),(%gAw (z,t),...)

3. Strong maximum principles with nonstandard inequalities with
integrals in sets of types (Psr) and (Pgp)

THEOREM 3.1. Assume that:

(1) D C R™ x (to,to + T is a set of type (Psr) or (Psg);

(2) F; (i € N) are the mappings as in Section 2 and there exists a constant
L > 0 such that
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.Fi(.’l), t’ 2,4,T, ’LU) - E(IL’, ta za Zia F} 6)

n n
<Lz =2+ |2l ) lg; — @l +|2* Y Irje —Fjel + [w — Tleo) (€ N),
j=1 k=1
for all (z,t) € D, 2,Z€R, q,§ € R, 1,7 € Mpxn(R), w, B € Zoo(D);
(3) u € Z2(D) and the mazimum of function u on I is attained. More-
over,

3.1 Kt := Yz, t ; € N),
(3.1) ($§gFU(w) (i €N)

and K € [* is defined by formulae
K :NxD 3 (i,z,t) — K
(4) The following inequalities hold

Ty
. . 1 “ .
.2 ¥ —_ ¥ . - J _ J <
(8.2) (vW(z,t0) — K )+i€EJ* hi(z) (T% Tors T) o’ (z, T)dT K) 0

i—1
forxz e Sy, (j €N),
where h; 1 Sy, — R_ (i € Ji) are given functions such that
-1< th(-T) <0 for z €St
1€J
and, additionally, if cardJ, = g, then the series
1 Ty
D hi(@)m—— | (@, m)dr (jEN)
icl. 2 21y
are convergent for x € St;
(5) There ezists a point (z*,t*) € D such that

u(z*,t*) = max_u(z,t);
(z,t)eD

Moreover,
(3.3) M =i (z*,t*) (i €N)
and M € I is defined by
M :NxD 3 (i,z,t) — M%
(6) Fi(zx,t,M* 0,0, M) <0 for (z,t) € D (i € N);
(7) The function u is a solution of system
(Pu)(z,t) <0  for (z,t)e D (i€N).

(8) The mappings F; (i € N) are parabolic with respect to u in D and
uniformly parabolic with respect to M in any compact subset of D.
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Then

3.4 max_u(z,t) = max u(z,?).
(34) (z,t)eD (@:8) (z)er (#8)

Moreover, if there is a point (Z,t) € D such that

u(Z,t) = max_u(z,t),

(z,t)eD
then
u(z,t) = max u(z,t) for (z,t) € S™(Z,t).
(zt)el’

Proof. We prove Theorem 3.1 only for a set of type (Psr), because the
proof of this theorem for a set of type (Psp) is similar.

It is obvious that a set of type (Psr) is a set of type (Pr) from [4],
hence,in the case where ), ; hi(x) = 0 for z € S, Theorem 3.1 is a
consequence of Theorem 4.1 from [4]. Therefore, we shall give the proof of
Theorem 3.1 only in the case where

(3.5) 1<) hi(z) <0 for z € S,
ieJ*
We argue by contradiction. Suppose that (3.5) is satisfied and let

(3.6) M+#K.

From (3.1) and (3.3), it follows

(3.7) Ki<M' (ieN).
Consequently (3.6), (3.7) imply that

(3.8) There is | € N such that K* < M'.

From assumption (5), we deduce that

(3.9) There is a point (z*,¢*) € D such that
u(z*,t*) = M := max_u(z,t).
(z,t)eD
By (3.9), by assumption (3) and by (3.8) we obtain
(3.10) (z*,t*) e D\I' = DU oy,.

An argument analogous to the proof of Theorem 4.1 from [4] yields
(3.11) (z*,t*) ¢ D.
Consequently
(3.12) (z*,t*) € oy,

On account of the definition of sets J and J,, we distinguish the following
cases:



578 J. Brandys

(A) J, is a finite set, i.e., without loss generality there is a number p € N
such that J, = {1,...,p}.

(B) cardJ, = Ny.

We consider first the case (A). By (3.2) and by the inequalities

p
u(x*,t) < u(:L‘*,to) for te U[T2i—1>T2i],
i=1

which are consequences of (3.9) and (3.11) and of conditions (a)(i), (a)(iii)
of the definition of a set of type (Psr), we have

T

1 . .
0> (’LLJ(CL‘ to KJ +Zh <m S uj(:v*,'r) —K])
¢ R ¢ T
. . 1 T .
> (uj(:r*,to) —K])+th($*)(m S u](flf*,to)dT—KJ)
i=1 * T T

P
= (W (" to) - KI)(1+ D hi(a")  (GEN).
i=1
Thus

p
(3.13) u(a*,to) <K, if 1+ hi(z)>0.
=1

Obviously, from (3.8) and (3.11), we obtain a contradiction of (3.12) with
(3.9). Assume now that

(3.14) > hi(z") = -1.

By the mean-value integral theorem, it is obviously that for every j € N and
i€ {l,...,p} thereis

Tij € [Ti—1, Tai]

such that
1 Ty
(3.15) ul (z* ,Tf) _— u (2%, T)dr.
Toi = Toi-1
i—1
Simultaneously, we see that for every j € N there is a number [; € {1,...,p}
such tha
(3.16) w (¥, T’) = max w (z* Tj)

=1,....p
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Hence, by (3.14),(3.16),(3.15) and by (3.2), we have
W@ to) (e, )
= (4 (2", 10) — K7) — (W (", T} ) — K7)

= (v (z*,t0) — K7) +Zh ) (w? (z* TJ) K%)
< W t0) - KI) + 3 e} o 0", TD) - KO)
i=1

P Ty
. . 1 . .
— (g (* _ K (N & J(p* _ KT
(W (z*,tg) — K?) + E hi(z )(T% T S W (z*, 7)dT — K )
=1 T2i-1

<0 (j €N).
It implies that

(3.17) w (2%, 1) < uj(m*,ii) (jeN), if Zh

Since, condition (a)(i) of the definition of a set type (PS[‘) implies inequal-
ities T >ty (j € N), then from (3.12) we observe that (3.17) contradicts
(3.9). This completes the proof of formula (3.4) in case (A).

Next consider the case (B). Similarly to the proof of (3.4) in case (A),
by assumption (4) and by the inequalities

u(a:*,t) < u(.’l!*,to) for te U [Tgi_l,T2i],
i€,

being a consequence of (3.9), (3.12) and of conditions (a)(i), (a)(iii) of the
definition of a set of type (Psr), we have

Ty
. . 1 . .
0> (v (z*tg) — K7) + hi(z* (— w(z*, 7 d'r—KJ)
(v? (z*, to) ) z; (z") Tor — Toi T2§_1 (z%,7)

Ty
1 _ )
(uJ(x to K] + Zh (m S ’U,J((L' ,tO)dT——K])
i€Js Tpi—1
= @W(a" o) - K9) (1+ 3 hi(a") (jEN).
1€J«
Hence
(3.18) u(@*,to) <K, if 1+ hi(z
1€ J,
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It follows from (3.8)and (3.12) that a condition (3.18) is at a contradiction
with condition (3.9).We assume here

(3.19) > ki

i=J
Applying the mean-value integral theorem we have that for every j € N and
i € J, there is TLJ € [TZi—l,T%] such that

T
o 1 .
(3.20) u! (2%, TY) = TV T | w/(a*,7)dr.
2%~ o1 gy
Define
(3.21) T = inf T/ (j eN).

Because u* € C(D) (i € N) and z* € S; for every t € [To,to + T, if
cardJ = W (see: (3.12) and (a)(iv), (a)(ii) of the definition of a set of type
(Psr)), it follows from (3.21) that for every j € N there is t; € [T?, to + T]
such that

(3.22) W(z*t) = max uw(z*1).
te[T] to+T)

Consequently, by(3.19), (3.22), (3.20) and by assumption (4), we obtain
uj(x*) tO) - uj(x*7 zT])
= (& (2", to) — K7) — (v (", A') —Kj)

= (W (2", t0) — K7) + Y _ hi(z*)(w/ (2", 1;) — K9)
i€ Jx
< (W (z*, to) — K9) + Zh V(! (z*,T7) — K7)
i€
1 T
= (I (2" _ KJ (V[ — = J(r* _KJ
(W (z*,t9) — K- )-I—Zhl(a: )<T2i—T2i—1 S u (2%, T)dr K)
teJx Tai—1
<0 (jeN).
From the last inequality we have
(3.23) W (z* to) < ul(z*,t;) (jEN), if Z hi(
1€J*

Since, condition (a)(ii) of the definition of a set of type (Psr) implies in-
equalities £; > tg (j € N), hence, we see from (3.12) that (3.23) contradicts
(3.9). This proves of equality (3.4).

The second part of Theorem 3.1 is a consequence of (3.4) and Lemma 3.1
from [4]. Therefore, the proof of Theorem 3.1 is complete.
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